Araştırma Makalesi
BibTex RIS Kaynak Göster

Removal of acid red-20 synthetic industrial dyestuff from aqueous solution by electro oxidation method

Yıl 2022, , 363 - 371, 15.04.2022
https://doi.org/10.28948/ngumuh.854958

Öz

In this study, the process of removing Acid Red 20 synthetic industrial light azo dyestuff from water by electro-oxidation was studied. Titanium was used as the anode and steel was used as the cathode. 100 mg / L constant dye concentration and as a result of preliminary tests, the optimum current density was 033 A / m2. The type of salt used on the purification process (NaCl, NaCO3, Na2NO3 and KC), salt concentration (0.025 M, 0.050 M, 0.075 M and 0.1 M), environment pH (natural, 3, 5, 7, 9 and 11) and the effect of stirring speed (0, 150 rpm, 300 rpm and 450 rpm) was investigated. As a result, it was determined that the most suitable salt for the process was KCI. Considering that energy is the most important expense in treatment processes, the optimum salt concentration was determined as 0.075 M KCI. It was observed that the color removal and COD removal efficiency increased with increasing mixing speed. Achieved an important value of 99.5% for removal efficiency of Acid Red 20 from the aqueous solution. The results obtained showed that the electro-oxidation method can be used to remove light azo dyes from water.

