Araştırma Makalesi
BibTex RIS Kaynak Göster

ANSYS fluent yazılımı kullanılarak Al2O3, ZrB2, TiB2, TiN'den yapılmış kesici takımlarda ısı transferi yönlerinin sayısal çalışması

Yıl 2022, , 222 - 231, 14.01.2022
https://doi.org/10.28948/ngumuh.817836

Öz

Bu çalışmada, ısı transferi ve ısı akısının Al2O3, ZrB2, TiB2, TiN malzemelerden üretilmiş kesici takımlar üzerindeki etkileri ANSYS sonlu elemanlar analizi programı yardımıyla sayısal olarak araştırılmıştır. Sayısal model bir önceki çalışma ile doğrulanmıştır. Kesme hızı ve ilerleme gibi kesme parametrelerinin kesici takım ömrü ve sıcaklık üzerine etkileri araştırılmıştır. Sonuçlar, Zirkonyum diborid ve Titanyum diborid’in alüminyum oksitten daha düşük sıcaklığa sahip olduğunu, böylece kesici takım olarak kullanılan diborid malzemeleriyle verimliliğin artacağını göstermiştir. Alüminyum oksit için maksimum sıcaklık 1300 K iken, Titanyum nitrit için 1100 K sıcaklık elde edilmiştir. En düşük sıcaklık 180 m/dak kesme hızında, en yüksek sıcaklık da 220 m/dak kesme hızında ölçülmüştür. Optimum kesme koşulları TiN kesici takımla 180 m/dak kesme hızında ve 0.138 mm/rev ilerleme hızında elde edilmiştir. Titanyum diborid (TiB2) malzemeler diğer malzemelere kıyasla maksimum kesme takımı ömrüne ulaşmıştır.

