Araştırma Makalesi
BibTex RIS Kaynak Göster

POLİAMİD 6/GRAFEN NANOTABAKALI (PA6/GNP) KOMPOZİTLERİN TERMO-MEKANİK ÖZELLİKLERİNİN KARAKTERİZASYONU

Yıl 2018, Cilt: 7 Sayı: 1, 443 - 450, 31.01.2018
https://doi.org/10.28948/ngumuh.368631

Öz

   Bu çalışmada, Poliamid 6/Grafen Nanotabakalı
(PA6/GNP) kompozitlerin yapısal ve termo-mekanik özelliklerine dolgu maddesi
olarak kullanılan nanotabakalı grafen partiküllerinin etkisi incelenmiştir. Bu
amaçla çift vidalı ekstrüzyon cihazı ile eriyik harmanlama yöntemi kullanılarak
PA6/GNP kompozitleri hazırlanmıştır. Kompozitler enjeksiyonlu kalıplama yöntemi
kullanılarak test numunesi haline getirilmiştir. XRD ve DSC analiz sonuçları γ
kristal fazının kompozitlerde baskın olduğunu göstermiştir. GNP katkılı PA6
kompozitlerin katkısız PA6’ ya göre termal olarak daha kararlı oldukları TGA
analiz sonuçları ile belirlenmiştir. Kompozitlerin yeni ve baskın kristal
yapıları sayesinde termo-mekanik özelliklerinin iyileştiği sonucuna
ulaşılmıştır. 

