EFFECTS OF NUMBER OF TURNS OF ARMATURE WINDING ON OUTER ROTOR BRUSHLESS DIRECT CURRENT MOTOR DESIGNED FOR AN ELECTRIC VEHICLE PROTOTYPE
Yıl 2020,
, 832 - 847, 07.08.2020
Alper Çağışlar
Hasan Tiryaki
,
Nevra Bayhan
Öz
While electric vehicles happen to be today's transportation vehicles, big R&D investments are being made by automobile manufacturers. Outer and inner rotor motors are used for electric vehicles. Considering the fact that the transmission systems make the structure more complex, outer rotor motors come into prominence in applications requiring small power. This study includes the design of outer rotor brushless direct current motor for electric vehicle prototypes. In addition, the effects of the number of turns of the armature winding selected, especially on efficiency, input power and torque parameters, were analyzed in detail.
Destekleyen Kurum
Executive Secretariat of Scientific Research Projects of Istanbul University
Proje Numarası
52033_Production of Brushless DC Motor and Driver with Replaceable Magnetic Field
Teşekkür
This study was supported with the “Production of Brushless DC Motor and Driver with Replaceable Magnetic Field” project titled and 52033 numbered with the Executive Secretariat of Scientific Research Projects of Istanbul University.
Kaynakça
- D. Hanselman, Brushless Permanent Magnet Motor Design, Magna Physics Publishing, 9nd ed. ISBN: 1-881855-15-5, Lebanon, 2003.
- P. Yedemale, “Brushless DC (BLDC) Motor Fundamentals”, Microchip Technology Inc, App. Note: DS00885A,
pp. 1-20, USA, 2003.
- M.R.A. Pahlavani, Y.S. Ayat and A. Vahedi, “Minimisation of torque ripple in slotless axial flux BLDC motors in terms of design considerations”, IET Electric Power Applications, vol.11, no.6, pp. 1124-1130, 2017.
- N. A. Rahim, H. W. Ping and M. Tadjuddin, “Design of Axial Flux Permanent Magnet Brushless DC Motor for Direct Drive of Electric Vehicle”, Proc. 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 2007.
- N. Shrivastava and A. Brahmin, “Design of 3-Phase BLDC Motor for Electric Vehicle Application by Using Finite Element Simulation”, International Journal of Emerging Technology and Advanced Engineering, vol. 4, no. 1, pp. 140–145, 2014.
- D. Uygun and S. Solmaz, “Design and Dynamic Study of a 6 kW External Rotor Permanent Magnet Brushless DC Motor for Electric Drivetrains”, Proc. 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), Riga, Latvia, 2015.
- H. Tiryaki, A. Akgundoğdu, G. Erdogan, O. Karadeniz, U. Sahin, M.Y. Yılmaz, Y. Durak and I. Kocaarslan, “Implementation of an Electromobile for Efficiency Challenge”, Proc. Int. World Electro Mobility Conference (WELMO’17), Izmir, Turkey, 2017. (In Turkish)
- Car Acceleration, Available: https://www.engineeringtoolbox.com/car-acceleration-d_1309.html [Accessed: Sept. 03, 2019].
- M. Jafarboland and M.M. Sargazi, “Analytical modelling of the effect of pole offset on the output parameters of BLDC motor”, IET Electric Power Applications, vol.12, no.5, pp.666-676, 2018.
- Y. Luo, Y. Zhu, Y. Yu and L. Zhang, “Inductance and force calculations of circular coils with parallel axes shielded by a cuboid of high permeability”, IET Electric Power Applications, vol.12, no.5, pp.717-727, 2018.
- F. Libert and J. Soulard, “Investigation on Pole-Slot Combinations for Permanent-Magnet Machines with Concentrated Windings”, Proc. Int. Conf. on Electric Machines (ICEM’04), 2004.
- A.S. Cabuk, Ş. Sağlam, G. Tosun and O. Ustun, “Investigation of Different Slot-Pole Combinations of An In-Wheel BLDC Motor for Light Electric Vehicle Propulsion”, Proc. Int. Conf. on ELECO’17, 2017.