Kaynakça

  • S. Lo Casto, E. Lo Valvo, M. Piacentini, V. F. Ruisi, E. Lucchini and S. Maschio, Cutting Temperatures Evaluation in Ceramic Tools: Experimental Tests, Numerical Analysis and SEM Observations, CIRP Annals, 43, 73-76, 1994. https://doi.org/10.1016/ s0007-8506(07)62167-2.
  • J. Rech, J. L. Battaglia and A. Moisan, Thermal influence of cutting tool coatings, Journal of Materials Processing Technology, 159, 119-124, 2005. https://doi.org/10.1016/j.jmatprotec.2004.04.414.
  • W. Grzesik, Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique, International Journal of Machine Tools and Manufacture, 46, 651-658, 2006. https://doi.org/ 10.1016/j.ijmachtools.2005.07.009.
  • E. Ceretti, L. Filice, D. Umbrello and F. J. C. a. Micari, ALE simulation of orthogonal cutting: a new approach to model heat transfer phenomena at the tool-chip interface, CIRP Annals - Manufacturing Technology, 56, 69-72, 2007. https://doi.org/10.1016/j.cirp.2007. 05.019.
  • R. Kountanya, Cutting tool temperatures in interrupted cutting—The effect of feed-direction modulation, Journal of Manufacturing Processes, 10, 47-55, 2008. https://doi.org/10.1016/j.jmapro.2009.04.001.
  • R. F. Brito, S. R. d. Carvalho, S. M. M. d. Lima e Silva and J. R. Ferreira, Thermal analysis in coated cutting tools, International Communications in Heat and Mass Transfer, 36, 314-321, 2009. https://doi.org/ 10.1016/j.icheatmasstransfer.2009.01.009.
  • K. Kadirgama, M. Noor, K. Abou-El-Hossein, H. Habeeb, M. Rahman and B. Mohamad, Effect of dry cutting on force and tool life when machining aerospace material, International Journal of Aerospace and Mechanical Engineering, 4, 1222-1226, 2010. https://doi.org/10.5281/zenodo.1073217.
  • S. Shu, K. Cheng, H. Ding and S. Chen, An Innovative Method to Measure the Cutting Temperature in Process by Using an Internally Cooled Smart Cutting Tool, Journal of Manufacturing Science and Engineering, 135(6), 2013. https://doi.org/10.1115/1.4025742.
  • S. Pervaiz, I. Deiab, E. M. Wahba, A. Rashid and M. Nicolescu, A Coupled FE and CFD Approach to Predict the Cutting Tool Temperature Profile in Machining, Procedia CIRP, 17, 750-754, 2014. https://doi.org/10.1016/j.procir.2014.01.104.
  • R. F. Brito, S. R. Carvalho and S. M. M. Lima E Silva, Experimental investigation of thermal aspects in a cutting tool using comsol and inverse problem, Applied Thermal Engineering, 86, 60-68, 2015. https://doi.org/10.1016/j.applthermaleng.2015.03.083.
  • Y. Zhang, Y. Yang, Q. Li and Y. Li, Study on heat transfer model of coolant boundary layer during high speed cutting process, International Journal of Heat and Mass Transfer, 114, 1304-1313, 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.030.
  • D. C. Ferreira, E. d. S. Magalhães, R. F. Brito and S. M. M. Lima E Silva, Numerical analysis of the influence of coatings on a cutting tool using COMSOL, The International Journal of Advanced Manufacturing Technology, 97, 1305-1314, 2018. https://doi.org/10.1007/s00170-018-1855-7.
  • S. Berezvai, T. G. Molnar, A. Kossa, D. Bachrathy and G. Stepan, Numerical and experimental investigation of contact length during orthogonal cutting, Materials Today: Proceedings, 12, 329-334, 2019. https://doi.org/10.1016/j.matpr.2019.03.131.
  • A. K. Parida and K. Maity, Numerical and experimental analysis of specific cutting energy in hot turning of Inconel 718, Measurement, 133, 361-369, 2019. https://doi.org/10.1016/j.measurement.2018.10.033.
  • F. Sadegh Moghanlou, M. Vajdi, J. Sha, A. Motallebzadeh, M. Shokouhimehr and M. Shahedi Asl, A numerical approach to the heat transfer in monolithic and SiC reinforced HfB2, ZrB2 and TiB2 ceramic cutting tools, Ceramics International, 45, 15892-15897, 2019. https://doi.org/10.1016/j.ceramint.2019.05.095.
  • M. Gao, K. Zhang, Q. Zhou, H. Zhou, B. Liu and G. Zheng, Numerical investigations on the effect of ultra-high cutting speed on the cutting heat and rock-breaking performance of a single cutter, Journal of Petroleum Science and Engineering, 190, 2020. https://doi.org/10.1016/j.petrol.2020.107120.
  • B. Guimarães, C. M. Fernandes, D. Figueiredo, M. F. Cerqueira, O. Carvalho and F. S. Silva, A novel approach to reduce in-service temperature in WC-Co cutting tools, Ceramics International, 46, 3002-3008, 2020. https://doi.org/10.1016/j.ceramint.2019.09.299.
  • Q. Xia and D. R. H. Gillespie, Quasi-static finite element modelling of thermal distribution and heat partitioning for the multi-component system of high speed metal cutting, Journal of Materials Processing Technology, 275, 2020. https://doi.org/ 10.1016/j.jmatprotec.2019.116389.

Numerical study of heat transfer aspects in cutting tools made of Al2O3, ZrB2, TiB2, TiN using ANSYS fluent software

Yıl 2022, , 222 - 231, 14.01.2022
https://doi.org/10.28948/ngumuh.817836

Öz

In this study, the effects of heat transfer and heat flux on cutting tools with materials of Al2O3, ZrB2, TiB2, TiN are investigated numerically by ANSYS fluent software. The numerical model was validated with the previous study. The influence of the machining parameters such as cutting speed and feed rate on the temperature and tool life has been investigated to indicate the optimum cutting tool and situation. The results show that Zirconium diboride (ZrB2) and Titanium diboride (TiB2) have a temperature less than the aluminum oxide (Al2O3) so that the productivity will increase with the diboride materials utilizing as cutting tool. The maximum temperature for aluminum oxide is 1300 K while the Titanium Nitrite achieved 1100 K. The lowest and maximum temperature was measured at a cutting speed of 180 m/min and 220 m/min, respectively. The optimum cutting condition has been obtained with TiN cutting tool material at 180 m/min cutting speed and 0.138 mm/ rev feed rate. Titanium diboride (TiB2) materials achieved the maximum cutting tool life comparing to other materials.