Kaynakça

  • J. C. Cardoso, G. G. Bessegato, M. V. B. Zanoni, Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water research, 98, 39-46, 2016. https://doi.org/10.1016/j.watres. 2016.04.004.
  • J. C. Cardoso, G. G.Bessegato, M. V. B. Zanoni, Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water research, 98, 39-46, 2016. https://doi.org/10.1016/j.watres. 2016.04.004.
  • S. Bolisetty, M. Peydayesh, R.Mezzenga, Sustainable technologies for water purification from heavy metals: review and analysis. Chemical Society Reviews, 48(2), 463-487, 2019. https://doi.org/10.1039/C8CS00493E.
  • S. Zaman, A. Begum, K. Rabbani, L. Bari, Low cost and sustainable surface water purification methods using Moringa seeds and scallop powder followed by bio-sand filtration, Water Science and Technology: Water Supply, 17(1), 125-137, 2017. https:// doi.org/10.2166/ws.2016. 111.
  • P. Bengani-Lutz, R. D. Zaf, P. Z. Culfaz-Emecen, A. Asatekin, Extremely fouling resistant zwitterionic copolymer membranes with~ 1 nm pore size for treating municipal, oily and textile wastewater streams. Journal of Membrane Science, 543, 184-194, 2017. https://doi .org/10.1016/j.memsci.2017.08.058.
  • E. Kavci, Malachite green adsorption onto modified pine cone: Isotherms, kinetics and thermodynamics mechanism. Chemical Engineering Communications, 1-10, 2020 https://doi.org/10.1080/00986445. 2020.17159 61.
  • R. Wang, X. Cai, F. Shen, TiO2 hollow microspheres with mesoporous surface: Superior adsorption permance for dye removal. Applied Surface Science 305, 352-358, 2014. https://doi.org/10.1016/ j.apsusc.2014.03.089.
  • S. Zodi, B. Merzouk, O. Potier, F. Lapicque, J-P. Leclerc, Direct red 81 dye removal by a continuous flow electrocoagulation/flotation reactor, Separation and Purification Technology 108, 215-222, 2013. https ://doi.org/10.1016/j.seppur.2013.01.052.
  • A. Zularisam, A. Ismail, R. Salim, Behaviours of natural organic matter in membrane filtration for surface water treatment—A review, Desalination, 194(1-3), 211-231, 2006. https://doi.org/10.1016/ j.desal.2005.10.030.
  • A. T. Sugiarto, S. Ito, T. Ohshima, M. Sato, J. D. Skalny, Oxidative decoloration of dyes by pulsed discharge plasma in water, Journal of Electrostatics, 58(1-2), 135-145, 2003. https://doi.org/10.1016/ S0304-3886(02)002 03-6.
  • T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource Technology, 77(3), 247-255, 2001. https://doi.org/10.1016/S0960-8524(00)00080-8.
  • N. Puvaneswari, J. Muthukrishnan, P. Gunasekaran, Toxicity assessment and microbial degradation of azo dyes, 2006. http://nopr.niscair.res.in /handle/123456789 /6554.
  • M. T. Yagub, T. K. Sen, S. Afroze, H. M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Advances in colloid and interface science, 209, 172-184, 2014. https://doi.org/10.1016/j.cis.2014 .04.00 2.
  • D. Rawat, R. S. Sharma, S. Karmakar, L. S. Arora, V. Mishra, Ecotoxic potential of a presumably non-toxic azo dye, Ecotoxicology and Environmental Safety. 148, 528-537, 2018. https://doi.org/10.1016/j.ecoenv. 2017 .10.049.
  • J. B. Parsa, M. Rezaei, A. Soleymani, Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics, Journal of Hazardous Materials, 168(2-3),997-1003, 2009 https:// doi.org/10.1016/j.jhazmat.2009.02 .134.
  • M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177(1-3),70-80, 2010. https://doi.org/10.1016/j.jhazmat. 2009.12.047.
  • C. Ramírez, A. Saldaña, B. Hernández, R. Acero, R. Guerra, S. Garcia-Segura, E. Brillas, J.M. Peralta-Hernández, Electrochemical oxidation of methyl orange azo dye at pilot flow plant using BDD technology. Journal of Industrial and Engineering Chemistry, 19(2), 571-579, 2013. https://doi.org/ 10.1016/j.jiec.2012.09.0 10.
  • S. Sarkar, A. Banerjee, U. Halder, R. Biswas, R. Bandopadhyay, Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conservation Science and Engineering, 2(4), 121-131, 2017. https://doi.org/ 10.1007/s41101-017-0031-5.
  • P. Grau, Textile industry wastewaters treatment, Water Science and Technology, 24(1), 97-103, 1991. https://doi.org/10.2166/wst.1991.0015.
  • A. Alinsafi, F. Evenou, E. Abdulkarim, M-N. Pons, O. Zahraa, A. Benhammou, A. Yaacoubi, A. Nejmeddine, Treatment of textile industry wastewater by supported photocatalysis. Dyes and Pigments, 74(2), 439-445, 2007. https://doi.org/10.1016/j.dyepig.2006.02 .024.
  • O. Türgay, G. Ersöz, S. Atalay, J. Forss, U. Welander. The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Separation and Purification Technology, 79(1), 26-33, 2011. https://doi.org/10. 1016/j.seppur.2011.03.007.
  • P. C. Vandevivere, R. Bianchi, W. Verstraete, Treatment and reuse of wastewater from the textile wet‐processing industry: Review of emerging technologies. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 72(4), 289-302, 1998. https://doi .org/10.1002/(SICI)1097.
  • P. Sakthisharmila, P. Palanisamy, P. Manikandan, Removal of benzidine based textile dye using different metal hydroxides generated in situ electrochemical treatment-A comparative study. Journal of Cleaner Production, 172, 2206-2215, 2018. https://doi.org/ 10.10 16/j.jclepro.2017.11.192.
  • I. Koyuncu, D. Topacik, E. Yuksel, Reuse of reactive dyehouse wastewater by nanofiltration: process water quality and economical implications. Separation and purification Technology, 36(1), 77-85, 2004. https ://doi.org/10.1016/S1383-5866(03)00154-0.
  • C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, A. B. Pandit, A critical review on textile wastewater treatments: possible approaches. Journal of environmental management, 182, 351-366, 2016. https://doi.org/10.1016/j.jenvman.2016.07.090.
