Sarmal malzemeli granüler kolonların sonlu elemanlar yöntemi ile incelenmesi
Yıl 2021,
, 247 - 254, 15.01.2021
Can Erenson
,
Niyazi Uğur Terzi
Öz
Granüler kolon uygulamaları, zemin taşıma kapasitesinin artırılmasında, sıvılaşmanın önlenmesinde ve stabilitenin sağlanmasında günümüzde yaygın kullanılan güçlendirme teknikleri arasında yer almaktadır. Bu çalışmada, polyester ve ömrünü tamamlamış atık araç lastikleri ile sargılanmış taş ve kum kolonların geridolgusuz ortamda düşey yükleme altındaki deformasyon davranışları ve yük taşıma kapasiteleri deneysel ve nümerik olarak incelenmiştir. Kolon stabiletisinin düşey yükleme altında bozulmasını engellemek amacıyla kullanılan sargılama materyallerinin göçme anındaki kritik davranışlarını ortaya koyan bu araştırmalar sonucunda, atıl halde bulunan araç lastikleri polyester sarmallı kolonlara göre daha düşük seviyelerde deformasyonlar göstermiştir. Diğer bir deyişle geridolgu malzemesinin bütüncül yapısını muhafaza etmek için kullanılan atık lastikler, taşıma kapasitesi artışında önemli bir rol oynamıştır. Bu uygulama, aynı zamanda geri kazanım açısından ömrünü tamamlamış lastiklere yeni bir kullanım alanı açmaktadır. Yapılan laboratuvar deneyleri ve bu deneyler ile benzer sonuçlar ortaya koyan analizler sonucunda, lastik sarmallı kolonlar, polyester sarmallı kolonlara göre 6 ile 12 kat arasında daha yüksek taşıma kapasitesine ulaşmışlardır.
Destekleyen Kurum
Aksaray Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinasyon Birimi
Teşekkür
Bu çalışmada desteklerinden dolayı Aksaray Üniversitesi BAP (Bilimsel Araştırma Projeleri) Koordinasyon Birimi’ne (2015-086) teşekkür ederiz.
Kaynakça
- [1] R. D. Barksdale, and R. C. Bachus, Design and Construction of Stone Columns. Federal Highway Administration, USA, 1983.
- [2] C. Erenson, Atık lastiklerin taş/kum kolon uygulamalarında
kullanılmasının deneysel olarak incelenmesi. Yüksek Lisans Tezi,
Aksaray Üniversitesi Fen Bilimleri Enstitüsü, 2015.
- [3] A. Zukri, and R. Nazir, Numerical modelling techniques of soft soil
improvement via stone columns: A brief review. In IOP Conference
Series: Materials Science and Engineering, 342 (1), 2018.
- [4] J. Canizal, A. Cimentada, A. Da Costa, M. Miranda, and C. Sagaseta,
Theoretical analyses of laboratory tests of kaolin clay improved with
stone columns. ISSMGE - TC 211 International Symposium on Ground
Improvement, 3, pp. 373–81, Brussels, Belgium, 2012.
- [5] N. P. Balaam, and J. R. Booker, Effect of stone column yield on
settlement of rigid foundations in stabilized clay. International Journal
for Numerical and Analytical Methods in Geomechanics, 9, pp. 331–51,
1985. https://doi.org/10.1002/nag.1610090404.
- [6] W. Van Impe, Improvement of settlement behaviour of soft layers
by means of stone columns. In Proceedings, 8th European Conference
on Soil Mechanics and Foundation Engineering: Improvement of
Ground, 1, pp. 309-312, 1983.
- [7] H. A. Elshazly, D. H. Hafez, and M. E. Mossaad, Reliability of
conventional settlement evaluation for circular foundations on stone
columns. Geotechnical and Geological Engineering. 26, 323, 2008.
https://doi.org /10.1007/s10706-007-9169-9.
- [8] M. Gäb, H. F. Schweiger, D. Kamrat-Pietraszewska, and M.
Karstunen, Numerical analysis of a floating stone columns foundation
using different constitutive models. Geotechnics of Soft Soils - Focus
on Ground Improvement, CRC Press, London, 2008.
- [9] T. M. Weber, S. M. Springman, M. Gäb, and V. Racansky, Numerical
modelling of stone columns in soft clay under an embankment. pp.
305–11, 2009. https://doi.org/10.1201/9780203883334.ch39.
- [10] J. Castro, Modeling stone columns materials. Materials, 10-782,
2017. https://doi.org/10.3390/ma 10070782.