Kaynakça

  • [1] SHAFIEE, M., RAMAZANI, S. A. A., "Optimization of UHMWPE/Graphene Nanocomposite Processing Using Ziegler-Natta Catalytic System via Response Surface Methodology", Polymer-Plastics Technology and Engineering, 53, 969–974, 2014.
  • [2] LI, J., MIAO, D., YANG, R., QU, L., HARRINGTON, P., DE, B., "Synthesis of Poly(Sodium 4-Styrenesulfonate) Functionalized Graphene/Cetyltrimethylammonium Bromide (CTAB) Nanocomposite and its Application in Electrochemical Oxidation of 2,4-Dichlorophenol", Electrochimica Acta, 125, 1–8, 2014.
  • [3] KUILA, T., KHANRA, P., MISHRA, A. K., KIM, N. H., LEE, J. H., "Functionalized-Graphene/Ethylene Vinyl Acetate Co-Polymer Composites for Improved Mechanical and Thermal Properties", Polymer Testing, 31, 282–289, 2012.
  • [4] XU, Z., GAO, C., "In Situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites", Macromolecules, 43, 6716-6723, 2010.
  • [5] DIXON, D., LEMONINE, P., HAMILTON, J., LUBARSKY, G., ARCHER, E., "Graphene Oxide–Polyamide 6 Nanocomposites Produced via in Situ Polymerization", Journal of Thermoplastic Composite Materials, 28, 372-389, 2015.
  • [6] O’NEILL, A., BAKIRTZIS, D., DIXON, D., "Polyamide 6/Graphene Composites: The Effect of in Situ Polymerization on the Structure and Properties of Graphene Oxide and Reduced Graphene Oxide", European Polymer Journal, 59, 353-362, 2014.
  • [7] LIU, Y., ZHANG, Y., MA, G., WANG, Z., LIU, K., LIU, H.,"Ethylene Glycol Reduced Graphene Oxide/Polypyrrole Composite for Supercapacitor", Electrochimica Acta, 88, 519-525, 2013.
  • [8] LAHIRI, D., DUA, R., ZHANG, C., SOCARRAZ-NOVOA, I. D., BHAT, A., RAMASWAMY, S., AGARWAL, A., "Graphene Nanoplatelet-Induced Strengthening of Ultra High Molecular Weight Polyethylene and Biocompatibility in Vitro", Applied Materials & Interfaces, 4, 2234–2241, 2012.
  • [9] KUILLA, T., BHADRAB, S., YAO, D., KIM, N. H., BOSED, S., LEE, J. H., "Recent Advances in Graphene Based Polymer Composites", Progress in Polymer Science, 35, 1350–1375, 2010.
  • [10] CHIENG, B. W., IBRAHIM, N. A., YUNUS, W. M. Z. W., HUSSEIN, M. Z., THEN, Y. Y., LOO, Y. Y., "Effects of Graphene Nanoplatelets and Reduced Graphene Oxide on Poly(lactic acid) and Plasticized Poly(lactic acid): A Comparative Study", Polymers, 6, 2232-2246, 2014.
  • [11] LAHIRI, D., HEC, F., THIESSE, M., DURYGIN, A., ZHANG, C., AGARWAL, A., "Nanotribological Behavior of Graphene Nanoplatelet Reinforced Ultra High Molecular Weight Polyethylene Composites", Tribology International, 70, 165–169, 2014.
  • [12] DU, J., ZHAO, L., ZENG, Y., ZHANG, L., LI, F., LIU, P., LIU, C., "Comparison of Electrical Properties Between Multi-Walled Carbon Nanotube and Graphene Nanosheet/High Density Polyethylene Composites with a Segregated Network Structure", Carbon, 49, 1094–1100, 2011.
  • [13] HEEDER, N., YUSSUF, A., CHAKRABORTY, I., GODFRİN, M. P., HURT, R., TRIPATHI, A., BOSE, A., SHUKLA, A., "Fixed-Angle Rotary Shear as a New Method for Tailoring Electro-Mechanical Properties of Templated Graphene–Polymer Composites", Composites Science and Technology, 100, 70–75, 2014.
  • [14] BAKIRTZIS, D., RAMANI, A., ZHANG, J., DELICHATSIOS, M.A., "Simplified Structure of the Condensed Phase of Fire Retarded PA6 Nanocomposites in TGA as Related Flammability", Fire Safety Journal, 69, 69–75, 2014.
