Yıl 2021, Cilt 10 , Sayı 1, Sayfalar 79 - 83 2021-01-15

Easy detection of chloroform in drinking water by quartz crystal microbalance sensor
İçme sularındaki kloroformun kuvars kristal mikroterazi sensör ile kolay tespiti

Mehmet Cagri SOYLU [1]


In this study, two different surface modification methods have been tested for easy detection of chloroform, which is harmful to human health in case of excess in the mains water, with a Quartz Crystal Microbalance (QCM) sensor. In the first coating method, acidic and basic solutions of 3-mercaptopropyltrimethoxysilane (MPS) in ethyl alcohol were applied respectively. In the second coating method; Acidic MPS was applied in the first step and then surface modification was completed using 2-mercaptoethanol (ME). In Coating-1, average frequency shifts of -180(±30) Hz, -200(±40) Hz and +40(±10) Hz were recorded for acidic MPS, basic MPS and 10 ng mL chloroform, respectively. In Coating-2, chloroform molecules formed covalent bonds with thiol groups and the mean frequency shifts obtained for acidic MPS, ME and 10 ng / mL chloroform were -180(±30) Hz, -80(±15) Hz, and -70(± 8) Hz, respectively. According to empirical results, coating-2 method provided a better surface modification than coating-1 method. Resonance frequency shifts of -2.5(±1), -12(±4), -70(±8) and -356(±87) Hz respectively were obtained at chloroform concentrations of 0.1, 1, 10, and 100 ng/mL by using QCM sensor modified with MPS + ME.
Bu çalışmada, şebeke suyunda fazla bulunması halinde insan sağlığına zararlı olan kloroformun Kuvars Kristal Mikroterazi (QCM) sensör ile kolay tespiti için iki farklı yüzey modifikasyonu yöntemi denenmiştir. İlk kaplama yönteminde, 3-Merkaptopropiltrimetoksisilan’ın (MPS) etil alkol içerisinde sırasıyla asidik ve bazik solüsyonları uygulanmıştır. İkinci kaplama yönteminde ise; ilk aşamada asidik MPS uygulanmış ve daha sonra 2-Merkaptoetanol (ME) kullanılarak yüzey modifikasyonu tamamlanmıştır. Kaplama-1’de, asidik MPS, bazik MPS ve 10 ng/mL kloroform için sırasıyla -180(±30) Hz, -200(±40) Hz ve +40(±10) Hz ortalama frekans kaymaları kaydedilmiştir. Kaplama-2’de, kloroform molekülleri tiyol grupları ile kovalent bağlar oluşturmuş ve asidik MPS, ME ve 10 ng/mL kloroform için elde edilen ortalama frekans kaymaları sırasıyla -180(±30) Hz, -80(±15) Hz ve -70(±8) Hz olmuştur. Ampirik sonuçlara göre, kaplama-2 yöntemi, kaplama-1 yönteminden daha iyi bir yüzey modifikasyonu sunmuştur. MPS + ME ile modifiye edilmiş QCM sensör kullanarak, 0.1, 1, 10 ve 100 ng/mL kloroform konsantrasyonlarında, sırasıyla -2.5(±1), -12(±4), -70(±8) ve -356(±87) Hz rezonans frekansı kaymaları elde edilmiştir.
  • [1] G. C. Cao, K. Huang, A.Whelton, A. Shah, Formation and sorption of trihalomethanes from cross-linked polyethylene pipes following chlorinated water exposure. Environmental Science: Water Research & Technology, Environ. Sci.: Water Res. Technol., 6, 2479-2491, 2020. https://doi.org/10.1039/ D0E W00 262C
  • [2] I. Zimoch, and E. Łobos, Evaluation of health risk caused by chloroform in drinking water. Desalination and Water Treatment, 57.3: 1027-1033, 2016. https://doi.org/10.1080/19443994.2015.1033134
  • [3] Y. Fakhri, A. Mohseni-Bandpei, G. Oliveri Conti, H. Keramati, Y. Zandsalimi, N. Amanidaz, and Z. Baninameh, Health risk assessment induced by chloroform content of the drinking water in Iran: systematic review. Toxin reviews, 36(4), 342-351, 2017. https://doi.org/10.1080/15569543.2017.1370601
  • [4] R. Kujlu, M. Mahdavianpour and F. Ghanbari, Multi-route human health risk assessment from trihalomethanes in drinking and non- drinking water in Abadan, Iran. Environmental Science and Pollution Research, 1-10, 2020. https://doi.org/10.1007/s11356-020-09990-9
  • [5] E. Aneheim, S. Palm, H. Jensen, C. Ekberg, P. Albertsson and S. Lindegren, Towards elucidating the radiochemistry of astatine– Behavior in chloroform. Scientific reports, 9(1), 1-9, 2019. https://doi.org/ 10.1038/s41598-019-52365-5
  • [6] J.L.P. Pavón, S.H. Martín, C.G. Pinto and B.M. Cordero, Determination of trihalomethanes in water samples: a review. Analytica chimica acta, 629(1-2), 6-23, 2008. https://doi.org/10.1016/j.aca.2008.09.042