- [11] J. Pivarc, Stone columns – determination of the soil improvement
factor. Slovak Journal of Civil Engineering, 19, 17–21, 2011.
https://doi.org/10. 2478 /v10189-011-0014-z.
- [12] J. Gniel, and A Bouazza, Predicted site behaviour of geogrid
encased stone columns. Australian Geomechanics, 44, pp. 11–16, 2009.
- [13] M. Khabbazian, V. N. Kaliakin, and C. L. Meehan, Numerical study of
the effect of geosynthetic encasement on the behaviour of granular
columns. Geosynthetics International, pp. 132-143, 2010. https
://doi.org/10.1680/gein.2010.17.3.132.
- [14] A. H. K. Al-Shukur, and H. N. Al-Khafajy, Effect some parametric on
optimum design of highway embankment with stone columns. Journal
University of Kerbala, 15 (2), pp. 192-205, Scientific, 2017.
- [15] A. H. K. Al-Shukur, and H. N. Al-Khafajy, Optimum design for
highway embankment with stone column. International Journal of Civil
Engineering and Technology (IJCIET), 8 (1), pp. 863–872, 2017.
- [16] N. K. Shien, Numerical study of floating stone columns. Ph.D. Thesis,
National University Of Singapore, 2013.
- [17] A. P. Ambily, and S. R. Gandhi, Behavior of stone columns based on
experimental and FEM analysis. Journal of Geotechnical and
Geoenvironmental Engineering, 133, 405–15, 2007. https://doi.org/
10.1061/(ASCE)10900241(2007)133:4(405).
- [18] J. K. Mitchell, and T. R. Huber, Performance of a stone column
foundation. Journal of Geotechnical Engineering, 111 (2), 205-223, 1985.
https:// doi .org / 10.1061/(ASCE)07339410(1985)111:2(205).
- [19] T. Giurgiu, F. Ciortan, and C. Pupaza, Static and transient analysis
of radial tires using ANSYS. Recent Advances in Industrial and
Manufacturing Technologies, 2012.
- [20] T. Hiyake, Automotive Design: Advanced Nonlinear Simulation.
Ix (2), Ansys, 2015. https://doi.org/
10.1002/(SICI)10970207(19980815)42:7<1279::AID-NME437>3.0.CO;2-I.
- [21] Y. Başar, and M. Itskov, Finite element formulation of the Ogden
material model with application to rubber - like shells. International
Journal for Numerical Methods in Engineering, 42 (7), 1279-1305, 1998.
https://doi.org/10.1177/0954407015590018.
- [22] J. M. Conradie, P. S. Els, and P. S. Heyns, Finite element modelling of
off-road tyres for radial tyre model parameterization. Proceedings of
the Institution of Mechanical Engineers, Journal of Automobile
Engineering, 230 (4), 564-578, 2016. https:// doi . org / 10.2346/1.2137519.
Investigation of encased granular columns with finite element method
Yıl 2021,
, 247 - 254, 15.01.2021
Can Erenson
,
Niyazi Uğur Terzi
Öz
Nowadays, reinforcement techniques applied with granular column applications are widely used in increasing soil bearing capacity, preventing liquefaction and providing stability. In this study, polyester encased granular columns and tire encased granular columns were tested under vertical loading without backfill. Deformation behavior and load bearing capacity of granular columns were investigated experimentally and numerically. In this research, the critical behavior of the encasement materials used to prevent the deterioration of column stability under vertical loading has been demonstrated and lower deformations were observed in tire encased columns than polyester encased columns. In other words, the waste tires provide the integrative structure of the backfill material and have played an important role in increasing bearing capacity. This application opens new usage areas for end of life tires in terms of recycling. As a result of the laboratory tests and numerical analyses that showed similar results with these experiments, the tire encased granular columns reached 6 to 12 times more bearing capacity than the polyester encased granular columns
Kaynakça
- [1] R. D. Barksdale, and R. C. Bachus, Design and Construction of Stone Columns. Federal Highway Administration, USA, 1983.
- [2] C. Erenson, Atık lastiklerin taş/kum kolon uygulamalarında
kullanılmasının deneysel olarak incelenmesi. Yüksek Lisans Tezi,
Aksaray Üniversitesi Fen Bilimleri Enstitüsü, 2015.
- [3] A. Zukri, and R. Nazir, Numerical modelling techniques of soft soil
improvement via stone columns: A brief review. In IOP Conference
Series: Materials Science and Engineering, 342 (1), 2018.