  • [15] ZHENG, D., TANG, G., ZHANG, H.-B., YU, Z.-Z., YAVARI, F., KORATKAR, N., LIM, S.-H., LEE, M.-W., "In Situ Thermal Reduction of Graphene Oxide for High Electrical Conductivity and Low Percolation Threshold in Polyamide 6 Nanocomposites", Composites Science and Technology, 72, 284–289, 2012.
  • [16] GONG, L., YIN, B., LI, L.-P., YANG, M.-B., "Nylon-6/Graphene Composites Modified Through Polymeric Modification of Graphene", Composites: Part B, 73, 49–56, 2015.
  • [17] DING, P., SU, S., SONG, N., TANG, S., LIU, Y., SHI, L., "Highly Thermal Conductive Composites with Polyamide-6 Covalently-Grafted Graphene by an in Situ Polymerization and Thermal Reduction Process", Carbon, 66, 576-584, 2014.
  • [18] MAYORAL, B., HARKIN-JONES, E., KHANAM, P. N., ALMAADEED, M. A., OUEDERNI, M., HAMILTON A. R., SUN, D., "Melt Processing and Characterization of Polyamide 6/Graphene Nanoplatelet Composites", RSC Advances, 5, 52395–52409, 2015.
  • [19] MINDIVAN, F., "Effect of Graphene Nanoplatelets (GNPs) on Tribological and Mechanical Behaviors of Polyamide 6 (PA6)", Tribology in Industry, 39, 277-282, 2017.
  • [20] FARIAS-AGUILAR, J. C., RAMIREZ-MORENO, M. J., TÉLLEZ-JURADO, L., BALMORI-RAMIREZ, H., "Low Pressure and Low Temperature Synthesis of Polyamide-6 (PA6) Using Na0 as Catalyst", Materials Letters, 136, 388–392, 2014.
  • [21] LIU, W., DO, I., FUKUSHIMA, H., DRZAL, L.T., "Influence of Processing on Morphology, Electrical Conductivity and Flexural Properties of Exfoliated Graphite Nanoplatelets–Polyamide Nanocomposites", Carbon Letters, 11, 279-284, 2010.
  • [22] RATHI, S., DAHIYA, J. B., "Polyamide 66/Nanoclay Composites: Synthesis, Thermal and Flammability Properties", Advanced Materials Letters, 3, 381-387, 2012.
  • [23] RATHI, S., DAHIYA, J. B., "Effect on Thermal Behaviour of Polyamide 66/Clay Nanocomposites with Inorganic Flame Retardant Additives", Indian Journal of Chemistry, 51A, 1677-1685, 2012.
  • [24] ŚLUSARCZYK, C., BINIAŚ, W., FABIA, J., BINIAŚ, D., "DSC and Two-Dimensional Correlation Infrared Spectroscopy Studies of PA6/Montmorillonite Composite Fibres", Fibres & Textiles in Eastern Europe, 15, 22-26, 2007.
  • [25] https://www.ideals.illinois.edu/bitstream/handle/2142/9719/TR018.pdf?sequence=2 (erişim tarihi 18.12.2017)
  • [26] BASTIDA, S., EGUIAZÁBAL, J. I., NAZÁBAL, J., "The Vicat Softening Temperature as a Method to Assess the Phase Behaviour of Amorphous Polymer Blends", Polymer Testing, 12, 233-242, 1993.
  • [27] YU, T., REN, J., LI, S., YUAN, H., LI, Y., "Effect of Fiber Surface-Treatments on the Properties of Poly(Lactic Acid)/Ramie Composites", Composites: Part A, 41, 499–505, 2010.
  • [28] RONGA, M. Z., ZHANGA, M. Q., ZHENGA, Y. X., ZENGA, H. M., FRIEDRICH, K., "Improvement of Tensile Properties of Nano-SiO2/PP Composites in Relation to Percolation Mechanism", Polymer, 42, 3301-3304, 2001.
  • [29] XIE, S., ZHANG, S., WANG, F., LIU, H., YANG, M.,"Influence of Annealing Treatment on the Heat Distortion Temperature of Nylon-6/Montmorillonite Nanocomposites", Polymer Engineering and Science, 45, 1247-1253, 2005.
  • [30] KIM, J. Y., KANG, S. W., KIM, S. H., "Thermotropic Liquid Crystal Polymer Reinforced Poly(butylene terephthalate) Composites to Improve Heat Distortion Temperature and Mechanical Properties", Fibers and Polymers, 7, 358-366, 2006.
  • [31] HU, X., ZHAO, X., "Effects of Annealing (Solid and Melt) on the Time Evolution of Polymorphic Structure of PA6/Silicate Nanocomposites", Polymer, 45, 3819–3825, 2004.

