Araştırma Makalesi
BibTex RIS Kaynak Göster

A REVIEW ON AQUATIC AND PHTOTOXICITY EFFECT OF CERIUM AND LITHUM FROM RARE EARTH ELEMENTS

Yıl 2019, Cilt: 8 Sayı: 1, 9 - 22, 28.01.2019
https://doi.org/10.28948/ngumuh.516788

Öz

   Dünya yüzeyinde çok az bölgede ve az miktarda bulunan elementler (Nadir
Toprak Elementleri-REE) teknolojik gelişmelere paralel olarak hızla kullanılıp
tüketilmektedir. Diğer genel ismi Teknoloji Kritik Elementler (TKE) olan bu
elementlerin kullanım oranlarının artması ile çevrede bulunma sıklıkları ve
miktarları da artmıştır. TKE’ler, mühendislik nanopartikülleri arasında yer
almakta olup çevre ortamlarında güneş ışığı altında oldukça reaktif ve
fizikokimyasal olarak dinamik bir hale gelmekte ve çevrede risk
oluşturmaktadır. Dolayısıyla, bu nanopartiküllerin neden olacağı çevresel
risklerin anlaşılması amacıyla ekotoksisite çalışmaları yoğun olarak
sürdürülmektedir. Bu çalışmada, TKE’ler arasında ilk dikkat çeken metallerden
olan, Lityum (Li) (çoğunlukla uzun ömürlü pillerden kaynaklanan) ve Seryum (Ce)
(elektronik sanayiinde vazgeçilmez hale gelen ve özellikle yarı iletkenlerde
kullanılan) ile ilgili sucul ve fitotoksik bulgular değerlendirilmiştir.

