Araştırma Makalesi
BibTex RIS Kaynak Göster

Sarmal malzemeli granüler kolonların sonlu elemanlar yöntemi ile incelenmesi

Yıl 2021, , 247 - 254, 15.01.2021
https://doi.org/10.28948/ngumuh.760183

Öz

Granüler kolon uygulamaları, zemin taşıma kapasitesinin artırılmasında, sıvılaşmanın önlenmesinde ve stabilitenin sağlanmasında günümüzde yaygın kullanılan güçlendirme teknikleri arasında yer almaktadır. Bu çalışmada, polyester ve ömrünü tamamlamış atık araç lastikleri ile sargılanmış taş ve kum kolonların geridolgusuz ortamda düşey yükleme altındaki deformasyon davranışları ve yük taşıma kapasiteleri deneysel ve nümerik olarak incelenmiştir. Kolon stabiletisinin düşey yükleme altında bozulmasını engellemek amacıyla kullanılan sargılama materyallerinin göçme anındaki kritik davranışlarını ortaya koyan bu araştırmalar sonucunda, atıl halde bulunan araç lastikleri polyester sarmallı kolonlara göre daha düşük seviyelerde deformasyonlar göstermiştir. Diğer bir deyişle geridolgu malzemesinin bütüncül yapısını muhafaza etmek için kullanılan atık lastikler, taşıma kapasitesi artışında önemli bir rol oynamıştır. Bu uygulama, aynı zamanda geri kazanım açısından ömrünü tamamlamış lastiklere yeni bir kullanım alanı açmaktadır. Yapılan laboratuvar deneyleri ve bu deneyler ile benzer sonuçlar ortaya koyan analizler sonucunda, lastik sarmallı kolonlar, polyester sarmallı kolonlara göre 6 ile 12 kat arasında daha yüksek taşıma kapasitesine ulaşmışlardır.

Destekleyen Kurum

Aksaray Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinasyon Birimi

Proje Numarası

2015-086

Teşekkür

Bu çalışmada desteklerinden dolayı Aksaray Üniversitesi BAP (Bilimsel Araştırma Projeleri) Koordinasyon Birimi’ne (2015-086) teşekkür ederiz.

