GÖZENEK OLUŞTURUCU İLAVESİYLE TÜRBİN MOTOR BİLEŞENLERİ İÇİN GÖZENEKLİ MÜLLİT SERAMİK ÜRETİMİ
Yıl 2019,
, 1096 - 1104, 31.07.2019
Elif Eren Gültekin
,
Gülsüm Topateş
Öz
Müllit,
düşük ısıl genleşme, düşük ısıl iletkenlik, mükemmel sürünme direnci, yüksek
sıcaklık mukavemeti ve iyi kimyasal kararlılık gibi özellikleri nedeniyle ileri
teknoloji yapısal ve fonksiyonel seramikler için kullanılan bir malzemedir.
Havacılık sektöründe kullanılan metal malzemelerin veya gelecekte kullanım
potansiyeli bulunan Si3N4, SiC gibi seramiklerin müllit
esaslı seramikler ile kaplanmasına yönelik çalışmalar yapılmaktadır. Bu
çalışmada, türbin motor bileşenleri için kaplama malzemesi olarak
kullanılabilecek gözenekli müllit seramikler, kısmi sinterleme ve gözenek
oluşturucu ilavesiyle üretilmiştir. PMMA (polimetilmetaakrilat) küreleri ve
karbamit gözenek oluşturucu olarak eklenmiş, gözenek tipinin ve büyüklüğünün
etkileri araştırılmıştır. İki farklı tane boyutunda PMMA ve karbamit olmak
üzere üç farklı gözenek oluşturucu hacimce % 5 oranında kullanılmıştır.
Ortalama tane boyutu PMMA küreleri için 40 ve 400 µm, karbamit için ise 1000
µm’dir. Üretilen numunelerin gözeneği % 30-40 arasında değişirken, gözenek
büyüklüğü gözenek oluşturucu tipine bağlı olarak 1-500 µm arasında ölçülmüştür.
Numunelerin elastisite modülü ultrasonik yöntemle ölçülmüş, mikroyapısal
gelişimi taramalı elektron mikroskobu (SEM) ile incelenmiş, gözenek büyüklüğü
ve dağılımı civa porozimetresi ile belirlenmiştir.
Teşekkür
Çalışmaya, finansal destek veren Selçuk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne (Yayın Atıf Projeleri No: 16611899 ve No: 18601007), deneylere destek sağlayan Eskişehir Teknik Üniversitesi, Mühendislik Fakültesi, Malzeme Bilimi ve Mühendisliği Bölümü’ne teşekkür ederiz
Kaynakça
- [1] BAI, J., “Fabrication and Properties of Porous Mullite Ceramics from Calcined Carbonaceous Kaolin and α-Al2O3”, Ceram. Int., 36, 673-678, 2010.
- [2] LI, N., ZHANG, X.-Y., QU, Y.-N., XU, J., MA, N., GAN, K., HUO, W.-L., YANG, J.-L., “A Simple and Efficient Way to Prepare Porous Mullite Matrix Ceramics via Directly Sintering SiO2-Al2O3 Microspheres”, J. Eur. Ceram. Soc., 36, 2807-2812, 2016.
- [3] DING, S., ZENG, Y.-P., JIANG, D., “Fabrication of Mullite Ceramics with Ultrahigh Porosity by Gel Freeze Drying”, J. Am. Ceram. Soc., 90(7), 2276-2279, 2007.
- [4] Patent, US20080072551A1 - Highly Porous Mullite Particulate Filter Substrate, Priority date : 2002-10-28
- [5] KOKINI, K., TAKEUCHI, Y.R., CHOULES, B.D., “Surface Thermal Cracking of Thermal Barrier Coatings Owing to Stress Relaxation: Zirconia vs. Mullite”, Surf. Coat. Tech., 82, 72-82, 1996.
- [6] CAO, X.Q., VASSEN, R., STOEVER, D., “Ceramic Materials for Thermal Barrier Coatings”, J. Eur. Ceram. Soc., 24, 1-10, 2004.
- [7] EVANS, A.G., MUMM, D.R., HUTCHISON, J.W., MEIER, G.H., PETIT, F.S., “Mechanisms Controlling the Durability of Thermal Barrier Coatings”, Prog. Mater. Sci., 46(5), 505-553, 2001.