CHARACTERIZATION OF THERMO-MECHANICAL PROPERTIES OF POLYAMIDE 6/GRAPHENE NANOPLATES (PA6/GNP) COMPOSITES

Yıl 2018, Cilt: 7 Sayı: 1, 443 - 450, 31.01.2018
https://doi.org/10.28948/ngumuh.368631

Öz

   In this study, the effect of
Graphene Nanoplates (GNP) as filler on the structure and thermo-mechanical
properties of the Polyamide 6/Graphene Nanoplates (PA6/GNP) composites was
investigated
. For this
purpose,
PA6/GNP
composites were prepared through a melt mixing method with twin screw extruder.
These composites were formed into test samples using the injection molding
method.

γ phase crystal form in the PA6/GNP composites was shown to be dominated by
XRD and DSC results. TGA analysis results indicated that the GNP filled PA6
composites were more thermally stable than the unfilled PA6.
As a result, thermo-mechanical properties of PA6/GNP composites improved
due to the new and dominant crystal structural form.

Kaynakça

  • [1] SHAFIEE, M., RAMAZANI, S. A. A., "Optimization of UHMWPE/Graphene Nanocomposite Processing Using Ziegler-Natta Catalytic System via Response Surface Methodology", Polymer-Plastics Technology and Engineering, 53, 969–974, 2014.
  • [2] LI, J., MIAO, D., YANG, R., QU, L., HARRINGTON, P., DE, B., "Synthesis of Poly(Sodium 4-Styrenesulfonate) Functionalized Graphene/Cetyltrimethylammonium Bromide (CTAB) Nanocomposite and its Application in Electrochemical Oxidation of 2,4-Dichlorophenol", Electrochimica Acta, 125, 1–8, 2014.
  • [3] KUILA, T., KHANRA, P., MISHRA, A. K., KIM, N. H., LEE, J. H., "Functionalized-Graphene/Ethylene Vinyl Acetate Co-Polymer Composites for Improved Mechanical and Thermal Properties", Polymer Testing, 31, 282–289, 2012.
  • [4] XU, Z., GAO, C., "In Situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites", Macromolecules, 43, 6716-6723, 2010.
  • [5] DIXON, D., LEMONINE, P., HAMILTON, J., LUBARSKY, G., ARCHER, E., "Graphene Oxide–Polyamide 6 Nanocomposites Produced via in Situ Polymerization", Journal of Thermoplastic Composite Materials, 28, 372-389, 2015.
  • [6] O’NEILL, A., BAKIRTZIS, D., DIXON, D., "Polyamide 6/Graphene Composites: The Effect of in Situ Polymerization on the Structure and Properties of Graphene Oxide and Reduced Graphene Oxide", European Polymer Journal, 59, 353-362, 2014.
  • [7] LIU, Y., ZHANG, Y., MA, G., WANG, Z., LIU, K., LIU, H.,"Ethylene Glycol Reduced Graphene Oxide/Polypyrrole Composite for Supercapacitor", Electrochimica Acta, 88, 519-525, 2013.
  • [8] LAHIRI, D., DUA, R., ZHANG, C., SOCARRAZ-NOVOA, I. D., BHAT, A., RAMASWAMY, S., AGARWAL, A., "Graphene Nanoplatelet-Induced Strengthening of Ultra High Molecular Weight Polyethylene and Biocompatibility in Vitro", Applied Materials & Interfaces, 4, 2234–2241, 2012.
  • [9] KUILLA, T., BHADRAB, S., YAO, D., KIM, N. H., BOSED, S., LEE, J. H., "Recent Advances in Graphene Based Polymer Composites", Progress in Polymer Science, 35, 1350–1375, 2010.
  • [10] CHIENG, B. W., IBRAHIM, N. A., YUNUS, W. M. Z. W., HUSSEIN, M. Z., THEN, Y. Y., LOO, Y. Y., "Effects of Graphene Nanoplatelets and Reduced Graphene Oxide on Poly(lactic acid) and Plasticized Poly(lactic acid): A Comparative Study", Polymers, 6, 2232-2246, 2014.
  • [11] LAHIRI, D., HEC, F., THIESSE, M., DURYGIN, A., ZHANG, C., AGARWAL, A., "Nanotribological Behavior of Graphene Nanoplatelet Reinforced Ultra High Molecular Weight Polyethylene Composites", Tribology International, 70, 165–169, 2014.
  • [12] DU, J., ZHAO, L., ZENG, Y., ZHANG, L., LI, F., LIU, P., LIU, C., "Comparison of Electrical Properties Between Multi-Walled Carbon Nanotube and Graphene Nanosheet/High Density Polyethylene Composites with a Segregated Network Structure", Carbon, 49, 1094–1100, 2011.
  • [13] HEEDER, N., YUSSUF, A., CHAKRABORTY, I., GODFRİN, M. P., HURT, R., TRIPATHI, A., BOSE, A., SHUKLA, A., "Fixed-Angle Rotary Shear as a New Method for Tailoring Electro-Mechanical Properties of Templated Graphene–Polymer Composites", Composites Science and Technology, 100, 70–75, 2014.
