Derleme
BibTex RIS Kaynak Göster

Betonarme perde duvarların farklı yapı malzemeleri açısından değerlendirilmesi

Yıl 2021, , 217 - 240, 15.01.2021
https://doi.org/10.28948/ngumuh.751562

Öz

Perde duvarlar yüksel yanal rijitliklerinden dolayı deprem, rüzgâr gibi yatay kuvvetleri karşılamada en çok tercih edilen yapı elemanlarıdır. Gelişen teknoloji ile birlikte hem yapı malzemelerindeki hem de deney düzeneklerindeki gelişmeler ışığında perde duvarların farklı yöntemlerle incelenmesine olanak sağlamıştır. Bu çalışma kapsamında uzun yıllar boyunca betonarme perde duvarlar genel kabul görmüş parametreler yerine yenilikçi malzemeler ve deney koşulları bakımından ele alınmıştır. Betonarme perde duvarlar gerek lifli beton, hafif veya yüksek dayanımlı beton, FRP donatılar gibi malzemeler gerekse de donma-çözülme, korozyon, güçlendirme gibi amaçlarla irdelenmiştir. Yüksek katlı binalarda kullanımı neredeyse zorunlu hale gelen betonarme perde duvarların önümüzdeki yıllar içerisinde geleneksel çelik donatı düzeninin yerine daha yüksek mekanik ve durabilite özelliklerine sahip donatılara, geleneksel betonun yerine geleneksel betonun zayıflıklarının giderileceği özel çimento esaslı kompozitlerle üretileceği aşikârdır. Bununla birlikte tipik beton ve donatılı perde duvarlar yerine kompozit malzemelere kayacağı da beklenilmektedir. Çalışma kapsamında betonarme perde duvarların yapı malzemeleri perspektifinde davranışları ele alınmıştır.