  • V. M. Correia, T. Stephenson, S. J. Judd, Characterisation of textile wastewaters‐a review. Environmental technology, 15(10), 917-929, 1994. https://doi.org/10.1080/09593339409385500.
  • S. A. Wadhwani, U. U. Shedbalkar, S. Nadhe, R. Singh, B. A. Chopade, Decolorization of textile dyes by combination of gold nanocatalysts obtained from Acinetobacter sp. SW30 and NaBH4, Environmental Technology & Innovation, 9, 186-197, 2018. https://doi.org/10.1016/j.eti.2017.12.001.
  • V. Gupta, K. Suhas, “Application of low-cost adsorbents for dye removal – A review” Journal of Environmental Management, 90, 2313-2342, 2009. https://doi.org/10. 1016/j.jenvman.2008.11.017
  • R. Bianchi, W. Verstraete, P. C. Vandevivere, Treatment and reuse of wastewater from the textile wet-processing industry; Review of emerging Technologies J. Chem. Technol. Biotechnol., 72, 289-302, 1998. https://doi.org/10.1002/(SICI)1097-4660(19 9808)72:4<289::AID-JCTB905>3.0.CO;2-%23
  • L. Fan, Y. Zhou, W. Yang, G. Chen, F. Yang, Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model. Dyes and pigments, 76(2), 440-446, 2008. https://doi.org/10.1016/j.dyepig.2006.09.013.
  • H. Särkkä, A. Bhatnagar, M. Sillanpää, Recent developments of electro-oxidation in water treatment—A review, Journal of Electroanalytical Chemistry, 754, 46-56, 2015. https://doi.org/10.1016/j.jelechem .2015 .06.016
  • E. Isarain-Chávez, M. D. Baró, E. Rossinyol, U. Morales-Ortiz, J. Sort, E. Brillas, E. Pellicer, Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes. Electrochimica Acta. 244,199-208,2017. https://doi.org/10.1016/j.electacta. 2017.05.1 01
  • M. Gotsi, N. Kalogerakis, E. Psillakis, P. Samaras, D. Mantzavinos, Electrochemical oxidation of olive oil mill wastewaters. Water Research, 39(17), 4177-4187, 2005. https://doi.org/10.1016/j.watres.2005.07.037.
  • L. Chiang, J.E. Chang, T.C., Wen. Electrochemical trea- tability of refractory pollutants in landfill leachate, Hazardous Wastes and Hazardous Materials, 12(1), 71-82, 1995. https://doi.org/10.1089/hwm.1995.12.71.
  • APHA, AWWA and WPCF. Standart Methods for the Examination of Water and Wastwater, Sixteenth ed. Washington, DC. pp. 76–538, 1985.
  • G. Chen, Electrochemical technologies in wastewater treatment, 38(1): 11-41, 2004. https://doi.org /10.1016/ j.seppur.2003.10.006.
  • Y. Ş. Yıldız, Humik Maddeler İçeren Atık Suların Elektrokoagülasyon Metodu ile Arıtımı. 2003. Doktora Tezi, Fen Bilimleri Enstitüsü, Erzurum.
  • C. H. Huang, L. Chen, and C. L. Yang, Effect of anions on electrochemical coagulation for cadmium removal, Separation and Purification Technology, 65, 137-146, 2009. https://doi.org/10.1016/j.seppur. 2008.10 .029
  • A. T. İrdemez, Elektrokoagülasyon Yöntemi ile Atıksulardan Fosfat Giderimi. Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum. 2004.
  • M. A. Ajeel, M. K. Aroua, W. M. A. W. Daud, S. A. Mazari, Effect of adsorption and passivation phenomena on the electrochemical oxidation of phenol and 2-chlorophenol at carbon black diamond composite electrode. Industrial & Engineering Chemistry Research, 56(6), 1652-1660, 2017. https://doi.org/ 10.10 21/acs.iecr.6b03422
  • C. Y. Hu, S. L. Lo, and W. H. Kuan, Effect of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminium electrodes, Water Research, 37, 4513-4523, 2003. https://doi.org/10.1016 /S0043-1354(03)00378-6
  • B. Lin, R. Hu, C. Ye, Y. Li, and C. Lin, A study on the initiation of pitting corrosion in carbon steel in chloridecontaining media using scannins electrochemical probes, Electrochimica Acta, 55, 6542-6545, 2010. https://doi.org/10.1016/j.electac ta.2010.06.024
  • P.R. Kumar, S. Chaudhari, K.C. Khilar, S.P. Mahajan, Removal of arsenic from water by electrocoagulation, Chemosphere, 55 (9), 1245-1252, 2004. https://doi.org /10.1016/j.chemosphere.2003.12.025
  • P. Gao, X. Chenı, F. Shen, G. Chen, Removal of chromium (VI) from wastewater by combined electrocoagulation– electroflotation without a filter, Separation and Purification Technology, 43(2), 117–123, 2005. https://doi.org/10.1016/j.seppur. 2004.10.008
  • K. Atmaca, N. Beyazıt, Colour and COD removal from aqueous solutions of direct yellow 86 textile dyestuff by electro-Fenton method. International Journal of Global Warming, 20 (4), 324-340, 2020. https://doi.org/10.15 04/IJGW.2020.107151
  • A. Karam, E. S. Bakhoum, K. Zaher, Coagulation/ flocculation process for textile mill effluent treatment: experimental and numerical perspectives, International Journal of Sustainable Engineering, 1-13. 2020. https://doi.org/10.1080/19397038.2020.1842547
  • D. Z. Mijin, V. D. Tomić, B. N. Grgur, Electrochemical decolorization of the reactive orange 16 dye using dimensionally stable Ti/PtOx anode. Journal of the Serbian Chemical Society, 80(7), 903-915, 2015.https:/ /doi.org/10.2298/JSC140917107M.
  • S. El Aggadi, G. Kaichouh, Z. El Abbassi, M. Fekhaoui, A.E. Hourch, Electrode material in electrochemical decolorization of dyestuffs wastewater: A review. InE3S Web of Conferences (Vol. 234). EDP Sciences, 2021. https://doi.org/10.1051/ e3sconf/202123 400058
  • A. Baddouh, G.G. Bessegato,M.M. Rguiti, B. El Ibrahimi, L. Bazzi, M. Hilali, M.V.B. Zanoni, Electrochemical decolorization of Rhodamine B dye: Influence of anode material, chloride concentration and current density. Journal of Environmental Chemical Engineering, 6(2), 2041-2047, 2018. https://doi.org/10. 1016/j.jece.2018.03.007
  • C.L. Yang, J. McGarrahan, Electrochemical coagulation for textile effluent decolorization. Journal of hazardous materials, 127(1-3), 40-47, 2005. https://doi .org/10.10 16/j.jhazmat.2005.05.050
  • R. K. Sani, U.C. Banerjee, Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme and Microbial Technology, 24(7), 433-437, 1999. https://doi.org/ 10.1016/j.jece. 2018.03.00 7