Kaynakça

  • [1] ARAL, H., VECCHIO-SADUS, A., “Toxicity of Lithium to Humans and the Environment - A Literature Review”, Ecotoxicology and Environmental Safety, 70, 349-356, 2008.
  • [2] DUESTER, L., BURKHARDT, M., GUTLEB, A.C., KAEGI, R., MACKEN, A., MEERMANN, B., VON DER KAMMER, F., “Toward a Comprehensive and Realistic Risk Evaluation of Engineered Nanomaterials in the Urban Water System”, Front Chemical, 2(39), 1-6, 2014.
  • [3] KAHRU, A., DUBOURGUIER, H.C., “From Ecotoxicology to Nanoecotoxicology”, Toxicology, 269, 105-119, 2010.
  • [4] WESTERHOFF, P., SONG, G., HRISTOVSKI, K., KISER, M.A., “Occurrence and Removal of Titanium at Full Scale Wastewater Treatment Plants: Implications for TiO2 Nanomaterials”, Journal of Environmental Monitoiring, 13, 1195-1203, 2011.
  • [5] LIU, H.H., COHEN, Y., “Multimedia Environmental Distribution of Engineered Nanomaterials”, Environmental Science and Technology, 48(6), 3281-3292, 2014.
  • [6] HABASHI, F., “Handbook of Extractive Metallurgy”, vol. 4. Wiley-VCH, New York, 1997.
  • [7] MOORE, S., “Between Rock and Salt Lake”. Industrial Minerals, June, 58-69, 2007.
  • [8] HUH, Y., CHAN, L.H., ZHANG, L., EDMOND, J.M., “Lithium and Its Isotopes in Major World Rivers: Implications for Weathering and the Oceanic Budget”, Geochimica et Cosmocihimica Acta, 62(12), 2039-2051, 1998.
  • [9] KJØLHOLT, J., STUER-LAURIDSEN, F., SKIBSTED MOGENSEN A., HAVELUND, S., “The Elements in the Second Rank-Lithium”, Miljoministeriet. Copenhagen, Denmark, 2003.
  • [10] DAHLE, J.T., ARAI, Y., “Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles”, International Journal of Environmental Research and Public Health, 12(2), 1253-1278, 2015.
  • [11] KELLER, A.A., LAZAREVA, A. “Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local”, Environmental Science and Technolgy Letters, 1(1), 65-70, 2014.
  • [12] GOTTSCHALK, F., SUN, T., NOWACK, B., “Environmental Concentrations of Engineered Nanomaterials: Review of Modeling and Analytical Studies”, Environmental Pollution, 181, 287-300, 2013.
  • [13] LIMBACH, L. K., BEREITER, R., MULLER, E., KREBS, R., GALLI,, R., STARK, W.J., “Removal of Oxide Nanoparticles in a Model Wastewater Treatment Plant: Influence of Agglomeration and Surfactants on Clearing Efficiency”, Environmental Science and Technology, 42, 5828-5833, 2008.
  • [14] LI, L., HARTMANN, G., DOBLINGER, M., SCHUSTER, M., “Quantification of Nanoscale Silver Particles Removal and Release from Municipal Wastewater Treatment Plants in Germany”, Environmental Science Technology, 47, 7317-7323, 2013.
  • [15] LOMBI, E., DONNER, E., TAHERI, S., TAVAKKOLI, E., JAEMTING, A. K., MCCLURE, S., NAIDU, R., MILLER, B.W., SCHECKEL, K.G., VASILEV, K., “Transformation of Four Silver/Silver Chloride Nanoparticles During Anaerobic Treatment of Wastewater and Post-Processing of Sewage Sludge”, Environmental Pollution, 176, 193-197, 2013.
  • [16] MA, R., LEVARD, C., JUDY, J.D., UNRINE, J. M., DURENKAMP, M., MARTIN, B., JEFFERSON, B., LOWRY, G.V., “Fate of Zinc Oxide and Silver Nanoparticles in a Pilot Wastewater Treatment Plant and in Processed Biosolids”, Environmental Science and Technology, 48, 104-112, 2013.
  • [17] BARRENA, R., CASALS, E., COLON, J., FONT, X., SANCHEZ, A., PUNTES, V., “Evaluation of the Ecotoxicity of Model Nanoparticles”, Chemosphere, 75, 850-857, 2009.
  • [18] LEE, S.W., KIM, S.M., CHOI, J., “Genotoxicity and Ecotoxicity Assays Using the Freshwater Crustacean Daphnia Magna and the Larva of the Aquatic Midge Chironomus Riparius to Screen the Ecological Risks of Nanoparticle Exposure”, Environmental Toxicology Pharmacology, 28, 86-91, 2009.
  • [19] EPA, Australian Capital Territory Environment Protection Regulation./www.legislation.act.gov.au/sl/2005-38/current/pdf/2005-38.pdfS, 2005.
  • [20] LENNTECH, Lithium and Water: Reaction Mechanisms, Environmental Impact and Health Effects. /www.lenntech.com/elements-and-water/lithium-andwater.htmS, 2007.