Kaynakça

  • S. Lo Casto, E. Lo Valvo, M. Piacentini, V. F. Ruisi, E. Lucchini and S. Maschio, Cutting Temperatures Evaluation in Ceramic Tools: Experimental Tests, Numerical Analysis and SEM Observations, CIRP Annals, 43, 73-76, 1994. https://doi.org/10.1016/ s0007-8506(07)62167-2.
  • J. Rech, J. L. Battaglia and A. Moisan, Thermal influence of cutting tool coatings, Journal of Materials Processing Technology, 159, 119-124, 2005. https://doi.org/10.1016/j.jmatprotec.2004.04.414.
  • W. Grzesik, Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique, International Journal of Machine Tools and Manufacture, 46, 651-658, 2006. https://doi.org/ 10.1016/j.ijmachtools.2005.07.009.
  • E. Ceretti, L. Filice, D. Umbrello and F. J. C. a. Micari, ALE simulation of orthogonal cutting: a new approach to model heat transfer phenomena at the tool-chip interface, CIRP Annals - Manufacturing Technology, 56, 69-72, 2007. https://doi.org/10.1016/j.cirp.2007. 05.019.
  • R. Kountanya, Cutting tool temperatures in interrupted cutting—The effect of feed-direction modulation, Journal of Manufacturing Processes, 10, 47-55, 2008. https://doi.org/10.1016/j.jmapro.2009.04.001.
  • R. F. Brito, S. R. d. Carvalho, S. M. M. d. Lima e Silva and J. R. Ferreira, Thermal analysis in coated cutting tools, International Communications in Heat and Mass Transfer, 36, 314-321, 2009. https://doi.org/ 10.1016/j.icheatmasstransfer.2009.01.009.
  • K. Kadirgama, M. Noor, K. Abou-El-Hossein, H. Habeeb, M. Rahman and B. Mohamad, Effect of dry cutting on force and tool life when machining aerospace material, International Journal of Aerospace and Mechanical Engineering, 4, 1222-1226, 2010. https://doi.org/10.5281/zenodo.1073217.
  • S. Shu, K. Cheng, H. Ding and S. Chen, An Innovative Method to Measure the Cutting Temperature in Process by Using an Internally Cooled Smart Cutting Tool, Journal of Manufacturing Science and Engineering, 135(6), 2013. https://doi.org/10.1115/1.4025742.
  • S. Pervaiz, I. Deiab, E. M. Wahba, A. Rashid and M. Nicolescu, A Coupled FE and CFD Approach to Predict the Cutting Tool Temperature Profile in Machining, Procedia CIRP, 17, 750-754, 2014. https://doi.org/10.1016/j.procir.2014.01.104.
  • R. F. Brito, S. R. Carvalho and S. M. M. Lima E Silva, Experimental investigation of thermal aspects in a cutting tool using comsol and inverse problem, Applied Thermal Engineering, 86, 60-68, 2015. https://doi.org/10.1016/j.applthermaleng.2015.03.083.
  • Y. Zhang, Y. Yang, Q. Li and Y. Li, Study on heat transfer model of coolant boundary layer during high speed cutting process, International Journal of Heat and Mass Transfer, 114, 1304-1313, 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.030.
  • D. C. Ferreira, E. d. S. Magalhães, R. F. Brito and S. M. M. Lima E Silva, Numerical analysis of the influence of coatings on a cutting tool using COMSOL, The International Journal of Advanced Manufacturing Technology, 97, 1305-1314, 2018. https://doi.org/10.1007/s00170-018-1855-7.
  • S. Berezvai, T. G. Molnar, A. Kossa, D. Bachrathy and G. Stepan, Numerical and experimental investigation of contact length during orthogonal cutting, Materials Today: Proceedings, 12, 329-334, 2019. https://doi.org/10.1016/j.matpr.2019.03.131.
  • A. K. Parida and K. Maity, Numerical and experimental analysis of specific cutting energy in hot turning of Inconel 718, Measurement, 133, 361-369, 2019. https://doi.org/10.1016/j.measurement.2018.10.033.
  • F. Sadegh Moghanlou, M. Vajdi, J. Sha, A. Motallebzadeh, M. Shokouhimehr and M. Shahedi Asl, A numerical approach to the heat transfer in monolithic and SiC reinforced HfB2, ZrB2 and TiB2 ceramic cutting tools, Ceramics International, 45, 15892-15897, 2019. https://doi.org/10.1016/j.ceramint.2019.05.095.
  • M. Gao, K. Zhang, Q. Zhou, H. Zhou, B. Liu and G. Zheng, Numerical investigations on the effect of ultra-high cutting speed on the cutting heat and rock-breaking performance of a single cutter, Journal of Petroleum Science and Engineering, 190, 2020. https://doi.org/10.1016/j.petrol.2020.107120.
  • B. Guimarães, C. M. Fernandes, D. Figueiredo, M. F. Cerqueira, O. Carvalho and F. S. Silva, A novel approach to reduce in-service temperature in WC-Co cutting tools, Ceramics International, 46, 3002-3008, 2020. https://doi.org/10.1016/j.ceramint.2019.09.299.
  • Q. Xia and D. R. H. Gillespie, Quasi-static finite element modelling of thermal distribution and heat partitioning for the multi-component system of high speed metal cutting, Journal of Materials Processing Technology, 275, 2020. https://doi.org/ 10.1016/j.jmatprotec.2019.116389.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Makine Mühendisliği
Yazarlar