- [8] FRAGASSA, C., “Limits in Application of International Standards to Innovative Ceramic Solutions”, Int. J. Qual. Res., 9(2), 279-298, 2015.
- [9] MEDDING, J.A., Nondestructive Evaluation of Zirconium Phosphate Bonded Silicon Radomes, Phd. Thesis, Virginia Polytechnic Institute and State University, Virginia, U.S.A., 1996.
- [10] KULKARNI, N., MOUDGIL, B., BHARDWAJ, M., “Ultrasonic Characterization of Green and Sintered Ceramics: I, Time Domain”, Am. Ceram. Soc. Bull., 73, 146-153, 1994.
- [11] EREN, E., Seramik Karoların Ultrasonografik Tahribatsız Muayene Metodu ile İncelenmesi, Doktora Tezi, Fen Bilimleri Enstitüsü, Eskişehir, Türkiye, 2011.
- [12] MEDVEDOVSKI, E., “Alumina-mullite Ceramics for Structural Applications”, Ceram. Int., 32, 369-375, 2006.
- [13] SHIBATA, T., ISHIHARA, M., “Ultrasonic Signal Characteristics by Pulse-echo Technique and Mechanical Strength of Graphite Materials with Porous Structure”, Nucl. Eng. Des., 203, 133-141, 2001.
- [14] DÍAZ, A., HAMPSHIRE, S., “Characterisation of Porous Silicon Nitride Materials Produced with Starch”, J. Eur. Ceram. Soc., 24, 413-419, 2004.
- [15] YANG, J.-F., OHJI, T., KANZAKI, S., DÍAZ, A., HAMPSHIRE, S., “Microstructure and Mechanical Properties of Silicon Nitride Ceramics with Controlled Porosity”, J. Eur. Ceram. Soc., 85(6), 1512-1516, 2002.
- [16] YOSHIMURA, H.N., MOLISANI, A.L., NARITA, N.E., CESAR, P.F., GOLDENSTEIN, H., “Porosity Dependence of Elastic Constants in Aluminum Nitride Ceramics”, Mater. Res., 10(2), 127-133, 2007.
- [17] LEDBETTER, H., KIM, S., BALZAR, D., “Elastic Properties of Mullite”, J. Am. Ceram. Soc., 81(4), 1025-1028, 1998.
- [18] OSENDI, M.I., BAUDIN, C., “Mechanical Properties of Mullite Materials”, J. Eur. Ceram. Soc., 16(2), 217-224, 1996.
- [19] GREGOROVÁ, E., PABST, W., UHLIROVA, T., NECINA, V., VESELY, M., SEDLAROVA, I., “Processing, Microstructure and Elastic Properties of Mullite-based Ceramic Foams Prepared by Direct Foaming with Wheat Flour”, J. Eur. Ceram. Soc., 36, 109-120, 2016.
PRODUCTION OF POROUS MULLITE CERAMICS FOR TURBINE ENGINE COMPONENTS PRODUCED BY PORE FORMER ADDITION
Yıl 2019,
, 1096 - 1104, 31.07.2019
Elif Eren Gültekin
,
Gülsüm Topateş
Öz
Mullite is a material used for advanced
structural and functional ceramics due to its favourable properties such as low
thermal expansion, low thermal conductivity, excellent creep resistance,
high-temperature strength and good chemical stability. Several studies have
been performed to coat metallic materials or Si3N4, SiC
ceramics that have potential usage in aviation industry with mullite based
ceramics. In this study, porous mullite ceramics for used as coating layers for
turbine engine components were fabricated by partial sintering and pore former
addition. PMMA sphere and carbamide were added as pore formers and the effects
of pore former type and size were investigated. Three different pore formers:
PMMA with two different particle sizes and carbamide were used 5 vol. % as pore
former additives. The average particle size PMMA spheres were 40 and 400 mm, carbamide was 1000 mm. The porosity of fabricated components varied
between 30-40 % whereas pore size changes from 1-500 mm depending on the pore former type. Elastic
modulus of the components was measured by ultrasonic method, microstructural
development was investigated by scanning electron microscopy (SEM), pore size
and distribution was determined by mercury porosimeter.
Kaynakça
- [1] BAI, J., “Fabrication and Properties of Porous Mullite Ceramics from Calcined Carbonaceous Kaolin and α-Al2O3”, Ceram. Int., 36, 673-678, 2010.