Acid red-20 sentetik endüstriyel boyar maddenin elektro-oksidasyon yöntemi ile sulu çözeltiden uzaklaştırılması

Yıl 2022, , 363 - 371, 15.04.2022
https://doi.org/10.28948/ngumuh.854958

Öz

Bu çalışmada Acid Red 20 sentetik endüstriyel hafif azoboyar maddenin elektro-oksidasyon ile sudan uzaklaştırılması prosesi çalışılmıştır. Anot olarak Titanyum katot olarak ise çelik kullanılmıtır.100 mg/L sabit boya konsantrasyonunda ve ön denemeler sonucunda en uygun akım yoğunluğu olan 033 A/m2 de çalışıldı. Arıtma prosesi üzerinde kullanılan tuz türünün (NaCI, NaCO3, Na2NO3 ve KC), tuz konsantrasyonunun (0.025 M, 0.050 M, 0.075 M ve 0.1 M), ortam pH’ sının (doğal, 3, 5, 7, 9 ve11) ve karıştırma hızının (0, 150 rpm, 300 rpm ve 450 rpm) etkisi incelendi. Sonuç olarak proses için en uygun tuzun KCI olduğu belirlendi. Arıtım proseslerinde de en önemli giderin enerji olduğu göz önünde bulundurularak en uygun tuz konsantrasyonu 0.075 M KCI olarak belirlendi. Renk giderimi ve KOİ giderim veriminin karıştırma hızının artışıyla arttığı görüldü Sulu çözeltiden Acid Red 20 giderim verimi için %99.5 gibi önemli değere ulaşıldı. Elde edilen sonuçlar elektro-oksidasyon yönteminin hafif azoboyaların sulardan giderilmesinde kullanılabilir bir yöntem olduğunu göstermiştir.