  • [21] KIM, H.J., YANG, J.H., KIM, H.S., KIM, Y.J., JANG, W., SEO, Y.R., “Exploring Potential Biomarker Responses to Lithium in Daphnia Magna from the Perspectives of Function and Signaling Networks”, Molecular & Cellular Toxicology, 13, 83-94, 2017.
  • [22] LILIUS, H., ISOMAA, B., HOLMSTROM, T., “A Comparison of the Toxicity of 50 Reference Chemicals to Freshly Isolated Rainbow Trout Hepatocytes and Daphnia Magna”, Aquatic Toxicology, 30, 48-60, 1994.
  • [23] ANDERSON, B.G., “The Toxicity Threshold of Various Sodium Salts Determined by the use of Daphnia Magna”, Sewage Works Journal, 18(1), 82-87, 1946.
  • [24] KSZOS, L.A., BEAUCHAMP, J.J., STEWART, A.J., “Toxicity of Lithium to Three Freshwater Organisms and the Antagonistic Effect of Sodium”, Ecotoxicology, 12(5), 427-437, 2003.
  • [25] KSZOS, L.A., STEWART, A.J., “Review of Lithium in the Aquatic Environment: Distribution in the United States, Toxicity and Case Example of Groundwater Contamination”, Ecotoxicology, 12, 439-447, 2003.
  • [26] DWYER, F.J., BURCH, S.A., INGERSOLL, C.G., HUNN, J.B., “Toxicity of Trace Element and Salinity Mixtures to Striped Bass (Morone Saxatilis) and Daphnia Magna”, Environmental Toxicology and Chemistry, 11(4), 513-520, 1992.
  • [27] HAMILTON, S.J., “Hazard Assessment of Inorganics to Three Endangered Fish in the Green River, Utah”, Ecotoxicology and Environmental Safety, 30, 134-142, 1995.
  • [28] CALLEJA, M.C., PERSOONE, G., GELADI, P., “Human Acute Toxicity Prediction of the 50 Meic Chemicals by a Battery of Ecotoxicological Tests and Physicochemical Properties”, Food and Chemical Toxicology, 32(2), 173-187, 1994.
  • [29] LILIUS, H., HASTBACKA, T., ISOMAA, B., “A Comparison of the Toxicity of 30 Reference Chemicals to Daphnia Magna and Daphnia Pulex”, Environmental Toxicology and Chemlstry, 14(12), 2085-2088, 1995.
  • [30] LONG, K.E., BROWN, R.P., WOODBURN, K.B., “Lithium Chloride: A Flow-Through Embryo-Larval Toxicity Test with the Fathead Minnow, Pimephales Promelas Rafinesque”, Bulletin Environmental Contamination and Toxicology, 60, 312-317, 1998.
  • [31] NAGATO, E.G., D’EON, J.C., LANKADURAI, B.P., POIRIER, D.G., REINER, E.J., SIMPSON, A.J., SIMPSON, M.J., “1H NMR-based Metabolomics Investigation of Daphnia Magna Responses to Sub-lethal Exposure to Arsenic, Copper and Lithium”, Chemosphere, 93(2), 331-337, 2013.
  • [32] OKAMOTO, A., YAMAMURO, M., TATARAZAKO, N., “Acute Toxicity of 50 metals to Daphnia Magna”, Journal of Applied Toxicology, 35(7), 824-830, 2015.
  • [33] MANIER, N., BADO-NILLES A., DELALAIN, P., AGUERRE-CHARIOL O., PANDARD, P., “Ecotoxicity of Non-aged and Aged CeO2 Nanomaterials Towards Freshwater Microalgae”, Environmental Pollution, 180, 63-70, 2013.
  • [34] GARCIA, A., ESPINOSA, R., DELGADO, L., CASALS, E., GONZALEZ, E., PUNTES, V., “Acute Toxicity of Cerium Oxide, Titanium Oxide and Iron Oxide Nanoparticles Using Standardized Tests”, Desalination, 269(1), 136-141, 2011.
  • [35] VAN HOECKE, K., QUIK, J.T.K., MANKIEWICZ-BOCZEK, J., DE SCHAMPHELAERE, K.A. C., ELSAESSER, A., VAN DER MEEREN, P., BARNES, C., MCKERR, G., HOWARD, C.V., VAN DE MEENT, D., RYDZYNSKI, K., DAWSON, K.A., SALVATI, A., LESNIAK, A., LYNCH, I., SILVERSMIT, G., DE SAMBER, B., VINCZE, L., JANSSEN, C.R., “Fate and Effects of CeO2 Nanoparticles in Aquatic Ecotoxicity Tests”, Environmental Science and Technology, 43, 4537-4546, 2009.
  • [36] VAN HOECKE, K., DE SCHAMPHELAERE K.A.C., VAN DER MEEREN, P., SMAGGHE, G., JANSSEN, C.R., “Aggregation and Ecotoxicity of CeO2 Nanoparticles in Synthetic and Natural Waters With Variable pH, Organic Matter Concentration and Ionic Strength”, Environmental Pollution, 159, 970-976, 2011.