- [2] LI, N., ZHANG, X.-Y., QU, Y.-N., XU, J., MA, N., GAN, K., HUO, W.-L., YANG, J.-L., “A Simple and Efficient Way to Prepare Porous Mullite Matrix Ceramics via Directly Sintering SiO2-Al2O3 Microspheres”, J. Eur. Ceram. Soc., 36, 2807-2812, 2016.
- [3] DING, S., ZENG, Y.-P., JIANG, D., “Fabrication of Mullite Ceramics with Ultrahigh Porosity by Gel Freeze Drying”, J. Am. Ceram. Soc., 90(7), 2276-2279, 2007.
- [4] Patent, US20080072551A1 - Highly Porous Mullite Particulate Filter Substrate, Priority date : 2002-10-28
- [5] KOKINI, K., TAKEUCHI, Y.R., CHOULES, B.D., “Surface Thermal Cracking of Thermal Barrier Coatings Owing to Stress Relaxation: Zirconia vs. Mullite”, Surf. Coat. Tech., 82, 72-82, 1996.
- [6] CAO, X.Q., VASSEN, R., STOEVER, D., “Ceramic Materials for Thermal Barrier Coatings”, J. Eur. Ceram. Soc., 24, 1-10, 2004.
- [7] EVANS, A.G., MUMM, D.R., HUTCHISON, J.W., MEIER, G.H., PETIT, F.S., “Mechanisms Controlling the Durability of Thermal Barrier Coatings”, Prog. Mater. Sci., 46(5), 505-553, 2001.
- [8] FRAGASSA, C., “Limits in Application of International Standards to Innovative Ceramic Solutions”, Int. J. Qual. Res., 9(2), 279-298, 2015.
- [9] MEDDING, J.A., Nondestructive Evaluation of Zirconium Phosphate Bonded Silicon Radomes, Phd. Thesis, Virginia Polytechnic Institute and State University, Virginia, U.S.A., 1996.
- [10] KULKARNI, N., MOUDGIL, B., BHARDWAJ, M., “Ultrasonic Characterization of Green and Sintered Ceramics: I, Time Domain”, Am. Ceram. Soc. Bull., 73, 146-153, 1994.
- [11] EREN, E., Seramik Karoların Ultrasonografik Tahribatsız Muayene Metodu ile İncelenmesi, Doktora Tezi, Fen Bilimleri Enstitüsü, Eskişehir, Türkiye, 2011.
- [12] MEDVEDOVSKI, E., “Alumina-mullite Ceramics for Structural Applications”, Ceram. Int., 32, 369-375, 2006.
- [13] SHIBATA, T., ISHIHARA, M., “Ultrasonic Signal Characteristics by Pulse-echo Technique and Mechanical Strength of Graphite Materials with Porous Structure”, Nucl. Eng. Des., 203, 133-141, 2001.
- [14] DÍAZ, A., HAMPSHIRE, S., “Characterisation of Porous Silicon Nitride Materials Produced with Starch”, J. Eur. Ceram. Soc., 24, 413-419, 2004.
- [15] YANG, J.-F., OHJI, T., KANZAKI, S., DÍAZ, A., HAMPSHIRE, S., “Microstructure and Mechanical Properties of Silicon Nitride Ceramics with Controlled Porosity”, J. Eur. Ceram. Soc., 85(6), 1512-1516, 2002.
- [16] YOSHIMURA, H.N., MOLISANI, A.L., NARITA, N.E., CESAR, P.F., GOLDENSTEIN, H., “Porosity Dependence of Elastic Constants in Aluminum Nitride Ceramics”, Mater. Res., 10(2), 127-133, 2007.
- [17] LEDBETTER, H., KIM, S., BALZAR, D., “Elastic Properties of Mullite”, J. Am. Ceram. Soc., 81(4), 1025-1028, 1998.
- [18] OSENDI, M.I., BAUDIN, C., “Mechanical Properties of Mullite Materials”, J. Eur. Ceram. Soc., 16(2), 217-224, 1996.
- [19] GREGOROVÁ, E., PABST, W., UHLIROVA, T., NECINA, V., VESELY, M., SEDLAROVA, I., “Processing, Microstructure and Elastic Properties of Mullite-based Ceramic Foams Prepared by Direct Foaming with Wheat Flour”, J. Eur. Ceram. Soc., 36, 109-120, 2016.