Kaynakça

  • J. C. Cardoso, G. G. Bessegato, M. V. B. Zanoni, Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water research, 98, 39-46, 2016. https://doi.org/10.1016/j.watres. 2016.04.004.
  • J. C. Cardoso, G. G.Bessegato, M. V. B. Zanoni, Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water research, 98, 39-46, 2016. https://doi.org/10.1016/j.watres. 2016.04.004.
  • S. Bolisetty, M. Peydayesh, R.Mezzenga, Sustainable technologies for water purification from heavy metals: review and analysis. Chemical Society Reviews, 48(2), 463-487, 2019. https://doi.org/10.1039/C8CS00493E.
  • S. Zaman, A. Begum, K. Rabbani, L. Bari, Low cost and sustainable surface water purification methods using Moringa seeds and scallop powder followed by bio-sand filtration, Water Science and Technology: Water Supply, 17(1), 125-137, 2017. https:// doi.org/10.2166/ws.2016. 111.
  • P. Bengani-Lutz, R. D. Zaf, P. Z. Culfaz-Emecen, A. Asatekin, Extremely fouling resistant zwitterionic copolymer membranes with~ 1 nm pore size for treating municipal, oily and textile wastewater streams. Journal of Membrane Science, 543, 184-194, 2017. https://doi .org/10.1016/j.memsci.2017.08.058.
  • E. Kavci, Malachite green adsorption onto modified pine cone: Isotherms, kinetics and thermodynamics mechanism. Chemical Engineering Communications, 1-10, 2020 https://doi.org/10.1080/00986445. 2020.17159 61.
  • R. Wang, X. Cai, F. Shen, TiO2 hollow microspheres with mesoporous surface: Superior adsorption permance for dye removal. Applied Surface Science 305, 352-358, 2014. https://doi.org/10.1016/ j.apsusc.2014.03.089.
  • S. Zodi, B. Merzouk, O. Potier, F. Lapicque, J-P. Leclerc, Direct red 81 dye removal by a continuous flow electrocoagulation/flotation reactor, Separation and Purification Technology 108, 215-222, 2013. https ://doi.org/10.1016/j.seppur.2013.01.052.
  • A. Zularisam, A. Ismail, R. Salim, Behaviours of natural organic matter in membrane filtration for surface water treatment—A review, Desalination, 194(1-3), 211-231, 2006. https://doi.org/10.1016/ j.desal.2005.10.030.
  • A. T. Sugiarto, S. Ito, T. Ohshima, M. Sato, J. D. Skalny, Oxidative decoloration of dyes by pulsed discharge plasma in water, Journal of Electrostatics, 58(1-2), 135-145, 2003. https://doi.org/10.1016/ S0304-3886(02)002 03-6.
  • T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource Technology, 77(3), 247-255, 2001. https://doi.org/10.1016/S0960-8524(00)00080-8.
  • N. Puvaneswari, J. Muthukrishnan, P. Gunasekaran, Toxicity assessment and microbial degradation of azo dyes, 2006. http://nopr.niscair.res.in /handle/123456789 /6554.
  • M. T. Yagub, T. K. Sen, S. Afroze, H. M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Advances in colloid and interface science, 209, 172-184, 2014. https://doi.org/10.1016/j.cis.2014 .04.00 2.
  • D. Rawat, R. S. Sharma, S. Karmakar, L. S. Arora, V. Mishra, Ecotoxic potential of a presumably non-toxic azo dye, Ecotoxicology and Environmental Safety. 148, 528-537, 2018. https://doi.org/10.1016/j.ecoenv. 2017 .10.049.
  • J. B. Parsa, M. Rezaei, A. Soleymani, Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics, Journal of Hazardous Materials, 168(2-3),997-1003, 2009 https:// doi.org/10.1016/j.jhazmat.2009.02 .134.
  • M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177(1-3),70-80, 2010. https://doi.org/10.1016/j.jhazmat. 2009.12.047.
  • C. Ramírez, A. Saldaña, B. Hernández, R. Acero, R. Guerra, S. Garcia-Segura, E. Brillas, J.M. Peralta-Hernández, Electrochemical oxidation of methyl orange azo dye at pilot flow plant using BDD technology. Journal of Industrial and Engineering Chemistry, 19(2), 571-579, 2013. https://doi.org/ 10.1016/j.jiec.2012.09.0 10.
  • S. Sarkar, A. Banerjee, U. Halder, R. Biswas, R. Bandopadhyay, Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conservation Science and Engineering, 2(4), 121-131, 2017. https://doi.org/ 10.1007/s41101-017-0031-5.
