Araştırma Makalesi
BibTex RIS Kaynak Göster

DÖKÜM VE HADDELENMİŞ AZ31B MAGNEZYUM ALAŞIMININ KURU ŞARTLARDA AŞINMA DAVRANIŞININ KIYASLANMASI

Yıl 2018, Cilt: 7 Sayı: 1, 417 - 426, 31.01.2018
https://doi.org/10.28948/ngumuh.365267

Öz

   Aşınma direnci literatürde yeterli bilgi olmaması sebebiyle magnezyum
alaşımlarının uygulama alanlarını kısıtlayabilecek
önemli teknik özelliklerden biridir. Bu çalışmada pin-on disk yöntemi kullanılarak
kuru çalışma şartlarında döküm ve haddelenmiş AZ31B magnezyum alaşımlarının
aşınma davranışı incelenmiştir. Aşınma hızı 1500 m sabit kayma
mesafesi, 0,25-0,50-1,00 ve 2,00
m/s kayma hızı ve 10-20-40 ve 80 N gibi farklı yüklerde ölçülmüştür. Aşınmış
yüzeylerin yüzey morfolojisi SEM cihazı kullanılarak incelenmiştir. Haddelenmiş
alaşım ince mikroyapı ve daha yüksek sertlik özelliklerinden dolayı döküm
alaşımdan daha iyi aşınma direnci sergilemiştir. Aşınma haritalarına göre
sonuçlar en büyük yük ve en yüksek kayma hızında aşırı plastik deformasyonun
ana aşınma mekanizması olduğunu göstermiştir.