- [4] J. Canizal, A. Cimentada, A. Da Costa, M. Miranda, and C. Sagaseta,
Theoretical analyses of laboratory tests of kaolin clay improved with
stone columns. ISSMGE - TC 211 International Symposium on Ground
Improvement, 3, pp. 373–81, Brussels, Belgium, 2012.
- [5] N. P. Balaam, and J. R. Booker, Effect of stone column yield on
settlement of rigid foundations in stabilized clay. International Journal
for Numerical and Analytical Methods in Geomechanics, 9, pp. 331–51,
1985. https://doi.org/10.1002/nag.1610090404.
- [6] W. Van Impe, Improvement of settlement behaviour of soft layers
by means of stone columns. In Proceedings, 8th European Conference
on Soil Mechanics and Foundation Engineering: Improvement of
Ground, 1, pp. 309-312, 1983.
- [7] H. A. Elshazly, D. H. Hafez, and M. E. Mossaad, Reliability of
conventional settlement evaluation for circular foundations on stone
columns. Geotechnical and Geological Engineering. 26, 323, 2008.
https://doi.org /10.1007/s10706-007-9169-9.
- [8] M. Gäb, H. F. Schweiger, D. Kamrat-Pietraszewska, and M.
Karstunen, Numerical analysis of a floating stone columns foundation
using different constitutive models. Geotechnics of Soft Soils - Focus
on Ground Improvement, CRC Press, London, 2008.
- [9] T. M. Weber, S. M. Springman, M. Gäb, and V. Racansky, Numerical
modelling of stone columns in soft clay under an embankment. pp.
305–11, 2009. https://doi.org/10.1201/9780203883334.ch39.
- [10] J. Castro, Modeling stone columns materials. Materials, 10-782,
2017. https://doi.org/10.3390/ma 10070782.
- [11] J. Pivarc, Stone columns – determination of the soil improvement
factor. Slovak Journal of Civil Engineering, 19, 17–21, 2011.
https://doi.org/10. 2478 /v10189-011-0014-z.
- [12] J. Gniel, and A Bouazza, Predicted site behaviour of geogrid
encased stone columns. Australian Geomechanics, 44, pp. 11–16, 2009.
- [13] M. Khabbazian, V. N. Kaliakin, and C. L. Meehan, Numerical study of
the effect of geosynthetic encasement on the behaviour of granular
columns. Geosynthetics International, pp. 132-143, 2010. https
://doi.org/10.1680/gein.2010.17.3.132.
- [14] A. H. K. Al-Shukur, and H. N. Al-Khafajy, Effect some parametric on
optimum design of highway embankment with stone columns. Journal
University of Kerbala, 15 (2), pp. 192-205, Scientific, 2017.
- [15] A. H. K. Al-Shukur, and H. N. Al-Khafajy, Optimum design for
highway embankment with stone column. International Journal of Civil
Engineering and Technology (IJCIET), 8 (1), pp. 863–872, 2017.
- [16] N. K. Shien, Numerical study of floating stone columns. Ph.D. Thesis,
National University Of Singapore, 2013.
- [17] A. P. Ambily, and S. R. Gandhi, Behavior of stone columns based on
experimental and FEM analysis. Journal of Geotechnical and
Geoenvironmental Engineering, 133, 405–15, 2007. https://doi.org/
10.1061/(ASCE)10900241(2007)133:4(405).
- [18] J. K. Mitchell, and T. R. Huber, Performance of a stone column
foundation. Journal of Geotechnical Engineering, 111 (2), 205-223, 1985.
https:// doi .org / 10.1061/(ASCE)07339410(1985)111:2(205).
- [19] T. Giurgiu, F. Ciortan, and C. Pupaza, Static and transient analysis
of radial tires using ANSYS. Recent Advances in Industrial and
Manufacturing Technologies, 2012.
- [20] T. Hiyake, Automotive Design: Advanced Nonlinear Simulation.
Ix (2), Ansys, 2015. https://doi.org/
10.1002/(SICI)10970207(19980815)42:7<1279::AID-NME437>3.0.CO;2-I.
- [21] Y. Başar, and M. Itskov, Finite element formulation of the Ogden
material model with application to rubber - like shells. International
Journal for Numerical Methods in Engineering, 42 (7), 1279-1305, 1998.
https://doi.org/10.1177/0954407015590018.
- [22] J. M. Conradie, P. S. Els, and P. S. Heyns, Finite element modelling of
off-road tyres for radial tyre model parameterization. Proceedings of
the Institution of Mechanical Engineers, Journal of Automobile
Engineering, 230 (4), 564-578, 2016. https:// doi . org / 10.2346/1.2137519.