  • P. Grau, Textile industry wastewaters treatment, Water Science and Technology, 24(1), 97-103, 1991. https://doi.org/10.2166/wst.1991.0015.
  • A. Alinsafi, F. Evenou, E. Abdulkarim, M-N. Pons, O. Zahraa, A. Benhammou, A. Yaacoubi, A. Nejmeddine, Treatment of textile industry wastewater by supported photocatalysis. Dyes and Pigments, 74(2), 439-445, 2007. https://doi.org/10.1016/j.dyepig.2006.02 .024.
  • O. Türgay, G. Ersöz, S. Atalay, J. Forss, U. Welander. The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Separation and Purification Technology, 79(1), 26-33, 2011. https://doi.org/10. 1016/j.seppur.2011.03.007.
  • P. C. Vandevivere, R. Bianchi, W. Verstraete, Treatment and reuse of wastewater from the textile wet‐processing industry: Review of emerging technologies. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 72(4), 289-302, 1998. https://doi .org/10.1002/(SICI)1097.
  • P. Sakthisharmila, P. Palanisamy, P. Manikandan, Removal of benzidine based textile dye using different metal hydroxides generated in situ electrochemical treatment-A comparative study. Journal of Cleaner Production, 172, 2206-2215, 2018. https://doi.org/ 10.10 16/j.jclepro.2017.11.192.
  • I. Koyuncu, D. Topacik, E. Yuksel, Reuse of reactive dyehouse wastewater by nanofiltration: process water quality and economical implications. Separation and purification Technology, 36(1), 77-85, 2004. https ://doi.org/10.1016/S1383-5866(03)00154-0.
  • C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, A. B. Pandit, A critical review on textile wastewater treatments: possible approaches. Journal of environmental management, 182, 351-366, 2016. https://doi.org/10.1016/j.jenvman.2016.07.090.
  • V. M. Correia, T. Stephenson, S. J. Judd, Characterisation of textile wastewaters‐a review. Environmental technology, 15(10), 917-929, 1994. https://doi.org/10.1080/09593339409385500.
  • S. A. Wadhwani, U. U. Shedbalkar, S. Nadhe, R. Singh, B. A. Chopade, Decolorization of textile dyes by combination of gold nanocatalysts obtained from Acinetobacter sp. SW30 and NaBH4, Environmental Technology & Innovation, 9, 186-197, 2018. https://doi.org/10.1016/j.eti.2017.12.001.
  • V. Gupta, K. Suhas, “Application of low-cost adsorbents for dye removal – A review” Journal of Environmental Management, 90, 2313-2342, 2009. https://doi.org/10. 1016/j.jenvman.2008.11.017
  • R. Bianchi, W. Verstraete, P. C. Vandevivere, Treatment and reuse of wastewater from the textile wet-processing industry; Review of emerging Technologies J. Chem. Technol. Biotechnol., 72, 289-302, 1998. https://doi.org/10.1002/(SICI)1097-4660(19 9808)72:4<289::AID-JCTB905>3.0.CO;2-%23
  • L. Fan, Y. Zhou, W. Yang, G. Chen, F. Yang, Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model. Dyes and pigments, 76(2), 440-446, 2008. https://doi.org/10.1016/j.dyepig.2006.09.013.
  • H. Särkkä, A. Bhatnagar, M. Sillanpää, Recent developments of electro-oxidation in water treatment—A review, Journal of Electroanalytical Chemistry, 754, 46-56, 2015. https://doi.org/10.1016/j.jelechem .2015 .06.016
  • E. Isarain-Chávez, M. D. Baró, E. Rossinyol, U. Morales-Ortiz, J. Sort, E. Brillas, E. Pellicer, Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes. Electrochimica Acta. 244,199-208,2017. https://doi.org/10.1016/j.electacta. 2017.05.1 01
  • M. Gotsi, N. Kalogerakis, E. Psillakis, P. Samaras, D. Mantzavinos, Electrochemical oxidation of olive oil mill wastewaters. Water Research, 39(17), 4177-4187, 2005. https://doi.org/10.1016/j.watres.2005.07.037.
  • L. Chiang, J.E. Chang, T.C., Wen. Electrochemical trea- tability of refractory pollutants in landfill leachate, Hazardous Wastes and Hazardous Materials, 12(1), 71-82, 1995. https://doi.org/10.1089/hwm.1995.12.71.