Kaynakça

  • [1] MORDIKE, B.L., EBERT, T., “Magnesium: Properties-applications-potential”, Materials Science and Engineering: A, 302, 37-45, 2001.
  • [2] KAINER, K.U., BUCH, F., The Current State of Technology and Potential for Further Development of Magnesium Applications. In KAINER, K.U. (Eds) Magnesium Alloys and Technology (1-22), Wiley-VCH Verlag, Weinheim, Germany, 2003.
  • [3] WILLBOLD, E., WEIZBAUER, A., LOOS, A., SEITZ, J.M., ANGRISANI, N., H. WINDHAGEN, REIFENRATH, J., “Magnesium alloys: A stony pathway from intensive research to clinical reality. Different test methods and approval‐related considerations”, Journal of Biomedical Materials Research Part A, 105, 329–347, 2017.
  • [4] NASUTION, A.K. HERMAWAN, H., “Degradable Biomaterials for Temporary Medical Implants. In MAHYUDIN, F., HERMAWAN, H. (Eds), Biomaterials and Medical Devices”. Springer, Heidelberg, 127-160, 2016.
  • [5] LUO, A.A., “Recent Magnesium Alloy Development for Elevated Temperature Applications”. International Materials Reviews, 49, 13–30, 2004.
  • [6] TALTAVULL, C., RODRIGO, P., TORRES, B., LOPEZ, A.J., RAMS, J., “Dry Sliding Wear Behavior of AM50B Magnesium Alloy”, Materials & Design, 56, 549–556, 2014.
  • [7] AVEDESIAN, M.M., BAKER, H., Magnesium and Magnesium Alloys (ASM Specialty Handbook) (1st ed.), ASM International, New York, USA, 194-214, 1999.
  • [8] DOU, J. CHEN, Y. YU, H. CHEN, C., “Research Status of Magnesium Alloys by Micro-Arc Oxidation: A Review”, Surface Engineering, 33, 731-738, 2017.
  • [9] XU, C. FURUKAWA, M., HORITA, Z. LANGDON, T.G., “Severe Plastic Deformation as a Processing Tool for Developing Superplastic Metals”, Journal of Alloys and Compounds, 378, 27–34, 2004.
  • [10] SHANTHI, M., LIM, C.Y.H., LU, L., “Effects of Grain Size on the Wear of Recycled AZ91 Mg”. Tribology International, 40, 335–338, 2007.
  • [11] SELVAN, S.A., RAMANATHAN, S., “Dry Sliding Wear Behavior of As-cast ZE41A Magnesium Alloy”, Materials & Design, 31, 1930–1936, 2010.
  • [12] MEHTA, D.S. MASOOD, S.H. SONG, W.Q., “Investigation of Wear Properties of Magnesium and Aluminum Alloys for Automotive Applications”, Journal of Materials Processing Technology, 155–156, 1526–1531, 2004.
  • [13] HUANG, W. HOU, B. PANG, Y. ZHOU, Z., “Fretting Wear Behaviour of AZ91D and AM60B Magnesium Alloys”, Wear, 260, 1173–1178, 2006.
  • [14] BLAU, P.J. WALUKAS, M., “Sliding Friction and Wear of Magnesium Alloy AZ91D Produced by Two Different Methods”, Tribology International, 33, 573–579, 2000.
  • [15] CHEN, H. ALPAS, A.T., “Sliding Wear Map for the Magnesium Alloy Mg–9Al–0.9Zn (AZ91)”, Wear, 246, 106–116, 2000.
  • [16] AN, J., LI, R.G., LU, Y., CHEN, C.M., XU, Y., CHEN, X., WANG, L.M., “Dry Sliding Wear Behavior of Magnesium Alloys” Wear, 265, 97–104, 2008.
  • [17] YINGBO, Z., SIRONG, Y., YANRU, L., HAIXIA, H., “Friction and Wear Behavior of As-cast Mg–Zn–Y Quasicrystal Materials”, Materials Science and Engineering: A, 472, 59–65, 2008.
  • [18] EL-MORSY, A.W., “Dry Sliding Wear Behavior of Hot Deformed Magnesium AZ61 Alloy as Influenced by the Sliding Conditions”, Materials Science and Engineering: A, 473, 330–335, 2008.
  • [19] CHEN, T.J., MA, Y., LI, B., LI, Y.D., HAO, Y., “Wear Behavior of Thixoformed AZ91D Magnesium alloy: A Comparison with Permanent Mould Cast Alloy”, Materials Science and Engineering: A, 445, 477–485, 2007.