Kaynakça

  • [1] A. Ünal, TDY 2007'ye göre tasarlanmamış betonarme çerçevelerin düzlem dışı perde duvarla güçlendirilmesi, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya,2012.
  • [2] E. Baş, FRP sargılı perde duvarın yükler altındaki davranışının incelenmesi, Yüksek Lisans Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Denizli, 2015.
  • [3] H. Şahin, K.E. Alyamaç, and A.S. Erdoğan, Perde çerçeveli yapılarda zemin sınıfı ve kat adedi dikkate alınarak gerekli perde oranının tespiti, SDU International Journal of Technological Science, 5, 1, 2013.
  • [4] Türkiye Bina Deprem Yönetmeliği, T.C. Çevre ve Şehircilik Bakanlığı, Afet ve Acil Durum Yönetimi Başkanlığı, 2019
  • [5] ISO/DIS 15673, Standart for the simplified design of structural reinforced concrete for buildings, International Organization for Standardization, Santafe de Bogota, Columbia, pp 220, 1998.
  • [6] M. S. Döndüren, and A. Karaduman, Deprem bölgelerindeki yüksek katlı betonarme yapılarda taşıyıcı sistem seçiminin kesit tesirlerine etkisi, Selçuk-Teknik Dergisi, 9, 2, 131-43, 2010.
  • [7] C.M. Chan, F. Ning, and N.C. Mickleborough, Lateral stiffness characteristics of tall reinforced concrete buildings under service loads, The Structural Design of Tall Buildings, 9, 5, 365-83, 2000. https://doi.org/10 .1002/10991794(200012)9:5<365::AID-TAL158>3.0.CO;2- B
  • [8] I. Bali, and S.J. Hwang, Strength and deflection prediction of double-curvature reinforced concrete squat walls, Structural Engineering and Mechanics, 27, 4, 501-521, 2007. https://doi.org/10.12989/sem.2007 .27.4.501
  • [9] Y. R. Dong, Z.D Xu, K. Zeng, Y. Cheng, and C. Xu, Seismic behavior
  • and cross-scale refinement model of damage evolution for RC shear walls, Engineering Structures, 167, 13-25, 2018. https://doi.org/10.1016/ j.engstruct.2018.03.096
  • [10] T. Paulay, and A.R. Santhakumar, Ductile behavior of coupled shear walls, Journal of the Structural Division, 102, 1, 93-108, 1976.
  • [11] A. E. Aktan, and V. V. Bertero, Seismic response of R/C frame-wall structures, Journal of Structural Engineering, 110, 8, 1803-21, 1984.
  • [12] B.R. Rad, and P. Adebar, Dynamics shear amplification in high-rise concrete walls: effect of multiple flexural hinges and shear cracking, Proceeding of the 14th World Conference on Earthquake, Beifing, China, 2008.
  • [13] M. Panagiotou, and J. I. Restrepo, Dual-plastic hinge design concept for reducing higher-mode effects on high rise cantilever wall buildings, Earthquake Engineering and Structural Dynamics, 38, 12, 1359-80,2009. https://doi.org/10.1002/eqe.905
  • [14] A, Dazio, K. Beyer, and H. Bachmann, Quasi-static cyclic tests and plastic hinge analysis of RC structural walls, Engineering Structures, 31, 7, 1556-71, 2009. https://doi.org/10.1016/j.engstruct.2009.02.018
  • [15] M. Ahmed, Multiple plastic hinge concept for high-rise reinforced- concrete core wall buildings, Proceeding of the Institution of Civil Engineers-Structures and Buildings, 169, 6, 688-701, 2016.
  • [16] M. Kurt, T. Kotan, M. S. Gül, R. Gül, and A. C. Aydın, The effect of blast furnace slag on the self-compactibility of pumice aggregate lightweigth concrete, Sadhana, 41, 2, 253-64, 2016. https://doi.org/10.1007/s12046-016-0462-2
  • [17] N. Ganesan, and P. V. Indira, High performance fibre reinforced cement concrete slender structural walls, Advances in Concrete Construction, 2, 4, 309, 2014. http://dx.doi.org/10.12989/.2014.2.4.309
  • [18] J. Carrillo, J. M. Lizarazo, and R. Bonett, Effect of lightweight and low-strength concrete on seismic performance of thin lightly- reinforced shear walls, Engineering Structures, 93, 61-69, 2015. https://doi.org /10.1016/j.engstruct.2015.03.022
  • [19] J. Zhao, G. Cai, A. S. Larbi, Y. Zhang, H. Dun, H. Degée, and B. Vandoren, Hysteretic behaviour of steel fibre RC coupled shear walls under cyclic loads: Experimental study and modelling, Engineering Structures, 156, 92-104, 2018. https://doi.org/10.1016/ j.engstruct.2017.11.006
  • [20] X. Lu, Y. Zhang, H. Zhang, H. Zhang, and R. Xiao, Experimental study on seismic performance of steel fiber reinforced high strength concrete composite shear walls with different steel fiber volume fractions, Engineering Structures, 171, 247-59, 2018. https://doi.org/10.1016/j.engstruct.2018.05.068
  • [21] C. C. Hung, and P. L. Hsieh, Comparative study on shear failure behavior of squat high-strength steel reinforced concrete shear walls with various high-strength concrete materials, In Structures, 23, 56-68, 2018. https://doi.org/10.1016/j.istruc.2019.11.002
  • [22] M. Maali, M. Kılıç and A. C. Aydın, Experimental model of the behaviour of bolted angles connections with stiffeners, International Journal of Steel Structures, 16, 3, 719-33, 2016. https://doi.org/10.10 07/s13296-015-0183-0
  • [23] A. Astaneh-Asl, Seismic behavior and design of composite steel plate shear walls, Moraga (CA): Structural Steel Educational Council, 2002.
  • [24] W. S. Park, and H. D. Yun, Seismic behaviour and design of steel coupling beams in a hybrid coupled shear wall systems, Nuclear Engineering and Design, 236, 23, 2474-84, 2006. https://doi.org/10.1016/j.nuc engdes.2006.03.008
  • [25] D. Dan, A. Fabian, and V. Stoian, Theoretical and experimental study on composite steel–concrete shear walls with vertical steel encased profiles, Journal of constructional steel research, 67, 5, 800-13, 2011. https://doi.org/10.1016/j.jcsr.2010.12.013