  • APHA, AWWA and WPCF. Standart Methods for the Examination of Water and Wastwater, Sixteenth ed. Washington, DC. pp. 76–538, 1985.
  • G. Chen, Electrochemical technologies in wastewater treatment, 38(1): 11-41, 2004. https://doi.org /10.1016/ j.seppur.2003.10.006.
  • Y. Ş. Yıldız, Humik Maddeler İçeren Atık Suların Elektrokoagülasyon Metodu ile Arıtımı. 2003. Doktora Tezi, Fen Bilimleri Enstitüsü, Erzurum.
  • C. H. Huang, L. Chen, and C. L. Yang, Effect of anions on electrochemical coagulation for cadmium removal, Separation and Purification Technology, 65, 137-146, 2009. https://doi.org/10.1016/j.seppur. 2008.10 .029
  • A. T. İrdemez, Elektrokoagülasyon Yöntemi ile Atıksulardan Fosfat Giderimi. Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum. 2004.
  • M. A. Ajeel, M. K. Aroua, W. M. A. W. Daud, S. A. Mazari, Effect of adsorption and passivation phenomena on the electrochemical oxidation of phenol and 2-chlorophenol at carbon black diamond composite electrode. Industrial & Engineering Chemistry Research, 56(6), 1652-1660, 2017. https://doi.org/ 10.10 21/acs.iecr.6b03422
  • C. Y. Hu, S. L. Lo, and W. H. Kuan, Effect of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminium electrodes, Water Research, 37, 4513-4523, 2003. https://doi.org/10.1016 /S0043-1354(03)00378-6
  • B. Lin, R. Hu, C. Ye, Y. Li, and C. Lin, A study on the initiation of pitting corrosion in carbon steel in chloridecontaining media using scannins electrochemical probes, Electrochimica Acta, 55, 6542-6545, 2010. https://doi.org/10.1016/j.electac ta.2010.06.024
  • P.R. Kumar, S. Chaudhari, K.C. Khilar, S.P. Mahajan, Removal of arsenic from water by electrocoagulation, Chemosphere, 55 (9), 1245-1252, 2004. https://doi.org /10.1016/j.chemosphere.2003.12.025
  • P. Gao, X. Chenı, F. Shen, G. Chen, Removal of chromium (VI) from wastewater by combined electrocoagulation– electroflotation without a filter, Separation and Purification Technology, 43(2), 117–123, 2005. https://doi.org/10.1016/j.seppur. 2004.10.008
  • K. Atmaca, N. Beyazıt, Colour and COD removal from aqueous solutions of direct yellow 86 textile dyestuff by electro-Fenton method. International Journal of Global Warming, 20 (4), 324-340, 2020. https://doi.org/10.15 04/IJGW.2020.107151
  • A. Karam, E. S. Bakhoum, K. Zaher, Coagulation/ flocculation process for textile mill effluent treatment: experimental and numerical perspectives, International Journal of Sustainable Engineering, 1-13. 2020. https://doi.org/10.1080/19397038.2020.1842547
  • D. Z. Mijin, V. D. Tomić, B. N. Grgur, Electrochemical decolorization of the reactive orange 16 dye using dimensionally stable Ti/PtOx anode. Journal of the Serbian Chemical Society, 80(7), 903-915, 2015.https:/ /doi.org/10.2298/JSC140917107M.
  • S. El Aggadi, G. Kaichouh, Z. El Abbassi, M. Fekhaoui, A.E. Hourch, Electrode material in electrochemical decolorization of dyestuffs wastewater: A review. InE3S Web of Conferences (Vol. 234). EDP Sciences, 2021. https://doi.org/10.1051/ e3sconf/202123 400058
  • A. Baddouh, G.G. Bessegato,M.M. Rguiti, B. El Ibrahimi, L. Bazzi, M. Hilali, M.V.B. Zanoni, Electrochemical decolorization of Rhodamine B dye: Influence of anode material, chloride concentration and current density. Journal of Environmental Chemical Engineering, 6(2), 2041-2047, 2018. https://doi.org/10. 1016/j.jece.2018.03.007
  • C.L. Yang, J. McGarrahan, Electrochemical coagulation for textile effluent decolorization. Journal of hazardous materials, 127(1-3), 40-47, 2005. https://doi .org/10.10 16/j.jhazmat.2005.05.050
  • R. K. Sani, U.C. Banerjee, Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme and Microbial Technology, 24(7), 433-437, 1999. https://doi.org/ 10.1016/j.jece. 2018.03.00 7
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Kimya Mühendisliği
Yazarlar