  • [20] ANBUSELVAN, S., RAMANATHAN, S., “Dry Sliding Wear Behavior of hot Extruded ZE41A Magnesium Alloy”, Materials Science and Engineering: A, 527, 1815–1820, 2010.
  • [21] ANBUSELVAN, S., RAMANATHAN, S., “A Comparative Study of the Wear Behaviour of As-cast and hot Extruded ZE41A Magnesium Alloy”, Journal of Alloys and Compounds, 502, 495–502, 2010.
  • [22] LÓPEZ, A.J., RODRIGO, P., TORRES, B., RAMS, J., “Dry Sliding Wear Behaviour of ZE41A Magnesium Alloy”, Wear, 271, 2836–2844, 2011.
  • [23] HABIBNEJAD-KORAYEM, M., MAHMUDI, R., GHASEMI, H.M., POOLE, W.J., “Tribological Behavior of Pure Mg and AZ31 Magnesium Alloy Strengthened by Al2O3 Nano-particles”, Wear, 268, 405–412, 2010.
  • [24] WENBIN, D., HAIYAN, J., XIAOQIN, Z., DEHUI, L., SHOUSHAN, Y., “Microstructure and Mechanical Properties of GTA Surface Modified Composite Layer on Magnesium Alloy AZ31 with SiCp”, Journal of Alloys and Compounds, 429, 233–241, 2007.
  • [25] ASTM G99-95a, Standard Test Method for Wear Testing With a Pin-on-Disk Apparatus. ASTM International, West Conshohocken, 2000.
  • [26] ARCHARD, J.F., “Contact and Rubbing of Flat Surfaces”, Journal of Applied Physics, 24, 981–988, 1953.
  • [27] ISO 6507-1, Metallic Materials—Vickers Hardness Test. Part1: Test Method. ISO, 2005.
  • [28] ZHANG, L., QU, X.H., DUAN, B.H., HE, X.B., QIN, M.L., “Effect of Porosity on Wear Resistance of SiCp/Cu Composites Prepared by Pressureless Infiltration”, Transactions of Nonferrous Metals Society of China, 18, 1076–1082, 2008.
  • [29] CHENA, Y.J., WANG, Q.D., ROVEN, H.J., KARLSEN, M., YU, Y.D., LIU, M.P., HJELEN, J., “Microstructure Evolution in Magnesium Alloy AZ31during Cyclic Extrusion Compression”, Journal of Alloys and Compounds, 462, 192–200, 2008.
  • [30] DING, H., LIU, L., KAMADO, S., DING, W., KOJIMA, Y., “Study of the Microstructure, Texture and Tensile Properties of As-extruded AZ91 Magnesium Alloy”, Journal of Alloys and Compounds, 456, 400–406, 2008.
  • [31] TALTAVULL, C., TORRES, B., LOPEZ, A.J., RAMS, J., “Dry Sliding Wear Behavior of AM60B Magnesium Alloy”, Wear, 301, 615–625, 2013.
  • [32] AUNG, N.N., ZHOU, W., LIM, L.E.N., “Wear Behaviour of AZ91D Alloy at Low Sliding Speeds”, Wear, 265, 780–786, 2008.
  • [33] LIM, S.C., “The Relevance of Wear-Mechanism Maps to Mild-oxidational Wear”, Tribology International, 35, 717–723, 2002.
  • [34] VENKATARAMAN, B., SUNDARARAJAN, G., “The Sliding Wear Behaviour of Al-SiC Particulate Composites—I. Macrobehaviour”, Acta Materialia, 44, 451–460, 1996.
  • [35] MONDAL, A.K., CHANDRA RAO, B.S.S., KUMAR, S., “Wear Behavior of AE42+20% Saffil Mg-MMC”, Tribology International, 40, 290–296, 2007.
  • [36] ZHANG, J., ALPAS, A.T., “Transition between Mild and Severe Wear in Aluminium Alloys”, Acta Materialia, 45, 513–528, 1997.
  • [37] LIM, C.Y.H., LIM, S.C., GUPTA, M., “Wear Behaviour of SiCp-reinforced Magnesium Matrix composites”, Wear, 255, 629–637, 2003.
  • [38] ZAFARI, A., GHASEMI, H.M., MAHMUDI, R., “Tribological Behavior of AZ91D Magnesium Alloy at Elevated Temperatures”, Wear, 292–293, 33–40, 2012.
  • [39] HUANG, W.J., LIN, Q., LIU, C.L., “Tribological Behaviour of AZ71E Alloy at High Temperatures”, Transactions of Nonferrous Metals Society of China, 22, 2057−2065, 2012.
  • [40] HSU, S.M., SHAN, M.C., “Ceramic Wear Maps”, Wear, 200, 154–175, 1996.