  • [26] J. G. Nie, H. S. Hu, J. S. Fan, M. X. Tao, S. Y. Li, and J. Liu, Experimental study on seismic behavior of high-strength concrete filled double-steel-plate composite walls, Journal of Constructional Steel Research, vol. 88, 206-219, 2013. https://doi.org/10.1016/j.jcsr.2013 .05.001
  • [27] A. Astaneh-Asl, and Q. Zhao, Cyclic behavior of steel shear wall systems, In Proceedings, Annual Stability Conference, Structural Stability Research Council, 2002.
  • [28] W. Lan, J. Ma, and B. Li, Seismic performance of steel–concrete composite structural walls with internal bracings, Journal of Constructional Steel Research, 110, 76-89, 2015. https://doi.org/10.1016/j.jcsr.2015.0 2.015
  • [29] X, Ji, T, Leong, J, Qian, W. Qi, and W, Yang, Cyclic shear behavior of composite walls with encased steel braces, Engineering Structures, 127, 117-28, 2016. https://doi.org/10.1016/j.engstruct.2016.08.041
  • [30] X. Li, and X. Li, Steel plates and concrete filled composite shear walls related nuclear structural engineering: Experimental study for out-of-plane cyclic loading, Nuclear Engineering and Design, 315, 144- 54, 2017. https://doi.org/10.1016/j.nucengdes.201 7.02.019
  • [31] M, Meghdadaian, and M, Ghalehnovi, Improving seismic performance of composite steel plate shear walls containing openings, Journal of Building Engineering, 21, 336-42, 2019. https://doi.org/10.1016/ j.jobe.2018.11.001
  • [32] A. E. Cardenas, and D. D. Magura, Strength of high-rise shear walls-rectangular cross section, Special Publication, 36, 119-50, 1972.
  • [33] F. Barda, J. M. Hanson, and W. G. Corley, Shear strength of low- rise walls with boundary elements, Special Publication, 53, 149-202, 1977.
  • [34] A. E. Cardenas, H. G. Russell, and W. G. Corley, Strength of low- rise structural walls, Special Publication, 63, 221-42, 1980.
  • [35] R. G. Oesterle, A. E. Fiorato, J. D. Aristizabal-Ochoa, and W. G. Corley, Hysteretic response of reinforced concrete structural walls, ACI Special Publication, 63, 243-73, 1980.
  • [36] T, Paulay, M. J. N. Priestley, and A. J. Synge, Ductility in earthquake resisting squat shear walls, In Journal Proceedings, 79, 4, 257-69, 1982.
  • [37] R. G. Oesterle, J. D. Aristizabal-Ochoa, K. N. Shiu, and W. G. Corley, Web crushing of reinforced concrete structural walls, In Journal Proceedings, 81, 3, 231-41, 1984.
  • [38] K. I. Christidis, and K. G. Trezos, Experimental investigation of existing non-conforming RC shear walls, Engineering Structures, 140, 26-38, 2017. https://doi.org/10.1016/j.engstruct.2017.02.063
  • [39] N. A. A. R. Mohamed, Strength and drift capacity of GFRP- reinforced concrete shear walls, Doktora Tezi, Université de Sherbrooke, Kanada, 2013.
  • [40] J, Lombard, D. T. Lau, J. L. Humar, S. Foo, and M. S. Cheung, Seismic strengthening and repair of reinforced concrete shear walls, In Proc., 12th World Conf. on Earthquake Engineering, pp. 1-8, 2000.
  • [41] S. Altin, Ö. Anil, Y. Kopraman, and M. E. Kara, Hysteretic behavior of RC shear walls strengthened with CFRP strips, Composites Part B: Engineering, 44, 1, 321-29, 2013. https://doi.org/10.1016/j.compositesb .2012.05.009
  • [42] H. El-Sokkary, K. Galal, I. Ghorbanirenani, P. Léger, and R. Tremblay, Shake table tests on FRP-rehabilitated RC shear walls, Journal of Composites for Construction, 17, 1, 79-90, 2013. https://doi.org/ 10.1061/(ASCE)CC.19435614.0000312
  • [43] N. Mohamed, A. S. Farghaly, B. Benmokrane, and K. W. Neale, Experimental investigation of concrete shear walls reinforced with glass fiber–reinforced bars under lateral cyclic loading, Journal of Composites for Construction, 18, 3, A4014001, 2014. https://doi.org/ 10.1061/(ASCE)CC.19435614.0000393
  • [44] D. Mostofinejad, and M. Mohamadi Anaei, Strengthening of slender RC shear wall with FRP sheets, Iranian Journal of Science and Technology Transactions of Civil Engineering, 39, C2, 385-94, 2015.
  • [45] A. Delnavaz, and M. Hamidnia, Analytical investigation on shape configuration of CFRP strips on lateral loading capacity of strengthened RC shear wall, Structural Concrete, 17, 6, 1059-70, 2016. https://doi.org/10.1002/suco.201500196
  • [46] K. K. Antoniades, T. N. Salonikios, and A. J. Kappos, Tests on seismically damaged reinforced concrete walls repaired and strengthened using fiber-reinforced polymers, Journal of Composites for Construction, 9, 3, 236-46, 2005. https://doi.org/10.1061/(ASCE)109002 68(2005)9:3(236)
  • [47] K. K. Antoniades, T. N. Salonikios, and A. J. Kappos, Evaluation of hysteretic response and strength of repaired R/C walls strengthened with FRPs., Engineering structures, 29, 9, 2158-71, 2007. https://doi.org/10.1016/j.engstruct.2006.11.021
  • [48] H. Ko, and Y. Sato, Bond stress–slip relationship between FRP sheet and concrete under cyclic load, Journal of Composites for Construction, 11, 4, 419-26,2007. https://doi.org/10.1061/(ASCE)10900268(20 07)11:4(419)
  • [49] B. Li, and C. L. Lim, Tests on seismically damaged reinforced concrete structural walls repaired using fiber-reinforced polymers, Journal of composites for construction, 14, 5, 597-608, 2010. https://doi.org/10 .1061/(ASCE)CC.19435614.0000110
  • [50] D. Shen, Q. Yang, Y. Jiao, Z. Cui, and J. Zhang, Experimental investigations on reinforced concrete shear walls strengthened with basalt fiber-reinforced polymers under cyclic load, Construction and Building Materials, 136, 217-229, 2017. https://doi.org/10.1016/ j.conbuildmat.2016.12.102