Kaynakça

  • [1] R. D. Barksdale, and R. C. Bachus, Design and Construction of Stone Columns. Federal Highway Administration, USA, 1983.
  • [2] C. Erenson, Atık lastiklerin taş/kum kolon uygulamalarında kullanılmasının deneysel olarak incelenmesi. Yüksek Lisans Tezi, Aksaray Üniversitesi Fen Bilimleri Enstitüsü, 2015.
  • [3] A. Zukri, and R. Nazir, Numerical modelling techniques of soft soil improvement via stone columns: A brief review. In IOP Conference Series: Materials Science and Engineering, 342 (1), 2018.
  • [4] J. Canizal, A. Cimentada, A. Da Costa, M. Miranda, and C. Sagaseta, Theoretical analyses of laboratory tests of kaolin clay improved with stone columns. ISSMGE - TC 211 International Symposium on Ground Improvement, 3, pp. 373–81, Brussels, Belgium, 2012.
  • [5] N. P. Balaam, and J. R. Booker, Effect of stone column yield on settlement of rigid foundations in stabilized clay. International Journal for Numerical and Analytical Methods in Geomechanics, 9, pp. 331–51, 1985. https://doi.org/10.1002/nag.1610090404.
  • [6] W. Van Impe, Improvement of settlement behaviour of soft layers by means of stone columns. In Proceedings, 8th European Conference on Soil Mechanics and Foundation Engineering: Improvement of Ground, 1, pp. 309-312, 1983.
  • [7] H. A. Elshazly, D. H. Hafez, and M. E. Mossaad, Reliability of conventional settlement evaluation for circular foundations on stone columns. Geotechnical and Geological Engineering. 26, 323, 2008. https://doi.org /10.1007/s10706-007-9169-9.
  • [8] M. Gäb, H. F. Schweiger, D. Kamrat-Pietraszewska, and M. Karstunen, Numerical analysis of a floating stone columns foundation using different constitutive models. Geotechnics of Soft Soils - Focus on Ground Improvement, CRC Press, London, 2008.
  • [9] T. M. Weber, S. M. Springman, M. Gäb, and V. Racansky, Numerical modelling of stone columns in soft clay under an embankment. pp. 305–11, 2009. https://doi.org/10.1201/9780203883334.ch39.
  • [10] J. Castro, Modeling stone columns materials. Materials, 10-782, 2017. https://doi.org/10.3390/ma 10070782.
  • [11] J. Pivarc, Stone columns – determination of the soil improvement factor. Slovak Journal of Civil Engineering, 19, 17–21, 2011. https://doi.org/10. 2478 /v10189-011-0014-z.
  • [12] J. Gniel, and A Bouazza, Predicted site behaviour of geogrid encased stone columns. Australian Geomechanics, 44, pp. 11–16, 2009.
  • [13] M. Khabbazian, V. N. Kaliakin, and C. L. Meehan, Numerical study of the effect of geosynthetic encasement on the behaviour of granular columns. Geosynthetics International, pp. 132-143, 2010. https ://doi.org/10.1680/gein.2010.17.3.132.
  • [14] A. H. K. Al-Shukur, and H. N. Al-Khafajy, Effect some parametric on optimum design of highway embankment with stone columns. Journal University of Kerbala, 15 (2), pp. 192-205, Scientific, 2017.
  • [15] A. H. K. Al-Shukur, and H. N. Al-Khafajy, Optimum design for highway embankment with stone column. International Journal of Civil Engineering and Technology (IJCIET), 8 (1), pp. 863–872, 2017.
  • [16] N. K. Shien, Numerical study of floating stone columns. Ph.D. Thesis, National University Of Singapore, 2013.
  • [17] A. P. Ambily, and S. R. Gandhi, Behavior of stone columns based on experimental and FEM analysis. Journal of Geotechnical and Geoenvironmental Engineering, 133, 405–15, 2007. https://doi.org/ 10.1061/(ASCE)10900241(2007)133:4(405).
  • [18] J. K. Mitchell, and T. R. Huber, Performance of a stone column foundation. Journal of Geotechnical Engineering, 111 (2), 205-223, 1985. https:// doi .org / 10.1061/(ASCE)07339410(1985)111:2(205).
  • [19] T. Giurgiu, F. Ciortan, and C. Pupaza, Static and transient analysis of radial tires using ANSYS. Recent Advances in Industrial and Manufacturing Technologies, 2012.
  • [20] T. Hiyake, Automotive Design: Advanced Nonlinear Simulation. Ix (2), Ansys, 2015. https://doi.org/ 10.1002/(SICI)10970207(19980815)42:7<1279::AID-NME437>3.0.CO;2-I.
  • [21] Y. Başar, and M. Itskov, Finite element formulation of the Ogden material model with application to rubber - like shells. International Journal for Numerical Methods in Engineering, 42 (7), 1279-1305, 1998. https://doi.org/10.1177/0954407015590018.
  • [22] J. M. Conradie, P. S. Els, and P. S. Heyns, Finite element modelling of off-road tyres for radial tyre model parameterization. Proceedings of the Institution of Mechanical Engineers, Journal of Automobile Engineering, 230 (4), 564-578, 2016. https:// doi . org / 10.2346/1.2137519.

Investigation of encased granular columns with finite element method

Yıl 2021, , 247 - 254, 15.01.2021
https://doi.org/10.28948/ngumuh.760183

Öz

Nowadays, reinforcement techniques applied with granular column applications are widely used in increasing soil bearing capacity, preventing liquefaction and providing stability. In this study, polyester encased granular columns and tire encased granular columns were tested under vertical loading without backfill. Deformation behavior and load bearing capacity of granular columns were investigated experimentally and numerically. In this research, the critical behavior of the encasement materials used to prevent the deterioration of column stability under vertical loading has been demonstrated and lower deformations were observed in tire encased columns than polyester encased columns. In other words, the waste tires provide the integrative structure of the backfill material and have played an important role in increasing bearing capacity. This application opens new usage areas for end of life tires in terms of recycling. As a result of the laboratory tests and numerical analyses that showed similar results with these experiments, the tire encased granular columns reached 6 to 12 times more bearing capacity than the polyester encased granular columns