A COMPARISON OF THE DRY SLIDING WEAR BEHAVIOR OF AS-CAST AND HOT ROLLED AZ31B MAGNESIUM ALLOY

Yıl 2018, Cilt: 7 Sayı: 1, 417 - 426, 31.01.2018
https://doi.org/10.28948/ngumuh.365267

Öz

   Wear resistance is one
of the important technological properties of magnesium alloys that may limit
their practical applications, though limited information is available in the
literature. In this study, wear behavior of as-cast and hot rolled AZ31B
magnesium alloy on dry-sliding conditions was investigated using a pin-on disc
method. Wear rate was measured at a fixed sliding distance of 1500 m and at
different sliding velocities of 0.25, 0.50, 1.00 and 2.00 m/s, as well as
different applied loads of 10, 20, 40 and 80 N. Surface morphology of worn
surface of the alloy was analyzed using a SEM/EDS. Hot rolled alloy exhibited a
better wear resistance than the as-cast alloy due to a finer microstructure and
higher hardness. Results showed that ultra-severe plastic deformation was found
to be the main wear mechanism at the highest applied load and sliding velocity
for the alloy at both metallurgical conditions according to wear maps. 

Kaynakça

  • [1] MORDIKE, B.L., EBERT, T., “Magnesium: Properties-applications-potential”, Materials Science and Engineering: A, 302, 37-45, 2001.
  • [2] KAINER, K.U., BUCH, F., The Current State of Technology and Potential for Further Development of Magnesium Applications. In KAINER, K.U. (Eds) Magnesium Alloys and Technology (1-22), Wiley-VCH Verlag, Weinheim, Germany, 2003.
  • [3] WILLBOLD, E., WEIZBAUER, A., LOOS, A., SEITZ, J.M., ANGRISANI, N., H. WINDHAGEN, REIFENRATH, J., “Magnesium alloys: A stony pathway from intensive research to clinical reality. Different test methods and approval‐related considerations”, Journal of Biomedical Materials Research Part A, 105, 329–347, 2017.
  • [4] NASUTION, A.K. HERMAWAN, H., “Degradable Biomaterials for Temporary Medical Implants. In MAHYUDIN, F., HERMAWAN, H. (Eds), Biomaterials and Medical Devices”. Springer, Heidelberg, 127-160, 2016.
  • [5] LUO, A.A., “Recent Magnesium Alloy Development for Elevated Temperature Applications”. International Materials Reviews, 49, 13–30, 2004.
  • [6] TALTAVULL, C., RODRIGO, P., TORRES, B., LOPEZ, A.J., RAMS, J., “Dry Sliding Wear Behavior of AM50B Magnesium Alloy”, Materials & Design, 56, 549–556, 2014.
  • [7] AVEDESIAN, M.M., BAKER, H., Magnesium and Magnesium Alloys (ASM Specialty Handbook) (1st ed.), ASM International, New York, USA, 194-214, 1999.
  • [8] DOU, J. CHEN, Y. YU, H. CHEN, C., “Research Status of Magnesium Alloys by Micro-Arc Oxidation: A Review”, Surface Engineering, 33, 731-738, 2017.
  • [9] XU, C. FURUKAWA, M., HORITA, Z. LANGDON, T.G., “Severe Plastic Deformation as a Processing Tool for Developing Superplastic Metals”, Journal of Alloys and Compounds, 378, 27–34, 2004.
  • [10] SHANTHI, M., LIM, C.Y.H., LU, L., “Effects of Grain Size on the Wear of Recycled AZ91 Mg”. Tribology International, 40, 335–338, 2007.
  • [11] SELVAN, S.A., RAMANATHAN, S., “Dry Sliding Wear Behavior of As-cast ZE41A Magnesium Alloy”, Materials & Design, 31, 1930–1936, 2010.
  • [12] MEHTA, D.S. MASOOD, S.H. SONG, W.Q., “Investigation of Wear Properties of Magnesium and Aluminum Alloys for Automotive Applications”, Journal of Materials Processing Technology, 155–156, 1526–1531, 2004.
  • [13] HUANG, W. HOU, B. PANG, Y. ZHOU, Z., “Fretting Wear Behaviour of AZ91D and AM60B Magnesium Alloys”, Wear, 260, 1173–1178, 2006.
  • [14] BLAU, P.J. WALUKAS, M., “Sliding Friction and Wear of Magnesium Alloy AZ91D Produced by Two Different Methods”, Tribology International, 33, 573–579, 2000.
  • [15] CHEN, H. ALPAS, A.T., “Sliding Wear Map for the Magnesium Alloy Mg–9Al–0.9Zn (AZ91)”, Wear, 246, 106–116, 2000.
  • [16] AN, J., LI, R.G., LU, Y., CHEN, C.M., XU, Y., CHEN, X., WANG, L.M., “Dry Sliding Wear Behavior of Magnesium Alloys” Wear, 265, 97–104, 2008.