  • [51] M. J. Tolou Kian, and C. Cruz-Noguez, Reinforced Concrete Shear Walls Detailed with Innovative Materials: Seismic Performance, Journal of Composites for Construction, 22, 6, 04018052,2018.https://doi.org/10.1061/(ASCE)CC.19435614.0000893
  • [52] R. L. Yeh, C. C. Tseng, and S. J. Hwang, Shear strength of reinforced concrete vertical wall segments under seismic loading, ACI Structural Journal, 2018. https://doi.org/10.14359/51702377
  • [53] K. Deng, P. Pan, S. Shen, H. Wang, and P. Feng, Experimental study of FRP-reinforced slotted RC shear walls under cyclic loading, Journal of Composites for Construction, 22, 4. 04018017, 2018. https://doi.org/ 10.1061/(ASCE)CC.19435614.0000855
  • [54] A. Arafa, A. S. Farghaly, and B. Benmokrane, Effect of web reinforcement on the seismic response of concrete squat walls reinforced with glass-FRP bars, Engineering Structures, 174, 712-23, 2018. https://doi.org/10.1016/j.engstruct.2018.07.092
  • [55] Q. Zhao, J. Zhao, J. T. Dang, J. W. Chen, and F. Q. Shen, Experimental investigation of shear walls using carbon fiber reinforced polymer bars under cyclic lateral loading, Engineering Structures, 191, 82-91, 2019. https://doi.org/10.1016/j.engstruct.2019.04.052
  • [56] S. Qazi, L. Michel, and E. Ferrier, Seismic behaviour of RC short shear wall strengthened with externally bonded CFRP strips, Composite Structures, 211, 390-400, 2019. https://doi.org/10.1016/j.compstruct.2018.1 2.038
  • [57] M. Husain, A. S. Eisa, and M. M. Hegazy, Strengthening of reinforced concrete shear walls with openings using carbon fiber- reinforced polymers, International Journal of Advanced Structural Engineering, 11, 2, 129-50, 2019. https://doi.org/10.10 07/s40091-019-0216- 6
  • [58] S. Ghazizadeh, and C. A. Cruz-Noguez, Damage-resistant reinforced concrete low-rise walls with hybrid GFRP-steel reinforcement and steel fibers, Journal of Composites for Construction, 22, 2, 04018002, 2018. https://doi.org/10.1061/(ASCE)CC.19435614.0000834
  • [59] Z. Huang, J. Shen, H. Lin, X. Song, and Y. Yao, Shear behavior of concrete shear walls with CFRP grids under lateral cyclic loading, Engineering Structures, 211, 110422, 2020. https://doi.org/10.1016/j.engstruct.202 0.110422
  • [60] P. Andersen, Experiments with concrete in torsion, In Proceedings of the American Society of Civil Engineers, 60, 5, 641-52, 1935.
  • [61] P. Andersen, Rectangular concrete sections under torsion, In Journal Proceedings, 34, 9, 1-12, 1937.
  • [62] H. J. Cowan, Test of the torsional strength and deformation capacity of rectangular reinforced concrete beams. Concrete and Constructional Engineering, 46, 2, 51-5, 1951.
  • [63] P. Marti, P. Leesti, and W. U. Khalifa, Torsion tests on reinforced concrete slab elements, Journal of Structural Engineering, 113, 5, 994- 1010, 1987. https://doi.org/ 10.1061/(ASCE)07339445(1987)113:5(994)
  • [64] X. N. Peng, Study of torsional behaviour of reinforced concrete shear walls, Doktora Tezi, Hong Kong Polytecnic University, Hong Kong, 2012.
  • [65] J. Carrillo, and S. M. Alcocer, Seismic performance of concrete walls for housing subjected to shaking table excitations, Engineering structures, 41, 98-107, 2012. https://doi.org/10.1016/j.engstruct.2012.03.025
  • [66] B. Öztürk, Seismic drift response of building structures in seismically active and near-fault regions, PhD Dissertation, Purdue University, W. Lafayette, Indiana, USA
  • [67] J. Carrillo, and S. M. Alcocer, Experimental investigation on dynamic and quasi‐static behavior of low‐rise reinforced concrete walls, Earthquake engineering & structural dynamics, 42, 5, 635-52, 2013. https://doi.org/10.1002/eqe.2234
  • [68] H. El-Sokkary, and K. Galal, Seismic behavior of RC shear walls strengthened with fiber-reinforced polymer, Journal of Composites for Construction, vol. 17, 5, 603-613, 2013. https://doi.org/10.1061/(ASCE)CC.19435 614.0000364
  • [69] X. Ji, X. Cheng, and M. Xu, Coupled axial tension-shear behavior of reinforced concrete walls, Engineering Structures, 167, 132- 42, 2018. https://doi.org/10.1016/j.engstruct.2018.04.015
  • [70] B. Öztürk, Investigation of seismic behavior of reinforced concrete shearwall building frames subjected to ground motions from the 1999 Turkish Earthquakes, 14th World Conference on Earthquake Engineering, October 12-17, Beijing, China, 2008.
  • [71] J. Zhang, W. Zheng, C. Yu, and W. Cao, Shaking table test of reinforced concrete coupled shear walls with single layer of web reinforcement and inclined steel bars, Advances in Structural Engineering, 21, 15, 2282-98, 2018. https://doi.org/10.1177/1369433218772350
  • [72] W. Yang, S. S. Zheng, D. Y. Zhang, L. F. Sun, and C. L. Gan, Seismic behaviors of squat reinforced concrete shear walls under freeze-thaw cycles: a pilot experimental study, Engineering Structures, 124, 49-63, 2016. https://doi.org/10.1016/j.engstruct.2016.06.0 13
  • [73] T. C. Powers, A working hypothesis for further studies of frost resistance of concrete, American Concrete Institute, 16, 4, 245-72, 1945
  • [74] D. Shen, Q: Yang, C. Huang, Z. Cui, and J. Zhang, Tests on seismic performance of corroded reinforced concrete shear walls repaired with basalt fiber-reinforced polymers, Construction and Building Materials, 209, 508-21, 2019. https://doi.org/10.1016/j .conbuildmat.2019.02.109
  • [75] X. L. Rong, S. S. Zheng, Y. X. Zhang, X. Y. Zhang, and L. G. Dong, Experimental study on the seismic behavior of RC shear walls after freeze-thaw damage, Engineering Structures, 206, 110101, 2020. https://doi .org/10.1016/j.engstruct.2019.110101