Kamal Mohammed 0000-0003-1123-2045

Süleyman Baştürk 0000-0002-9016-8397

Yayımlanma Tarihi 14 Ocak 2022
Gönderilme Tarihi 29 Ekim 2020
Kabul Tarihi 26 Aralık 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Mohammed, K., & Baştürk, S. (2022). Numerical study of heat transfer aspects in cutting tools made of Al2O3, ZrB2, TiB2, TiN using ANSYS fluent software. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(1), 222-231. https://doi.org/10.28948/ngumuh.817836
AMA Mohammed K, Baştürk S. Numerical study of heat transfer aspects in cutting tools made of Al2O3, ZrB2, TiB2, TiN using ANSYS fluent software. NÖHÜ Müh. Bilim. Derg. Ocak 2022;11(1):222-231. doi:10.28948/ngumuh.817836
Chicago Mohammed, Kamal, ve Süleyman Baştürk. “Numerical Study of Heat Transfer Aspects in Cutting Tools Made of Al2O3, ZrB2, TiB2, TiN Using ANSYS Fluent Software”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, sy. 1 (Ocak 2022): 222-31. https://doi.org/10.28948/ngumuh.817836.
EndNote Mohammed K, Baştürk S (01 Ocak 2022) Numerical study of heat transfer aspects in cutting tools made of Al2O3, ZrB2, TiB2, TiN using ANSYS fluent software. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 1 222–231.
IEEE K. Mohammed ve S. Baştürk, “Numerical study of heat transfer aspects in cutting tools made of Al2O3, ZrB2, TiB2, TiN using ANSYS fluent software”, NÖHÜ Müh. Bilim. Derg., c. 11, sy. 1, ss. 222–231, 2022, doi: 10.28948/ngumuh.817836.
ISNAD Mohammed, Kamal - Baştürk, Süleyman. “Numerical Study of Heat Transfer Aspects in Cutting Tools Made of Al2O3, ZrB2, TiB2, TiN Using ANSYS Fluent Software”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/1 (Ocak 2022), 222-231. https://doi.org/10.28948/ngumuh.817836.
JAMA Mohammed K, Baştürk S. Numerical study of heat transfer aspects in cutting tools made of Al2O3, ZrB2, TiB2, TiN using ANSYS fluent software. NÖHÜ Müh. Bilim. Derg. 2022;11:222–231.
MLA Mohammed, Kamal ve Süleyman Baştürk. “Numerical Study of Heat Transfer Aspects in Cutting Tools Made of Al2O3, ZrB2, TiB2, TiN Using ANSYS Fluent Software”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 11, sy. 1, 2022, ss. 222-31, doi:10.28948/ngumuh.817836.
Vancouver Mohammed K, Baştürk S. Numerical study of heat transfer aspects in cutting tools made of Al2O3, ZrB2, TiB2, TiN using ANSYS fluent software. NÖHÜ Müh. Bilim. Derg. 2022;11(1):222-31.

download