  • [37] ARTELLS, E., ISSARTEL, J., AUFFAN, M., BORSCHNECK, D., THILL, A., TELLA, M., BROUSSET, L., ROSE, J., BOTTERO, J.Y., THIERY, A., “Exposure to Cerium Dioxide Nanoparticles Differently Affect Swimming Performance and Survival in Two Daphnid Species”, PLoS One, 8(8), e71260, 2013.
  • [38] MA, Y., WANG, J., PENG, C., DING, Y., HE, X., ZHANG, P., LI, N., LAN, T., WANG, D., ZHANG, Z., SUN, F., LIAO, H., ZHANG, Z., “Toxicity of Cerium and Thorium on Daphnia Magna”, Ecotoxicology and Environmental Safety, 134, 226-232, 2016.
  • [39] RODEA-PALOMARES, I., BOLTES, K., FERNÁNDEZ-PIÑAS, F., LEGANÉS, F., GARCÍA-CALVO, E., SANTIAGO, J., ROSAL, R., “Physicochemical Characterization and Ecotoxicological Assessment of CeO2 Nanoparticles Using Two Aquatic Microorganisms”, Toxicological Sciences, 119(1), 135-145, 2011.
  • [40] RÖHDER, L.A., BRANDT, T., SIGG, L., BEHRA, R., “Influence of Agglomeration of Cerium Oxide Nanoparticles and Seciation of Cerium(III) on Short Term Effects to the Green Algae Chlamydomonas Reinhardtii”, Aquatic Toxicology, 152, 121-130, 2014.
  • [41] BOOTH, A., STØRSETH, T., ALTIN D., FORNARA, A., AHNİYAZ, A., JUNGNICKEL, H., LAUX, P., LUNCH, A., SØRENSEN, L., “Freshwater Dispersion Stability of PAA-Stabilised Cerium Oxide Nanoparticles and Toxicity Towards Pseudokirchneriella Subcapitata”, Science of the Total Environment, 505, 596-605, 2015.
  • [42] CHEN, H.M., ZHENG, C.R., TU, C., SHEN, Z.G., “Chemical Methods and Phytoremediaition of Soil Contaminated With Heavy Metals”, Chemosphere, 41, 229-234, 2000.
  • [43] ADİLOĞLU S., ADİLOĞLU A., ERYILMAZ AÇIKGÖZ F., YENİARAS T., SOLMAZ Y. “Phytoremediation of Cadmium From Soil Using Patience Dock (Rumex Patientia L.).” Analytical Letters, 49 (4), 601- 606, 2016.
  • [44] MARCHIOL, L., ASSOLARI, S., SACCO, P., ZERBI, G., “Phytoextraction of Heavy Metals by Canola (Brassica Napus L.) and Radish (Raphanus Sativus L.) Grown on Multicontaminated Soil”, Environmental Pollution, 132, 21-27, 2004.
  • [45] ÖKTÜREN, F., SÖNMEZ, S., KOCABAŞ, I., “Potasyumun Bitki Sağlığı Üzerine Etkileri”, Tarımda Potasyumun Yeri ve Önemi Çalıştay, 3-4 Ekim 2005, 94-100, 2005.
  • [46] GÜNEŞ, A., ALPASLAN, M., İNAL, A., “Bitki Besleme ve Gübreleme”, Ankara Üniversitesi Ziraat Fakültesi Ders Kitabi yayın No:1551, 243-355, 2007.
  • [47] ADİLOĞLU, S., ADİLOĞLU, A., SUMER, A., ŞATANA, A., “The Effect of Molybdenum Application on the Growth and Some Nutrient Element Contents of Head Lettuce (Lactuca Sativa L.) in Acid Soils”, Asian Journal of Chemistry, 23(2), 937-938, 2011.
  • [48] KARAMAN, M.R., ADİLOĞLU, A., BROHI, R., GÜNEŞ, A., İNAL, A., KAPLAN, M., KATKAT, V., KORKMAZ, A., OKUR, N., ORTAŞ, İ., SALTALI, K., TABAN, S., TURAN, M., TÜFENKÇİ, Ş., ERASLAN, F., ZENGİN, M., “Bitki Besleme”, Gübretaş Rehber Kitaplar Dizisi No: 2, Dumat Ofset, Matbacılık San. Tic. Ltd. Şti. Ankara, 2012.
  • [49] KÖKSAL, F., “Yapraktan Kalsiyum Uygulamasının Karanfil Çeşitlerinde (Standart ve Sprey) Verim, Kalite ve Besin Elementi İçeriğine Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Toprak ve Bitki Besleme Anabilim Dalı, Isparta, 2011.
  • [50] MIKKELSON, R., “Soil and Fertilize Magnesium”, Better Crop, 94, 2, 2010.
  • [51] AKTAŞ, M., “Bitki Besleme ve Toprak Verimliliği”, Ankara Üniversitesi Ziraat Fakültesi, Yayın No: 1429, Ders Kitabı No: 416, 344, 1995.
  • [52] BELLİTÜRK, K., ADİLOĞLU, S., “Bitki Beslemesinde Mangan”, Hasad Dergisi, 309, 92-95, 2011.
  • [53] MARSCHNER, H., “Mineral Nutrition of Higher Plants”, 2nd ed., Academic Press, 889, San Diego, 1995.
  • [54] URLIC, B., DUMIÇIÇ, G., BAN, S.M., “Zinc and Sulfur Effects on Growth and Nutrient Concentrations in Rocket (Eruca Sativa L.)”, Communication in Soil Science and Plant Analysis, 45, 1831-1839, 2014.
  • [55] ADİLOĞLU, A., “The Effect of Zinc Application on the Available Iron Content of Calcereous Soils in Thrace Region”, Archives of Agronomy and Soil Science, 49, 283-287, 2003.