Evaluation of RC shear walls in terms of different construction materials

Yıl 2021, , 217 - 240, 15.01.2021
https://doi.org/10.28948/ngumuh.751562

Öz

Shear walls are the most preferred structural elements to resist the horizontal loads due to high lateral stiffness. With the advancing technology, it has allowed the shear walls to be examined with different methods in the light of developments in both building materials and experimental setups. RC shear walls have been examined in terms of both the materials such as fiber concrete, lightweight concrete, high-strength concrete, fiber-reinforced polymer (FRP) bars, freeze-thaw resistance, corrosion resistance, and strengthening. It is expected that RC shear walls will be produced with reinforcements with higher mechanical and durability characteristics in the coming years, instead of the conventional steel reinforcement arrangement. It is obvious that instead of conventional concrete, it will be produced with special type cement-based composites, where the weaknesses of conventional concrete will be eliminated. The paper presents the behavior of RC shear walls within the constructional materials perspective.

Kaynakça

  • [1] A. Ünal, TDY 2007'ye göre tasarlanmamış betonarme çerçevelerin düzlem dışı perde duvarla güçlendirilmesi, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya,2012.
  • [2] E. Baş, FRP sargılı perde duvarın yükler altındaki davranışının incelenmesi, Yüksek Lisans Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Denizli, 2015.
  • [3] H. Şahin, K.E. Alyamaç, and A.S. Erdoğan, Perde çerçeveli yapılarda zemin sınıfı ve kat adedi dikkate alınarak gerekli perde oranının tespiti, SDU International Journal of Technological Science, 5, 1, 2013.
  • [4] Türkiye Bina Deprem Yönetmeliği, T.C. Çevre ve Şehircilik Bakanlığı, Afet ve Acil Durum Yönetimi Başkanlığı, 2019
  • [5] ISO/DIS 15673, Standart for the simplified design of structural reinforced concrete for buildings, International Organization for Standardization, Santafe de Bogota, Columbia, pp 220, 1998.
  • [6] M. S. Döndüren, and A. Karaduman, Deprem bölgelerindeki yüksek katlı betonarme yapılarda taşıyıcı sistem seçiminin kesit tesirlerine etkisi, Selçuk-Teknik Dergisi, 9, 2, 131-43, 2010.
  • [7] C.M. Chan, F. Ning, and N.C. Mickleborough, Lateral stiffness characteristics of tall reinforced concrete buildings under service loads, The Structural Design of Tall Buildings, 9, 5, 365-83, 2000. https://doi.org/10 .1002/10991794(200012)9:5<365::AID-TAL158>3.0.CO;2- B
  • [8] I. Bali, and S.J. Hwang, Strength and deflection prediction of double-curvature reinforced concrete squat walls, Structural Engineering and Mechanics, 27, 4, 501-521, 2007. https://doi.org/10.12989/sem.2007 .27.4.501
  • [9] Y. R. Dong, Z.D Xu, K. Zeng, Y. Cheng, and C. Xu, Seismic behavior
  • and cross-scale refinement model of damage evolution for RC shear walls, Engineering Structures, 167, 13-25, 2018. https://doi.org/10.1016/ j.engstruct.2018.03.096
  • [10] T. Paulay, and A.R. Santhakumar, Ductile behavior of coupled shear walls, Journal of the Structural Division, 102, 1, 93-108, 1976.
  • [11] A. E. Aktan, and V. V. Bertero, Seismic response of R/C frame-wall structures, Journal of Structural Engineering, 110, 8, 1803-21, 1984.
  • [12] B.R. Rad, and P. Adebar, Dynamics shear amplification in high-rise concrete walls: effect of multiple flexural hinges and shear cracking, Proceeding of the 14th World Conference on Earthquake, Beifing, China, 2008.
  • [13] M. Panagiotou, and J. I. Restrepo, Dual-plastic hinge design concept for reducing higher-mode effects on high rise cantilever wall buildings, Earthquake Engineering and Structural Dynamics, 38, 12, 1359-80,2009. https://doi.org/10.1002/eqe.905
  • [14] A, Dazio, K. Beyer, and H. Bachmann, Quasi-static cyclic tests and plastic hinge analysis of RC structural walls, Engineering Structures, 31, 7, 1556-71, 2009. https://doi.org/10.1016/j.engstruct.2009.02.018
  • [15] M. Ahmed, Multiple plastic hinge concept for high-rise reinforced- concrete core wall buildings, Proceeding of the Institution of Civil Engineers-Structures and Buildings, 169, 6, 688-701, 2016.
  • [16] M. Kurt, T. Kotan, M. S. Gül, R. Gül, and A. C. Aydın, The effect of blast furnace slag on the self-compactibility of pumice aggregate lightweigth concrete, Sadhana, 41, 2, 253-64, 2016. https://doi.org/10.1007/s12046-016-0462-2
  • [17] N. Ganesan, and P. V. Indira, High performance fibre reinforced cement concrete slender structural walls, Advances in Concrete Construction, 2, 4, 309, 2014. http://dx.doi.org/10.12989/.2014.2.4.309
  • [18] J. Carrillo, J. M. Lizarazo, and R. Bonett, Effect of lightweight and low-strength concrete on seismic performance of thin lightly- reinforced shear walls, Engineering Structures, 93, 61-69, 2015. https://doi.org /10.1016/j.engstruct.2015.03.022
  • [19] J. Zhao, G. Cai, A. S. Larbi, Y. Zhang, H. Dun, H. Degée, and B. Vandoren, Hysteretic behaviour of steel fibre RC coupled shear walls under cyclic loads: Experimental study and modelling, Engineering Structures, 156, 92-104, 2018. https://doi.org/10.1016/ j.engstruct.2017.11.006
  • [20] X. Lu, Y. Zhang, H. Zhang, H. Zhang, and R. Xiao, Experimental study on seismic performance of steel fiber reinforced high strength concrete composite shear walls with different steel fiber volume fractions, Engineering Structures, 171, 247-59, 2018. https://doi.org/10.1016/j.engstruct.2018.05.068
  • [21] C. C. Hung, and P. L. Hsieh, Comparative study on shear failure behavior of squat high-strength steel reinforced concrete shear walls with various high-strength concrete materials, In Structures, 23, 56-68, 2018. https://doi.org/10.1016/j.istruc.2019.11.002
  • [22] M. Maali, M. Kılıç and A. C. Aydın, Experimental model of the behaviour of bolted angles connections with stiffeners, International Journal of Steel Structures, 16, 3, 719-33, 2016. https://doi.org/10.10 07/s13296-015-0183-0