  • [17] YINGBO, Z., SIRONG, Y., YANRU, L., HAIXIA, H., “Friction and Wear Behavior of As-cast Mg–Zn–Y Quasicrystal Materials”, Materials Science and Engineering: A, 472, 59–65, 2008.
  • [18] EL-MORSY, A.W., “Dry Sliding Wear Behavior of Hot Deformed Magnesium AZ61 Alloy as Influenced by the Sliding Conditions”, Materials Science and Engineering: A, 473, 330–335, 2008.
  • [19] CHEN, T.J., MA, Y., LI, B., LI, Y.D., HAO, Y., “Wear Behavior of Thixoformed AZ91D Magnesium alloy: A Comparison with Permanent Mould Cast Alloy”, Materials Science and Engineering: A, 445, 477–485, 2007.
  • [20] ANBUSELVAN, S., RAMANATHAN, S., “Dry Sliding Wear Behavior of hot Extruded ZE41A Magnesium Alloy”, Materials Science and Engineering: A, 527, 1815–1820, 2010.
  • [21] ANBUSELVAN, S., RAMANATHAN, S., “A Comparative Study of the Wear Behaviour of As-cast and hot Extruded ZE41A Magnesium Alloy”, Journal of Alloys and Compounds, 502, 495–502, 2010.
  • [22] LÓPEZ, A.J., RODRIGO, P., TORRES, B., RAMS, J., “Dry Sliding Wear Behaviour of ZE41A Magnesium Alloy”, Wear, 271, 2836–2844, 2011.
  • [23] HABIBNEJAD-KORAYEM, M., MAHMUDI, R., GHASEMI, H.M., POOLE, W.J., “Tribological Behavior of Pure Mg and AZ31 Magnesium Alloy Strengthened by Al2O3 Nano-particles”, Wear, 268, 405–412, 2010.
  • [24] WENBIN, D., HAIYAN, J., XIAOQIN, Z., DEHUI, L., SHOUSHAN, Y., “Microstructure and Mechanical Properties of GTA Surface Modified Composite Layer on Magnesium Alloy AZ31 with SiCp”, Journal of Alloys and Compounds, 429, 233–241, 2007.
  • [25] ASTM G99-95a, Standard Test Method for Wear Testing With a Pin-on-Disk Apparatus. ASTM International, West Conshohocken, 2000.
  • [26] ARCHARD, J.F., “Contact and Rubbing of Flat Surfaces”, Journal of Applied Physics, 24, 981–988, 1953.
  • [27] ISO 6507-1, Metallic Materials—Vickers Hardness Test. Part1: Test Method. ISO, 2005.
  • [28] ZHANG, L., QU, X.H., DUAN, B.H., HE, X.B., QIN, M.L., “Effect of Porosity on Wear Resistance of SiCp/Cu Composites Prepared by Pressureless Infiltration”, Transactions of Nonferrous Metals Society of China, 18, 1076–1082, 2008.
  • [29] CHENA, Y.J., WANG, Q.D., ROVEN, H.J., KARLSEN, M., YU, Y.D., LIU, M.P., HJELEN, J., “Microstructure Evolution in Magnesium Alloy AZ31during Cyclic Extrusion Compression”, Journal of Alloys and Compounds, 462, 192–200, 2008.
  • [30] DING, H., LIU, L., KAMADO, S., DING, W., KOJIMA, Y., “Study of the Microstructure, Texture and Tensile Properties of As-extruded AZ91 Magnesium Alloy”, Journal of Alloys and Compounds, 456, 400–406, 2008.
  • [31] TALTAVULL, C., TORRES, B., LOPEZ, A.J., RAMS, J., “Dry Sliding Wear Behavior of AM60B Magnesium Alloy”, Wear, 301, 615–625, 2013.
  • [32] AUNG, N.N., ZHOU, W., LIM, L.E.N., “Wear Behaviour of AZ91D Alloy at Low Sliding Speeds”, Wear, 265, 780–786, 2008.
  • [33] LIM, S.C., “The Relevance of Wear-Mechanism Maps to Mild-oxidational Wear”, Tribology International, 35, 717–723, 2002.
  • [34] VENKATARAMAN, B., SUNDARARAJAN, G., “The Sliding Wear Behaviour of Al-SiC Particulate Composites—I. Macrobehaviour”, Acta Materialia, 44, 451–460, 1996.
  • [35] MONDAL, A.K., CHANDRA RAO, B.S.S., KUMAR, S., “Wear Behavior of AE42+20% Saffil Mg-MMC”, Tribology International, 40, 290–296, 2007.
  • [36] ZHANG, J., ALPAS, A.T., “Transition between Mild and Severe Wear in Aluminium Alloys”, Acta Materialia, 45, 513–528, 1997.
  • [37] LIM, C.Y.H., LIM, S.C., GUPTA, M., “Wear Behaviour of SiCp-reinforced Magnesium Matrix composites”, Wear, 255, 629–637, 2003.
  • [38] ZAFARI, A., GHASEMI, H.M., MAHMUDI, R., “Tribological Behavior of AZ91D Magnesium Alloy at Elevated Temperatures”, Wear, 292–293, 33–40, 2012.
  • [39] HUANG, W.J., LIN, Q., LIU, C.L., “Tribological Behaviour of AZ71E Alloy at High Temperatures”, Transactions of Nonferrous Metals Society of China, 22, 2057−2065, 2012.
  • [40] HSU, S.M., SHAN, M.C., “Ceramic Wear Maps”, Wear, 200, 154–175, 1996.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Makine Mühendisliği
Yazarlar