  • [56] RUTTKAY-NEDECKY, B., KRYSTOFOVA, O., NEJDL, L., ADAM, V., “Nanoparticles Based on Essential Metals and Their Phytotoxicity”, Journal of Nanobiotechnology, 15(33), 1-19, 2017.
  • [57] ANDERSON, C.P., KING, G., PLOCHER, M., STORM, M., POKHREL, L.R., JOHNSON, G., RYGIEWICZ, P.T., “Germination and Early Plant Development of Ten Plant Species Exposed to Titanium Dioxide and Cerium Oxide Nanoparticles”, Environmental Toxicology and Chemistry, 35(9), 2223-2229, 2016.
  • [58] MARCHIOL, L., MATTIELLO, A., POŠCIC, F., FELLET, G., ZAVALLONI, C., CARLINO, E., MUSETTI, R., “Changes in Physiological and Agronomical Parameters of Barley (Hordeum Vulgare) Exposed to Cerium and Titanium Dioxide Nanoparticles”, International Journal of Environmental Research and Public Health, 13(3), 332, 2016.
  • [59] VERMA, S.K., DAS, A.K., PATEL, M.K., SHAH, A., KUMAR, V., GANTAIT, S., “Engineered Nanomaterials for Plant Growth and Development: A Perspective Analysis”, Science of the Total Environment, 630, 1413-1435, 2018.
  • [60] SHAHZAD, B., TANVEER, M., HASSAN, W., SHAH, A.N., ANJUM, S.A., CHEEMA, S.A., ALI, I., “Lithium Toxicity in Plants: Reasons, Mechanisms and Remediation Possibilities - A Review”, Plant Physiology and Biochemistry, 107, 104-115, 2016.
  • [61] TRIPATHI, D.K., SHWETA, S., SWATI, S., PANDEY, R, SINGH, V.P., SHARMA, N.C., PRASED, S. M., DUBEY, N.K., CHAUHAN, D.K., “An Overview on Manufactured Nanoparticles in Plants: Uptake, Translocation, Accumulation and Phytotoxicity”, Plant Physiology and Biochemistry, 110, 2-12, 2017.
  • [62] SHAHZAD, B., MUGHAL, M.N., TANVEER, M., GUPTA, D., ABBAS, G., “Is Lithium Biologically an Important or Toxic Element to Living Organisms? An Overview”, Environmental Science and Pollution Research, 24, 103-115, 2017.
  • [63] WALLACE, A., ROMNEY, E.M., CHA, J.W., CHAUDHRY, F.M., “Lithium Toxicity in Plants”, Communications in Soil Science and Plant Analysis, 8(9), 773-780, 1977.
  • [64] JONES, J.B., WOLF, B., MILLS, H.A., “Plant Analysis Handbok”, Micro-Macro Publushing Inc., USA, 213 p, 1991.
  • [65] WANG, X., LIN, Y., LIU, D., XU, H., LIU, T., ZHAO F., “Cerium Toxicity, Uptake and Translocation in Arabidopsis Thaliana Seedlings”, Journal of Rare Earths, 30(6), 579-585, 2012.
  • [66] ZHANG, W., EBBS, S.D., MUSANTE, C., WHITE, J.C., GAO, C., MA, X., “Uptake and Accumulation of Bulk and Nanosized Cerium Oxide Particles and Ionic Cerium by Radish (Raphanus Sativus L.)”, Journal of Agricultural and Food Chemistry, 63(2), 382-390, 2015.
  • [67] YANG, X., PAN, H., WANG, P., ZHAO, F.J., “Particle-Specific Toxicity and Bioavailability of Cerium Oxide (CeO2) Nanoparticles to Arabidopsis Thaliana”, Journal of Hazardous Materials, 322(A), 292-300, 2017.
  • [68] POŠČIČ, F., MATTIELLO, A., FELLET, G., MICELI, F., MARCHIOL, L., “Effects of Cerium and Titanium Oxide Nanoparticles in Soil on the Nutrient Composition of Barley (Hordeum vulgare L.) Kernels”, International Journal of Environmental Reasearch and Publich Health, 13(6), 577, 1-15, 2016.
  • [69] JIANG, J.J., HU, J.Z., XIE, Z.Y., CAO, Q.H., MA, D.F., HAN, Y.H., LI, Z.Y., “The Trivalent Cerium-Induced Call Death and Alteration of Ion Flux in Sweet Potato (Ipomoea Batatas L. Lam)”, Journal of Rare Earths, 35(12), 1273-1282, 2017.
  • [70] GUI, X., RUI, M., SONG, Y., MA, Y., RUI, Y., ZHANG, P., HE, X., LI, Y., ZHANG, Z., LIU, L., “Toxicity of CeO2 Nanoparticles on Radish Plant (Raphanus Sativus)”, Environmental Science and Pollution Reserch, 24(15), 13775-13781, 2017.
  • [71] ROSSI, L., ZHANG, W.L., SCHWAB, A.P., MA, X.M., “Uptake, Accumulation and in Plant Distribution of Coexisting Cerium Oxide Nanoparticles and Cadmium in Glycine Max (L.), Merr”, Environmental Science and Technology, 51(21), 12815-12824, 2017.
  • [72] WU, H.H., TITO, N., GIRALDO, J.P., “Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis From Abiotic Stress by Scavenging Reactive Oxygen Species”, ACS Nano, 11, 11283-11297, 2017.