- C. Ma, Q. Li, H. Lu H, Y. Liu and H. Gao, “Analytical model for armature reaction of outer rotor brushless permanent magnet DC motor”, IET Electric Power Applications, vol.12, no.5, pp.651-657, 2018.
- P. Kohnke, ANSYS Theory Reference for The Mechanical APDL and Mechanical Applications, SAS IP, Canonsburg, 2009.
- P.M. Dusane, Simulation of a Brushless DC Motor in ANSYS – Maxwell 3D, Master Thesis, Czech Technical University, 2016.
- W. Fei and P.C.K. Luk, “A New Technique of Cogging Torque Suppression in Direct-Drive Permanent Magnet Brushless Machines”, IEEE Transactions on Industry Applications, vol.46, no.4, pp.1332-1340, 2010.
- Z. Wu and Z.Q. Zhu, “Influence of stator/rotor-pole combination on electromagnetic performance in all/alternate poles wound partitioned stator doubly salient permanent magnet machines”, J Eng, vol.6, pp.237–245, 2017.
- Stacking Factor, Available: https://en.wikipedia.org/wiki/Stacking_factor, [Accessed Sept. 03, 2019].
- ANSYS Maxwell Electromagnetics Suite 16.0.0, Reference Manual, 2015.
- A.S. Çağışlar, Brushless Direct Current Motor Design For Electric Vehicles, Master Thesis, Istanbul University, 2018. (In Turkish)
- L. Tang, J. He, L. Chen, S. Xia, D. Feng, J. Li and P. Yan, “Study of Some Influencing Factors of Armature Current Distribution at Current Ramp-Up Stage in Railgun”, IEEE Transactions On Plasma Science, vol.43, no.5, pp.1585-1591, 2015.
- Flux, Reference Manual, 2018.
ARMATÜR SARGISININ SARIM SAYISININ BİR ELEKTRİKLİ ARAÇ PROTOTİPİ İÇİN TASARLANAN DIŞ ROTORLU FIRÇASIZ DOĞRU AKIM MOTORUNA ETKİLERİ
Yıl 2020,
, 832 - 847, 07.08.2020
Alper Çağışlar
Hasan Tiryaki
,
Nevra Bayhan
Öz
Elektrikli araçlar günümüzün ulaşım araçları olarak yerini alırken otomobil üreticileri tarafından bu konuda büyük Ar-Ge yatırımları yapılmaktadır. Elektrikli araçlar için dışsal ve içsel rotorlu motorlar kullanılmaktadır. Aktarım organlarının yapıyı daha karmaşıklaştırdığı göz önünde bulundurulduğunda dışsal rotorlu motorlar küçük güç gerektiren uygulamalarda verimlilikleri ile ön plana çıkmaktadır. Bu çalışma prototip elektrikli araçlar için dış rotorlu fırçasız doğru akım motoru tasarımını içermektedir. Ayrıca yapılan analizler ile seçilen armatür sargısının sarım sayısının özellikle verimlilik, giriş gücü ve tork parametrelerine olan etkileri detaylı olarak incelenmiştir.
Proje Numarası
52033_Production of Brushless DC Motor and Driver with Replaceable Magnetic Field
Kaynakça
- D. Hanselman, Brushless Permanent Magnet Motor Design, Magna Physics Publishing, 9nd ed. ISBN: 1-881855-15-5, Lebanon, 2003.
- P. Yedemale, “Brushless DC (BLDC) Motor Fundamentals”, Microchip Technology Inc, App. Note: DS00885A,
pp. 1-20, USA, 2003.
- M.R.A. Pahlavani, Y.S. Ayat and A. Vahedi, “Minimisation of torque ripple in slotless axial flux BLDC motors in terms of design considerations”, IET Electric Power Applications, vol.11, no.6, pp. 1124-1130, 2017.