Proje Numarası

2015-086

Kaynakça

  • [1] R. D. Barksdale, and R. C. Bachus, Design and Construction of Stone Columns. Federal Highway Administration, USA, 1983.
  • [2] C. Erenson, Atık lastiklerin taş/kum kolon uygulamalarında kullanılmasının deneysel olarak incelenmesi. Yüksek Lisans Tezi, Aksaray Üniversitesi Fen Bilimleri Enstitüsü, 2015.
  • [3] A. Zukri, and R. Nazir, Numerical modelling techniques of soft soil improvement via stone columns: A brief review. In IOP Conference Series: Materials Science and Engineering, 342 (1), 2018.
  • [4] J. Canizal, A. Cimentada, A. Da Costa, M. Miranda, and C. Sagaseta, Theoretical analyses of laboratory tests of kaolin clay improved with stone columns. ISSMGE - TC 211 International Symposium on Ground Improvement, 3, pp. 373–81, Brussels, Belgium, 2012.
  • [5] N. P. Balaam, and J. R. Booker, Effect of stone column yield on settlement of rigid foundations in stabilized clay. International Journal for Numerical and Analytical Methods in Geomechanics, 9, pp. 331–51, 1985. https://doi.org/10.1002/nag.1610090404.
  • [6] W. Van Impe, Improvement of settlement behaviour of soft layers by means of stone columns. In Proceedings, 8th European Conference on Soil Mechanics and Foundation Engineering: Improvement of Ground, 1, pp. 309-312, 1983.
  • [7] H. A. Elshazly, D. H. Hafez, and M. E. Mossaad, Reliability of conventional settlement evaluation for circular foundations on stone columns. Geotechnical and Geological Engineering. 26, 323, 2008. https://doi.org /10.1007/s10706-007-9169-9.
  • [8] M. Gäb, H. F. Schweiger, D. Kamrat-Pietraszewska, and M. Karstunen, Numerical analysis of a floating stone columns foundation using different constitutive models. Geotechnics of Soft Soils - Focus on Ground Improvement, CRC Press, London, 2008.
  • [9] T. M. Weber, S. M. Springman, M. Gäb, and V. Racansky, Numerical modelling of stone columns in soft clay under an embankment. pp. 305–11, 2009. https://doi.org/10.1201/9780203883334.ch39.
  • [10] J. Castro, Modeling stone columns materials. Materials, 10-782, 2017. https://doi.org/10.3390/ma 10070782.
  • [11] J. Pivarc, Stone columns – determination of the soil improvement factor. Slovak Journal of Civil Engineering, 19, 17–21, 2011. https://doi.org/10. 2478 /v10189-011-0014-z.
  • [12] J. Gniel, and A Bouazza, Predicted site behaviour of geogrid encased stone columns. Australian Geomechanics, 44, pp. 11–16, 2009.
  • [13] M. Khabbazian, V. N. Kaliakin, and C. L. Meehan, Numerical study of the effect of geosynthetic encasement on the behaviour of granular columns. Geosynthetics International, pp. 132-143, 2010. https ://doi.org/10.1680/gein.2010.17.3.132.
  • [14] A. H. K. Al-Shukur, and H. N. Al-Khafajy, Effect some parametric on optimum design of highway embankment with stone columns. Journal University of Kerbala, 15 (2), pp. 192-205, Scientific, 2017.
  • [15] A. H. K. Al-Shukur, and H. N. Al-Khafajy, Optimum design for highway embankment with stone column. International Journal of Civil Engineering and Technology (IJCIET), 8 (1), pp. 863–872, 2017.
  • [16] N. K. Shien, Numerical study of floating stone columns. Ph.D. Thesis, National University Of Singapore, 2013.
  • [17] A. P. Ambily, and S. R. Gandhi, Behavior of stone columns based on experimental and FEM analysis. Journal of Geotechnical and Geoenvironmental Engineering, 133, 405–15, 2007. https://doi.org/ 10.1061/(ASCE)10900241(2007)133:4(405).
  • [18] J. K. Mitchell, and T. R. Huber, Performance of a stone column foundation. Journal of Geotechnical Engineering, 111 (2), 205-223, 1985. https:// doi .org / 10.1061/(ASCE)07339410(1985)111:2(205).
  • [19] T. Giurgiu, F. Ciortan, and C. Pupaza, Static and transient analysis of radial tires using ANSYS. Recent Advances in Industrial and Manufacturing Technologies, 2012.
  • [20] T. Hiyake, Automotive Design: Advanced Nonlinear Simulation. Ix (2), Ansys, 2015. https://doi.org/ 10.1002/(SICI)10970207(19980815)42:7<1279::AID-NME437>3.0.CO;2-I.
  • [21] Y. Başar, and M. Itskov, Finite element formulation of the Ogden material model with application to rubber - like shells. International Journal for Numerical Methods in Engineering, 42 (7), 1279-1305, 1998. https://doi.org/10.1177/0954407015590018.
  • [22] J. M. Conradie, P. S. Els, and P. S. Heyns, Finite element modelling of off-road tyres for radial tyre model parameterization. Proceedings of the Institution of Mechanical Engineers, Journal of Automobile Engineering, 230 (4), 564-578, 2016. https:// doi . org / 10.2346/1.2137519.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm İnşaat Mühendisliği
Yazarlar