  • [7] M. Villar-Navarro, M. Ramos-Payán, J.L. Pérez-Bernal, R. Fernández- Torres, M. Callejón-Mochón and M.Á. Bello-López, Application of three phase hollow fiber based liquid phase microextraction (HF-LPME) for the simultaneous HPLC determination of phenol substituting compounds (alkyl-, chloro-and nitrophenols). Talanta, 99, 55-61, 2012. https:// doi .org /10.1016/j.talanta.2012.05.020
  • [8] L. Wolska, C. Olszewska, M. Turska, B. Zygmunt and J. Namieśnik, Volatile and semivolatile organo-halogen trace analysis in surface water by direct aqueous injection GC-ECD. Chemosphere, 37(13), 2645-2651, 1998. https://doi.org/10.1016/S0045-6535(98)00163-5
  • [9] M. Biziuk, J. Namieśnik, J. Czerwiński, D. Gorlo, B. Makuch, W. Janicki, and L.Wolska, Occurrence and determination of organic pollutants in tap and surface waters of the Gdańsk district. Journal of Chromatography A, 733(1-2), 171-183, 1996. https:// doi.org/10.1016/0021- 9673(95)00905-1
  • [10] M. Shariati-Rad and F. Fattahi, A simple equipment and colorimetric method for determination of chloroform in water. Analytica Chimica Acta, 1100, 208-214, 2020. https://doi.org/10.1016/j.aca.2019.11. 066
  • [11] P. Ncube, R.W. Krause and B.B. Mamba, Detection of chloroform in water using an azo dye-modified β-cyclodextrin–Epichlorohydrin copolymer as a fluorescent probe. Physics and Chemistry of the Earth, Parts A/B/C, 67, 79-85, 2014. https://doi.org/10.1016/ j.pce.2013.10.009
  • [12] E.R. Carvalho, A.A. Correa, O.N. Oliveira, H.L. Gomes, L.H.C. Mattoso and L. Martin-Neto, Detection of chloroform with a sensor array consisting of electrochemically deposited polythiophenes films: Processes governing the electrical response. Sensor Letters, 5(2), 374- 379, 2007. https://doi.org/10.1166/ sl.2007.204
  • [13] I.Z.M. Ahad, S.W. Harun, S.N. Gan and S.W. Phang, Polyaniline (PAni) optical sensor in chloroform detection. Sensors and Actuators B: Chemical, 261, 97-105, 2018. https://doi.org/10.1016/j.snb.2018.01.082
  • [14] W. Ma, J. Luo, W. Ling and W. Wang, Chloroform-sensing properties of plasmonic nanostructures using poly (methyl methacrylate) transduction layer. Micro & Nano Letters, 8(2), 111-114, 2013. https://doi.org /10.1049/mnl.2012.0824
  • [15] M.M. Rahman, A. Jamal, S.B. Khan and M. Faisal, Fabrication of chloroform sensor based on hydrothermally prepared low- dimensional β-Fe2O3 nanoparticles. Superlattices and Microstructures, 50(4), 369-376, 2011. https://doi.org/10.1016/ j.spmi.2011. 07.016
  • [16] M.M. Rahman, H.B. Balkhoyor, A.M. Asiri and T.R. Sobahi, Development of selective chloroform sensor with transition metal oxide nanoparticle/multi-walled carbon nanotube nanocomposites by modified glassy carbon electrode. Journal of the Taiwan Institute of Chemical Engineers, 66, 336-346, 2016. https:// doi.org/10.1016/j.jtice.2016.06.004
  • [17] H. Mahmud, J. Minnery, Y. Fang, V.A. Pham, R.M. Narbaitz, J.P. Santerre and T. Matsuura, Evaluation of membranes containing surface modifying macromolecules: determination of the chloroform separation from aqueous mixtures via pervaporation. Journal of applied polymer science, 79(1), 183-189, 2001. https://doi.org/10.1002/1097-4628(20010103) 79:1%3C183::AID- APP210%3E3.0.CO;2-E
  • [18] M.C. Soylu, W.H. Shih and W.Y. Shih, Insulation by solution 3- mercaptopropyltrimethoxysilane (mps) coating: Effect of ph, water, and mps content. Industrial & Engineering Chemistry Research, 52(7), 2590-2597, 2013. https://doi.org/10.1021/ie302231g
  • [19] K. Keser, H. Mıhçıokur and M.Ç. Soylu, Simple, rapid and sensitive detection of phenylarsine oxide in drinking water using quartz crystal microbalance: a novel surface functionalization Technique. ChemistrySelect, 5(6), 2057-2062, 2020. https:// doi .org/10.1002/slct.201904821
  • [20] M.X. Nie, X.Z. Li, S.R. Liu and Y. Guo, ZnO/CuO/Al2O3 composites for chloroform detection. Sensors and Actuators B: Chemical, 210, 211- 217, 2015. https://doi.org/10.1016/j.snb.2014.12.099
Birincil Dil en
Konular Mühendislik, Elektrik ve Elektronik
Bölüm Elektrik Elektronik Mühendisliği
Yazarlar