Faruk Mert 0000-0001-7298-6225

Yayımlanma Tarihi 31 Ocak 2018
Gönderilme Tarihi 30 Eylül 2017
Kabul Tarihi 30 Kasım 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 7 Sayı: 1

Kaynak Göster

APA Mert, F. (2018). A COMPARISON OF THE DRY SLIDING WEAR BEHAVIOR OF AS-CAST AND HOT ROLLED AZ31B MAGNESIUM ALLOY. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 417-426. https://doi.org/10.28948/ngumuh.365267
AMA Mert F. A COMPARISON OF THE DRY SLIDING WEAR BEHAVIOR OF AS-CAST AND HOT ROLLED AZ31B MAGNESIUM ALLOY. NÖHÜ Müh. Bilim. Derg. Ocak 2018;7(1):417-426. doi:10.28948/ngumuh.365267
Chicago Mert, Faruk. “A COMPARISON OF THE DRY SLIDING WEAR BEHAVIOR OF AS-CAST AND HOT ROLLED AZ31B MAGNESIUM ALLOY”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7, sy. 1 (Ocak 2018): 417-26. https://doi.org/10.28948/ngumuh.365267.
EndNote Mert F (01 Ocak 2018) A COMPARISON OF THE DRY SLIDING WEAR BEHAVIOR OF AS-CAST AND HOT ROLLED AZ31B MAGNESIUM ALLOY. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 1 417–426.
IEEE F. Mert, “A COMPARISON OF THE DRY SLIDING WEAR BEHAVIOR OF AS-CAST AND HOT ROLLED AZ31B MAGNESIUM ALLOY”, NÖHÜ Müh. Bilim. Derg., c. 7, sy. 1, ss. 417–426, 2018, doi: 10.28948/ngumuh.365267.
ISNAD Mert, Faruk. “A COMPARISON OF THE DRY SLIDING WEAR BEHAVIOR OF AS-CAST AND HOT ROLLED AZ31B MAGNESIUM ALLOY”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7/1 (Ocak 2018), 417-426. https://doi.org/10.28948/ngumuh.365267.
JAMA Mert F. A COMPARISON OF THE DRY SLIDING WEAR BEHAVIOR OF AS-CAST AND HOT ROLLED AZ31B MAGNESIUM ALLOY. NÖHÜ Müh. Bilim. Derg. 2018;7:417–426.
MLA Mert, Faruk. “A COMPARISON OF THE DRY SLIDING WEAR BEHAVIOR OF AS-CAST AND HOT ROLLED AZ31B MAGNESIUM ALLOY”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 7, sy. 1, 2018, ss. 417-26, doi:10.28948/ngumuh.365267.
Vancouver Mert F. A COMPARISON OF THE DRY SLIDING WEAR BEHAVIOR OF AS-CAST AND HOT ROLLED AZ31B MAGNESIUM ALLOY. NÖHÜ Müh. Bilim. Derg. 2018;7(1):417-26.

 23135