  • [23] A. Astaneh-Asl, Seismic behavior and design of composite steel plate shear walls, Moraga (CA): Structural Steel Educational Council, 2002.
  • [24] W. S. Park, and H. D. Yun, Seismic behaviour and design of steel coupling beams in a hybrid coupled shear wall systems, Nuclear Engineering and Design, 236, 23, 2474-84, 2006. https://doi.org/10.1016/j.nuc engdes.2006.03.008
  • [25] D. Dan, A. Fabian, and V. Stoian, Theoretical and experimental study on composite steel–concrete shear walls with vertical steel encased profiles, Journal of constructional steel research, 67, 5, 800-13, 2011. https://doi.org/10.1016/j.jcsr.2010.12.013
  • [26] J. G. Nie, H. S. Hu, J. S. Fan, M. X. Tao, S. Y. Li, and J. Liu, Experimental study on seismic behavior of high-strength concrete filled double-steel-plate composite walls, Journal of Constructional Steel Research, vol. 88, 206-219, 2013. https://doi.org/10.1016/j.jcsr.2013 .05.001
  • [27] A. Astaneh-Asl, and Q. Zhao, Cyclic behavior of steel shear wall systems, In Proceedings, Annual Stability Conference, Structural Stability Research Council, 2002.
  • [28] W. Lan, J. Ma, and B. Li, Seismic performance of steel–concrete composite structural walls with internal bracings, Journal of Constructional Steel Research, 110, 76-89, 2015. https://doi.org/10.1016/j.jcsr.2015.0 2.015
  • [29] X, Ji, T, Leong, J, Qian, W. Qi, and W, Yang, Cyclic shear behavior of composite walls with encased steel braces, Engineering Structures, 127, 117-28, 2016. https://doi.org/10.1016/j.engstruct.2016.08.041
  • [30] X. Li, and X. Li, Steel plates and concrete filled composite shear walls related nuclear structural engineering: Experimental study for out-of-plane cyclic loading, Nuclear Engineering and Design, 315, 144- 54, 2017. https://doi.org/10.1016/j.nucengdes.201 7.02.019
  • [31] M, Meghdadaian, and M, Ghalehnovi, Improving seismic performance of composite steel plate shear walls containing openings, Journal of Building Engineering, 21, 336-42, 2019. https://doi.org/10.1016/ j.jobe.2018.11.001
  • [32] A. E. Cardenas, and D. D. Magura, Strength of high-rise shear walls-rectangular cross section, Special Publication, 36, 119-50, 1972.
  • [33] F. Barda, J. M. Hanson, and W. G. Corley, Shear strength of low- rise walls with boundary elements, Special Publication, 53, 149-202, 1977.
  • [34] A. E. Cardenas, H. G. Russell, and W. G. Corley, Strength of low- rise structural walls, Special Publication, 63, 221-42, 1980.
  • [35] R. G. Oesterle, A. E. Fiorato, J. D. Aristizabal-Ochoa, and W. G. Corley, Hysteretic response of reinforced concrete structural walls, ACI Special Publication, 63, 243-73, 1980.
  • [36] T, Paulay, M. J. N. Priestley, and A. J. Synge, Ductility in earthquake resisting squat shear walls, In Journal Proceedings, 79, 4, 257-69, 1982.
  • [37] R. G. Oesterle, J. D. Aristizabal-Ochoa, K. N. Shiu, and W. G. Corley, Web crushing of reinforced concrete structural walls, In Journal Proceedings, 81, 3, 231-41, 1984.
  • [38] K. I. Christidis, and K. G. Trezos, Experimental investigation of existing non-conforming RC shear walls, Engineering Structures, 140, 26-38, 2017. https://doi.org/10.1016/j.engstruct.2017.02.063
  • [39] N. A. A. R. Mohamed, Strength and drift capacity of GFRP- reinforced concrete shear walls, Doktora Tezi, Université de Sherbrooke, Kanada, 2013.
  • [40] J, Lombard, D. T. Lau, J. L. Humar, S. Foo, and M. S. Cheung, Seismic strengthening and repair of reinforced concrete shear walls, In Proc., 12th World Conf. on Earthquake Engineering, pp. 1-8, 2000.
  • [41] S. Altin, Ö. Anil, Y. Kopraman, and M. E. Kara, Hysteretic behavior of RC shear walls strengthened with CFRP strips, Composites Part B: Engineering, 44, 1, 321-29, 2013. https://doi.org/10.1016/j.compositesb .2012.05.009
  • [42] H. El-Sokkary, K. Galal, I. Ghorbanirenani, P. Léger, and R. Tremblay, Shake table tests on FRP-rehabilitated RC shear walls, Journal of Composites for Construction, 17, 1, 79-90, 2013. https://doi.org/ 10.1061/(ASCE)CC.19435614.0000312
  • [43] N. Mohamed, A. S. Farghaly, B. Benmokrane, and K. W. Neale, Experimental investigation of concrete shear walls reinforced with glass fiber–reinforced bars under lateral cyclic loading, Journal of Composites for Construction, 18, 3, A4014001, 2014. https://doi.org/ 10.1061/(ASCE)CC.19435614.0000393
  • [44] D. Mostofinejad, and M. Mohamadi Anaei, Strengthening of slender RC shear wall with FRP sheets, Iranian Journal of Science and Technology Transactions of Civil Engineering, 39, C2, 385-94, 2015.
  • [45] A. Delnavaz, and M. Hamidnia, Analytical investigation on shape configuration of CFRP strips on lateral loading capacity of strengthened RC shear wall, Structural Concrete, 17, 6, 1059-70, 2016. https://doi.org/10.1002/suco.201500196
  • [46] K. K. Antoniades, T. N. Salonikios, and A. J. Kappos, Tests on seismically damaged reinforced concrete walls repaired and strengthened using fiber-reinforced polymers, Journal of Composites for Construction, 9, 3, 236-46, 2005. https://doi.org/10.1061/(ASCE)109002 68(2005)9:3(236)
  • [47] K. K. Antoniades, T. N. Salonikios, and A. J. Kappos, Evaluation of hysteretic response and strength of repaired R/C walls strengthened with FRPs., Engineering structures, 29, 9, 2158-71, 2007. https://doi.org/10.1016/j.engstruct.2006.11.021
  • [48] H. Ko, and Y. Sato, Bond stress–slip relationship between FRP sheet and concrete under cyclic load, Journal of Composites for Construction, 11, 4, 419-26,2007. https://doi.org/10.1061/(ASCE)10900268(20 07)11:4(419)
  • [49] B. Li, and C. L. Lim, Tests on seismically damaged reinforced concrete structural walls repaired using fiber-reinforced polymers, Journal of composites for construction, 14, 5, 597-608, 2010. https://doi.org/10 .1061/(ASCE)CC.19435614.0000110