  • [14] BAKIRTZIS, D., RAMANI, A., ZHANG, J., DELICHATSIOS, M.A., "Simplified Structure of the Condensed Phase of Fire Retarded PA6 Nanocomposites in TGA as Related Flammability", Fire Safety Journal, 69, 69–75, 2014.
  • [15] ZHENG, D., TANG, G., ZHANG, H.-B., YU, Z.-Z., YAVARI, F., KORATKAR, N., LIM, S.-H., LEE, M.-W., "In Situ Thermal Reduction of Graphene Oxide for High Electrical Conductivity and Low Percolation Threshold in Polyamide 6 Nanocomposites", Composites Science and Technology, 72, 284–289, 2012.
  • [16] GONG, L., YIN, B., LI, L.-P., YANG, M.-B., "Nylon-6/Graphene Composites Modified Through Polymeric Modification of Graphene", Composites: Part B, 73, 49–56, 2015.
  • [17] DING, P., SU, S., SONG, N., TANG, S., LIU, Y., SHI, L., "Highly Thermal Conductive Composites with Polyamide-6 Covalently-Grafted Graphene by an in Situ Polymerization and Thermal Reduction Process", Carbon, 66, 576-584, 2014.
  • [18] MAYORAL, B., HARKIN-JONES, E., KHANAM, P. N., ALMAADEED, M. A., OUEDERNI, M., HAMILTON A. R., SUN, D., "Melt Processing and Characterization of Polyamide 6/Graphene Nanoplatelet Composites", RSC Advances, 5, 52395–52409, 2015.
  • [19] MINDIVAN, F., "Effect of Graphene Nanoplatelets (GNPs) on Tribological and Mechanical Behaviors of Polyamide 6 (PA6)", Tribology in Industry, 39, 277-282, 2017.
  • [20] FARIAS-AGUILAR, J. C., RAMIREZ-MORENO, M. J., TÉLLEZ-JURADO, L., BALMORI-RAMIREZ, H., "Low Pressure and Low Temperature Synthesis of Polyamide-6 (PA6) Using Na0 as Catalyst", Materials Letters, 136, 388–392, 2014.
  • [21] LIU, W., DO, I., FUKUSHIMA, H., DRZAL, L.T., "Influence of Processing on Morphology, Electrical Conductivity and Flexural Properties of Exfoliated Graphite Nanoplatelets–Polyamide Nanocomposites", Carbon Letters, 11, 279-284, 2010.
  • [22] RATHI, S., DAHIYA, J. B., "Polyamide 66/Nanoclay Composites: Synthesis, Thermal and Flammability Properties", Advanced Materials Letters, 3, 381-387, 2012.
  • [23] RATHI, S., DAHIYA, J. B., "Effect on Thermal Behaviour of Polyamide 66/Clay Nanocomposites with Inorganic Flame Retardant Additives", Indian Journal of Chemistry, 51A, 1677-1685, 2012.
  • [24] ŚLUSARCZYK, C., BINIAŚ, W., FABIA, J., BINIAŚ, D., "DSC and Two-Dimensional Correlation Infrared Spectroscopy Studies of PA6/Montmorillonite Composite Fibres", Fibres & Textiles in Eastern Europe, 15, 22-26, 2007.
  • [25] https://www.ideals.illinois.edu/bitstream/handle/2142/9719/TR018.pdf?sequence=2 (erişim tarihi 18.12.2017)
  • [26] BASTIDA, S., EGUIAZÁBAL, J. I., NAZÁBAL, J., "The Vicat Softening Temperature as a Method to Assess the Phase Behaviour of Amorphous Polymer Blends", Polymer Testing, 12, 233-242, 1993.
  • [27] YU, T., REN, J., LI, S., YUAN, H., LI, Y., "Effect of Fiber Surface-Treatments on the Properties of Poly(Lactic Acid)/Ramie Composites", Composites: Part A, 41, 499–505, 2010.
  • [28] RONGA, M. Z., ZHANGA, M. Q., ZHENGA, Y. X., ZENGA, H. M., FRIEDRICH, K., "Improvement of Tensile Properties of Nano-SiO2/PP Composites in Relation to Percolation Mechanism", Polymer, 42, 3301-3304, 2001.
  • [29] XIE, S., ZHANG, S., WANG, F., LIU, H., YANG, M.,"Influence of Annealing Treatment on the Heat Distortion Temperature of Nylon-6/Montmorillonite Nanocomposites", Polymer Engineering and Science, 45, 1247-1253, 2005.
  • [30] KIM, J. Y., KANG, S. W., KIM, S. H., "Thermotropic Liquid Crystal Polymer Reinforced Poly(butylene terephthalate) Composites to Improve Heat Distortion Temperature and Mechanical Properties", Fibers and Polymers, 7, 358-366, 2006.
  • [31] HU, X., ZHAO, X., "Effects of Annealing (Solid and Melt) on the Time Evolution of Polymorphic Structure of PA6/Silicate Nanocomposites", Polymer, 45, 3819–3825, 2004.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Üretim Teknolojileri
Bölüm Malzeme ve Metalürji Mühendisliği
Yazarlar