- N. A. Rahim, H. W. Ping and M. Tadjuddin, “Design of Axial Flux Permanent Magnet Brushless DC Motor for Direct Drive of Electric Vehicle”, Proc. 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 2007.
- N. Shrivastava and A. Brahmin, “Design of 3-Phase BLDC Motor for Electric Vehicle Application by Using Finite Element Simulation”, International Journal of Emerging Technology and Advanced Engineering, vol. 4, no. 1, pp. 140–145, 2014.
- D. Uygun and S. Solmaz, “Design and Dynamic Study of a 6 kW External Rotor Permanent Magnet Brushless DC Motor for Electric Drivetrains”, Proc. 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), Riga, Latvia, 2015.
- H. Tiryaki, A. Akgundoğdu, G. Erdogan, O. Karadeniz, U. Sahin, M.Y. Yılmaz, Y. Durak and I. Kocaarslan, “Implementation of an Electromobile for Efficiency Challenge”, Proc. Int. World Electro Mobility Conference (WELMO’17), Izmir, Turkey, 2017. (In Turkish)
- Car Acceleration, Available: https://www.engineeringtoolbox.com/car-acceleration-d_1309.html [Accessed: Sept. 03, 2019].
- M. Jafarboland and M.M. Sargazi, “Analytical modelling of the effect of pole offset on the output parameters of BLDC motor”, IET Electric Power Applications, vol.12, no.5, pp.666-676, 2018.
- Y. Luo, Y. Zhu, Y. Yu and L. Zhang, “Inductance and force calculations of circular coils with parallel axes shielded by a cuboid of high permeability”, IET Electric Power Applications, vol.12, no.5, pp.717-727, 2018.
- F. Libert and J. Soulard, “Investigation on Pole-Slot Combinations for Permanent-Magnet Machines with Concentrated Windings”, Proc. Int. Conf. on Electric Machines (ICEM’04), 2004.
- A.S. Cabuk, Ş. Sağlam, G. Tosun and O. Ustun, “Investigation of Different Slot-Pole Combinations of An In-Wheel BLDC Motor for Light Electric Vehicle Propulsion”, Proc. Int. Conf. on ELECO’17, 2017.
- C. Ma, Q. Li, H. Lu H, Y. Liu and H. Gao, “Analytical model for armature reaction of outer rotor brushless permanent magnet DC motor”, IET Electric Power Applications, vol.12, no.5, pp.651-657, 2018.
- P. Kohnke, ANSYS Theory Reference for The Mechanical APDL and Mechanical Applications, SAS IP, Canonsburg, 2009.
- P.M. Dusane, Simulation of a Brushless DC Motor in ANSYS – Maxwell 3D, Master Thesis, Czech Technical University, 2016.
- W. Fei and P.C.K. Luk, “A New Technique of Cogging Torque Suppression in Direct-Drive Permanent Magnet Brushless Machines”, IEEE Transactions on Industry Applications, vol.46, no.4, pp.1332-1340, 2010.
- Z. Wu and Z.Q. Zhu, “Influence of stator/rotor-pole combination on electromagnetic performance in all/alternate poles wound partitioned stator doubly salient permanent magnet machines”, J Eng, vol.6, pp.237–245, 2017.
- Stacking Factor, Available: https://en.wikipedia.org/wiki/Stacking_factor, [Accessed Sept. 03, 2019].
- ANSYS Maxwell Electromagnetics Suite 16.0.0, Reference Manual, 2015.
- A.S. Çağışlar, Brushless Direct Current Motor Design For Electric Vehicles, Master Thesis, Istanbul University, 2018. (In Turkish)
- L. Tang, J. He, L. Chen, S. Xia, D. Feng, J. Li and P. Yan, “Study of Some Influencing Factors of Armature Current Distribution at Current Ramp-Up Stage in Railgun”, IEEE Transactions On Plasma Science, vol.43, no.5, pp.1585-1591, 2015.
- Flux, Reference Manual, 2018.