  • [50] D. Shen, Q. Yang, Y. Jiao, Z. Cui, and J. Zhang, Experimental investigations on reinforced concrete shear walls strengthened with basalt fiber-reinforced polymers under cyclic load, Construction and Building Materials, 136, 217-229, 2017. https://doi.org/10.1016/ j.conbuildmat.2016.12.102
  • [51] M. J. Tolou Kian, and C. Cruz-Noguez, Reinforced Concrete Shear Walls Detailed with Innovative Materials: Seismic Performance, Journal of Composites for Construction, 22, 6, 04018052,2018.https://doi.org/10.1061/(ASCE)CC.19435614.0000893
  • [52] R. L. Yeh, C. C. Tseng, and S. J. Hwang, Shear strength of reinforced concrete vertical wall segments under seismic loading, ACI Structural Journal, 2018. https://doi.org/10.14359/51702377
  • [53] K. Deng, P. Pan, S. Shen, H. Wang, and P. Feng, Experimental study of FRP-reinforced slotted RC shear walls under cyclic loading, Journal of Composites for Construction, 22, 4. 04018017, 2018. https://doi.org/ 10.1061/(ASCE)CC.19435614.0000855
  • [54] A. Arafa, A. S. Farghaly, and B. Benmokrane, Effect of web reinforcement on the seismic response of concrete squat walls reinforced with glass-FRP bars, Engineering Structures, 174, 712-23, 2018. https://doi.org/10.1016/j.engstruct.2018.07.092
  • [55] Q. Zhao, J. Zhao, J. T. Dang, J. W. Chen, and F. Q. Shen, Experimental investigation of shear walls using carbon fiber reinforced polymer bars under cyclic lateral loading, Engineering Structures, 191, 82-91, 2019. https://doi.org/10.1016/j.engstruct.2019.04.052
  • [56] S. Qazi, L. Michel, and E. Ferrier, Seismic behaviour of RC short shear wall strengthened with externally bonded CFRP strips, Composite Structures, 211, 390-400, 2019. https://doi.org/10.1016/j.compstruct.2018.1 2.038
  • [57] M. Husain, A. S. Eisa, and M. M. Hegazy, Strengthening of reinforced concrete shear walls with openings using carbon fiber- reinforced polymers, International Journal of Advanced Structural Engineering, 11, 2, 129-50, 2019. https://doi.org/10.10 07/s40091-019-0216- 6
  • [58] S. Ghazizadeh, and C. A. Cruz-Noguez, Damage-resistant reinforced concrete low-rise walls with hybrid GFRP-steel reinforcement and steel fibers, Journal of Composites for Construction, 22, 2, 04018002, 2018. https://doi.org/10.1061/(ASCE)CC.19435614.0000834
  • [59] Z. Huang, J. Shen, H. Lin, X. Song, and Y. Yao, Shear behavior of concrete shear walls with CFRP grids under lateral cyclic loading, Engineering Structures, 211, 110422, 2020. https://doi.org/10.1016/j.engstruct.202 0.110422
  • [60] P. Andersen, Experiments with concrete in torsion, In Proceedings of the American Society of Civil Engineers, 60, 5, 641-52, 1935.
  • [61] P. Andersen, Rectangular concrete sections under torsion, In Journal Proceedings, 34, 9, 1-12, 1937.
  • [62] H. J. Cowan, Test of the torsional strength and deformation capacity of rectangular reinforced concrete beams. Concrete and Constructional Engineering, 46, 2, 51-5, 1951.
  • [63] P. Marti, P. Leesti, and W. U. Khalifa, Torsion tests on reinforced concrete slab elements, Journal of Structural Engineering, 113, 5, 994- 1010, 1987. https://doi.org/ 10.1061/(ASCE)07339445(1987)113:5(994)
  • [64] X. N. Peng, Study of torsional behaviour of reinforced concrete shear walls, Doktora Tezi, Hong Kong Polytecnic University, Hong Kong, 2012.
  • [65] J. Carrillo, and S. M. Alcocer, Seismic performance of concrete walls for housing subjected to shaking table excitations, Engineering structures, 41, 98-107, 2012. https://doi.org/10.1016/j.engstruct.2012.03.025
  • [66] B. Öztürk, Seismic drift response of building structures in seismically active and near-fault regions, PhD Dissertation, Purdue University, W. Lafayette, Indiana, USA
  • [67] J. Carrillo, and S. M. Alcocer, Experimental investigation on dynamic and quasi‐static behavior of low‐rise reinforced concrete walls, Earthquake engineering & structural dynamics, 42, 5, 635-52, 2013. https://doi.org/10.1002/eqe.2234
  • [68] H. El-Sokkary, and K. Galal, Seismic behavior of RC shear walls strengthened with fiber-reinforced polymer, Journal of Composites for Construction, vol. 17, 5, 603-613, 2013. https://doi.org/10.1061/(ASCE)CC.19435 614.0000364
  • [69] X. Ji, X. Cheng, and M. Xu, Coupled axial tension-shear behavior of reinforced concrete walls, Engineering Structures, 167, 132- 42, 2018. https://doi.org/10.1016/j.engstruct.2018.04.015
  • [70] B. Öztürk, Investigation of seismic behavior of reinforced concrete shearwall building frames subjected to ground motions from the 1999 Turkish Earthquakes, 14th World Conference on Earthquake Engineering, October 12-17, Beijing, China, 2008.
  • [71] J. Zhang, W. Zheng, C. Yu, and W. Cao, Shaking table test of reinforced concrete coupled shear walls with single layer of web reinforcement and inclined steel bars, Advances in Structural Engineering, 21, 15, 2282-98, 2018. https://doi.org/10.1177/1369433218772350
  • [72] W. Yang, S. S. Zheng, D. Y. Zhang, L. F. Sun, and C. L. Gan, Seismic behaviors of squat reinforced concrete shear walls under freeze-thaw cycles: a pilot experimental study, Engineering Structures, 124, 49-63, 2016. https://doi.org/10.1016/j.engstruct.2016.06.0 13
  • [73] T. C. Powers, A working hypothesis for further studies of frost resistance of concrete, American Concrete Institute, 16, 4, 245-72, 1945
  • [74] D. Shen, Q: Yang, C. Huang, Z. Cui, and J. Zhang, Tests on seismic performance of corroded reinforced concrete shear walls repaired with basalt fiber-reinforced polymers, Construction and Building Materials, 209, 508-21, 2019. https://doi.org/10.1016/j .conbuildmat.2019.02.109
  • [75] X. L. Rong, S. S. Zheng, Y. X. Zhang, X. Y. Zhang, and L. G. Dong, Experimental study on the seismic behavior of RC shear walls after freeze-thaw damage, Engineering Structures, 206, 110101, 2020. https://doi .org/10.1016/j.engstruct.2019.110101
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm İnşaat Mühendisliği
Yazarlar