Can Erenson 0000-0002-6616-6180

Niyazi Uğur Terzi 0000-0003-1787-5674

Proje Numarası 2015-086
Yayımlanma Tarihi 15 Ocak 2021
Gönderilme Tarihi 30 Haziran 2020
Kabul Tarihi 25 Kasım 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Erenson, C., & Terzi, N. U. (2021). Sarmal malzemeli granüler kolonların sonlu elemanlar yöntemi ile incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 247-254. https://doi.org/10.28948/ngumuh.760183
AMA Erenson C, Terzi NU. Sarmal malzemeli granüler kolonların sonlu elemanlar yöntemi ile incelenmesi. NÖHÜ Müh. Bilim. Derg. Ocak 2021;10(1):247-254. doi:10.28948/ngumuh.760183
Chicago Erenson, Can, ve Niyazi Uğur Terzi. “Sarmal Malzemeli granüler kolonların Sonlu Elemanlar yöntemi Ile Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, sy. 1 (Ocak 2021): 247-54. https://doi.org/10.28948/ngumuh.760183.
EndNote Erenson C, Terzi NU (01 Ocak 2021) Sarmal malzemeli granüler kolonların sonlu elemanlar yöntemi ile incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 1 247–254.
IEEE C. Erenson ve N. U. Terzi, “Sarmal malzemeli granüler kolonların sonlu elemanlar yöntemi ile incelenmesi”, NÖHÜ Müh. Bilim. Derg., c. 10, sy. 1, ss. 247–254, 2021, doi: 10.28948/ngumuh.760183.
ISNAD Erenson, Can - Terzi, Niyazi Uğur. “Sarmal Malzemeli granüler kolonların Sonlu Elemanlar yöntemi Ile Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/1 (Ocak 2021), 247-254. https://doi.org/10.28948/ngumuh.760183.
JAMA Erenson C, Terzi NU. Sarmal malzemeli granüler kolonların sonlu elemanlar yöntemi ile incelenmesi. NÖHÜ Müh. Bilim. Derg. 2021;10:247–254.
MLA Erenson, Can ve Niyazi Uğur Terzi. “Sarmal Malzemeli granüler kolonların Sonlu Elemanlar yöntemi Ile Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sy. 1, 2021, ss. 247-54, doi:10.28948/ngumuh.760183.
Vancouver Erenson C, Terzi NU. Sarmal malzemeli granüler kolonların sonlu elemanlar yöntemi ile incelenmesi. NÖHÜ Müh. Bilim. Derg. 2021;10(1):247-54.

download