Jülide Erkmen 0000-0002-6199-0816

Mahmut Adıgüzel 0000-0002-1079-8015

Yayımlanma Tarihi 15 Nisan 2022
Gönderilme Tarihi 6 Ocak 2021
Kabul Tarihi 6 Ocak 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Erkmen, J., & Adıgüzel, M. (2022). Acid red-20 sentetik endüstriyel boyar maddenin elektro-oksidasyon yöntemi ile sulu çözeltiden uzaklaştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(2), 363-371. https://doi.org/10.28948/ngumuh.854958
AMA Erkmen J, Adıgüzel M. Acid red-20 sentetik endüstriyel boyar maddenin elektro-oksidasyon yöntemi ile sulu çözeltiden uzaklaştırılması. NÖHÜ Müh. Bilim. Derg. Nisan 2022;11(2):363-371. doi:10.28948/ngumuh.854958
Chicago Erkmen, Jülide, ve Mahmut Adıgüzel. “Acid Red-20 Sentetik endüstriyel Boyar Maddenin Elektro-Oksidasyon yöntemi Ile Sulu çözeltiden uzaklaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, sy. 2 (Nisan 2022): 363-71. https://doi.org/10.28948/ngumuh.854958.
EndNote Erkmen J, Adıgüzel M (01 Nisan 2022) Acid red-20 sentetik endüstriyel boyar maddenin elektro-oksidasyon yöntemi ile sulu çözeltiden uzaklaştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 2 363–371.
IEEE J. Erkmen ve M. Adıgüzel, “Acid red-20 sentetik endüstriyel boyar maddenin elektro-oksidasyon yöntemi ile sulu çözeltiden uzaklaştırılması”, NÖHÜ Müh. Bilim. Derg., c. 11, sy. 2, ss. 363–371, 2022, doi: 10.28948/ngumuh.854958.
ISNAD Erkmen, Jülide - Adıgüzel, Mahmut. “Acid Red-20 Sentetik endüstriyel Boyar Maddenin Elektro-Oksidasyon yöntemi Ile Sulu çözeltiden uzaklaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/2 (Nisan 2022), 363-371. https://doi.org/10.28948/ngumuh.854958.
JAMA Erkmen J, Adıgüzel M. Acid red-20 sentetik endüstriyel boyar maddenin elektro-oksidasyon yöntemi ile sulu çözeltiden uzaklaştırılması. NÖHÜ Müh. Bilim. Derg. 2022;11:363–371.
MLA Erkmen, Jülide ve Mahmut Adıgüzel. “Acid Red-20 Sentetik endüstriyel Boyar Maddenin Elektro-Oksidasyon yöntemi Ile Sulu çözeltiden uzaklaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 11, sy. 2, 2022, ss. 363-71, doi:10.28948/ngumuh.854958.
Vancouver Erkmen J, Adıgüzel M. Acid red-20 sentetik endüstriyel boyar maddenin elektro-oksidasyon yöntemi ile sulu çözeltiden uzaklaştırılması. NÖHÜ Müh. Bilim. Derg. 2022;11(2):363-71.

download