Abdulkadir Cuneyt Aydın 0000-0002-6696-4297

Barış Bayrak 0000-0002-7438-1227

Yayımlanma Tarihi 15 Ocak 2021
Gönderilme Tarihi 11 Haziran 2020
Kabul Tarihi 16 Eylül 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Aydın, A. C., & Bayrak, B. (2021). Betonarme perde duvarların farklı yapı malzemeleri açısından değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 217-240. https://doi.org/10.28948/ngumuh.751562
AMA Aydın AC, Bayrak B. Betonarme perde duvarların farklı yapı malzemeleri açısından değerlendirilmesi. NÖHÜ Müh. Bilim. Derg. Ocak 2021;10(1):217-240. doi:10.28948/ngumuh.751562
Chicago Aydın, Abdulkadir Cuneyt, ve Barış Bayrak. “Betonarme Perde duvarların Farklı Yapı Malzemeleri açısından değerlendirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, sy. 1 (Ocak 2021): 217-40. https://doi.org/10.28948/ngumuh.751562.
EndNote Aydın AC, Bayrak B (01 Ocak 2021) Betonarme perde duvarların farklı yapı malzemeleri açısından değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 1 217–240.
IEEE A. C. Aydın ve B. Bayrak, “Betonarme perde duvarların farklı yapı malzemeleri açısından değerlendirilmesi”, NÖHÜ Müh. Bilim. Derg., c. 10, sy. 1, ss. 217–240, 2021, doi: 10.28948/ngumuh.751562.
ISNAD Aydın, Abdulkadir Cuneyt - Bayrak, Barış. “Betonarme Perde duvarların Farklı Yapı Malzemeleri açısından değerlendirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/1 (Ocak 2021), 217-240. https://doi.org/10.28948/ngumuh.751562.
JAMA Aydın AC, Bayrak B. Betonarme perde duvarların farklı yapı malzemeleri açısından değerlendirilmesi. NÖHÜ Müh. Bilim. Derg. 2021;10:217–240.
MLA Aydın, Abdulkadir Cuneyt ve Barış Bayrak. “Betonarme Perde duvarların Farklı Yapı Malzemeleri açısından değerlendirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sy. 1, 2021, ss. 217-40, doi:10.28948/ngumuh.751562.
Vancouver Aydın AC, Bayrak B. Betonarme perde duvarların farklı yapı malzemeleri açısından değerlendirilmesi. NÖHÜ Müh. Bilim. Derg. 2021;10(1):217-40.

download