Orcid: 0000-0001-5213-2679
Yazar: Mehmet Cagri SOYLU (Sorumlu Yazar)
Kurum: ERCIYES UNIVERSITY
Ülke: Turkey


Tarihler

Başvuru Tarihi : 17 Ekim 2020
Kabul Tarihi : 2 Aralık 2020
Yayımlanma Tarihi : 15 Ocak 2021

Bibtex @araştırma makalesi { ngumuh811606, journal = {Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi}, issn = {}, eissn = {2564-6605}, address = {Niğde Üniversitesi Mühendislik Fakültesi, Merkez Yerleşke, Niğde}, publisher = {Ömer Halisdemir Üniversitesi}, year = {2021}, pages = {79 - 83}, doi = {10.28948/ngumuh.811606}, title = {Easy detection of chloroform in drinking water by quartz crystal microbalance sensor}, key = {cite}, author = {Soylu, Mehmet Cagri} }
APA Soylu, M . (2021). Easy detection of chloroform in drinking water by quartz crystal microbalance sensor . Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi , 10 (1) , 79-83 . DOI: 10.28948/ngumuh.811606
MLA Soylu, M . "Easy detection of chloroform in drinking water by quartz crystal microbalance sensor" . Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 (2021 ): 79-83 <https://dergipark.org.tr/tr/pub/ngumuh/article/811606>
Chicago Soylu, M . "Easy detection of chloroform in drinking water by quartz crystal microbalance sensor". Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 (2021 ): 79-83
RIS TY - JOUR T1 - Easy detection of chloroform in drinking water by quartz crystal microbalance sensor AU - Mehmet Cagri Soylu Y1 - 2021 PY - 2021 N1 - doi: 10.28948/ngumuh.811606 DO - 10.28948/ngumuh.811606 T2 - Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi JF - Journal JO - JOR SP - 79 EP - 83 VL - 10 IS - 1 SN - -2564-6605 M3 - doi: 10.28948/ngumuh.811606 UR - https://doi.org/10.28948/ngumuh.811606 Y2 - 2020 ER -
EndNote %0 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi Easy detection of chloroform in drinking water by quartz crystal microbalance sensor %A Mehmet Cagri Soylu %T Easy detection of chloroform in drinking water by quartz crystal microbalance sensor %D 2021 %J Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi %P -2564-6605 %V 10 %N 1 %R doi: 10.28948/ngumuh.811606 %U 10.28948/ngumuh.811606
ISNAD Soylu, Mehmet Cagri . "Easy detection of chloroform in drinking water by quartz crystal microbalance sensor". Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 / 1 (Ocak 2021): 79-83 . https://doi.org/10.28948/ngumuh.811606
AMA Soylu M . Easy detection of chloroform in drinking water by quartz crystal microbalance sensor. NÖHÜ Müh. Bilim. Derg.. 2021; 10(1): 79-83.
Vancouver Soylu M . Easy detection of chloroform in drinking water by quartz crystal microbalance sensor. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2021; 10(1): 79-83.
IEEE M. Soylu , "Easy detection of chloroform in drinking water by quartz crystal microbalance sensor", Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sayı. 1, ss. 79-83, Oca. 2021, doi:10.28948/ngumuh.811606