Ferda Mindivan

Yayımlanma Tarihi 31 Ocak 2018
Gönderilme Tarihi 13 Ekim 2017
Kabul Tarihi 16 Kasım 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 7 Sayı: 1

Kaynak Göster

APA Mindivan, F. (2018). POLİAMİD 6/GRAFEN NANOTABAKALI (PA6/GNP) KOMPOZİTLERİN TERMO-MEKANİK ÖZELLİKLERİNİN KARAKTERİZASYONU. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 443-450. https://doi.org/10.28948/ngumuh.368631
AMA Mindivan F. POLİAMİD 6/GRAFEN NANOTABAKALI (PA6/GNP) KOMPOZİTLERİN TERMO-MEKANİK ÖZELLİKLERİNİN KARAKTERİZASYONU. NÖHÜ Müh. Bilim. Derg. Ocak 2018;7(1):443-450. doi:10.28948/ngumuh.368631
Chicago Mindivan, Ferda. “POLİAMİD 6/GRAFEN NANOTABAKALI (PA6/GNP) KOMPOZİTLERİN TERMO-MEKANİK ÖZELLİKLERİNİN KARAKTERİZASYONU”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7, sy. 1 (Ocak 2018): 443-50. https://doi.org/10.28948/ngumuh.368631.
EndNote Mindivan F (01 Ocak 2018) POLİAMİD 6/GRAFEN NANOTABAKALI (PA6/GNP) KOMPOZİTLERİN TERMO-MEKANİK ÖZELLİKLERİNİN KARAKTERİZASYONU. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 1 443–450.
IEEE F. Mindivan, “POLİAMİD 6/GRAFEN NANOTABAKALI (PA6/GNP) KOMPOZİTLERİN TERMO-MEKANİK ÖZELLİKLERİNİN KARAKTERİZASYONU”, NÖHÜ Müh. Bilim. Derg., c. 7, sy. 1, ss. 443–450, 2018, doi: 10.28948/ngumuh.368631.
ISNAD Mindivan, Ferda. “POLİAMİD 6/GRAFEN NANOTABAKALI (PA6/GNP) KOMPOZİTLERİN TERMO-MEKANİK ÖZELLİKLERİNİN KARAKTERİZASYONU”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7/1 (Ocak 2018), 443-450. https://doi.org/10.28948/ngumuh.368631.
JAMA Mindivan F. POLİAMİD 6/GRAFEN NANOTABAKALI (PA6/GNP) KOMPOZİTLERİN TERMO-MEKANİK ÖZELLİKLERİNİN KARAKTERİZASYONU. NÖHÜ Müh. Bilim. Derg. 2018;7:443–450.
MLA Mindivan, Ferda. “POLİAMİD 6/GRAFEN NANOTABAKALI (PA6/GNP) KOMPOZİTLERİN TERMO-MEKANİK ÖZELLİKLERİNİN KARAKTERİZASYONU”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 7, sy. 1, 2018, ss. 443-50, doi:10.28948/ngumuh.368631.
Vancouver Mindivan F. POLİAMİD 6/GRAFEN NANOTABAKALI (PA6/GNP) KOMPOZİTLERİN TERMO-MEKANİK ÖZELLİKLERİNİN KARAKTERİZASYONU. NÖHÜ Müh. Bilim. Derg. 2018;7(1):443-50.

download