NADİR TOPRAK ELEMENTLERİNDEN OLAN SERYUM VE LİTYUMUN SUCUL VE FİTOTOKSİK ETKİLERİNİN DERLENMESİ

Yıl 2019, Cilt: 8 Sayı: 1, 9 - 22, 28.01.2019
https://doi.org/10.28948/ngumuh.516788

Öz

   Dünya yüzeyinde çok az bölgede ve az miktarda bulunan elementler (Nadir
Toprak Elementleri-REE) teknolojik gelişmelere paralel olarak hızla kullanılıp
tüketilmektedir. Diğer genel ismi Teknoloji Kritik Elementler (TKE) olan bu
elementlerin kullanım oranlarının artması ile çevrede bulunma sıklıkları ve
miktarları da artmıştır. TKE’ler, mühendislik nanopartikülleri arasında yer
almakta olup çevre ortamlarında güneş ışığı altında oldukça reaktif ve
fizikokimyasal olarak dinamik bir hale gelmekte ve çevrede risk
oluşturmaktadır. Dolayısıyla, bu nanopartiküllerin neden olacağı çevresel
risklerin anlaşılması amacıyla ekotoksisite çalışmaları yoğun olarak
sürdürülmektedir. Bu çalışmada, TKE’ler arasında ilk dikkat çeken metallerden
olan, Lityum (Li) (çoğunlukla uzun ömürlü pillerden kaynaklanan) ve Seryum (Ce)
(elektronik sanayiinde vazgeçilmez hale gelen ve özellikle yarı iletkenlerde
kullanılan) ile ilgili sucul ve fitotoksik bulgular değerlendirilmiştir.

Kaynakça

  • [1] ARAL, H., VECCHIO-SADUS, A., “Toxicity of Lithium to Humans and the Environment - A Literature Review”, Ecotoxicology and Environmental Safety, 70, 349-356, 2008.
  • [2] DUESTER, L., BURKHARDT, M., GUTLEB, A.C., KAEGI, R., MACKEN, A., MEERMANN, B., VON DER KAMMER, F., “Toward a Comprehensive and Realistic Risk Evaluation of Engineered Nanomaterials in the Urban Water System”, Front Chemical, 2(39), 1-6, 2014.
  • [3] KAHRU, A., DUBOURGUIER, H.C., “From Ecotoxicology to Nanoecotoxicology”, Toxicology, 269, 105-119, 2010.
  • [4] WESTERHOFF, P., SONG, G., HRISTOVSKI, K., KISER, M.A., “Occurrence and Removal of Titanium at Full Scale Wastewater Treatment Plants: Implications for TiO2 Nanomaterials”, Journal of Environmental Monitoiring, 13, 1195-1203, 2011.
  • [5] LIU, H.H., COHEN, Y., “Multimedia Environmental Distribution of Engineered Nanomaterials”, Environmental Science and Technology, 48(6), 3281-3292, 2014.
  • [6] HABASHI, F., “Handbook of Extractive Metallurgy”, vol. 4. Wiley-VCH, New York, 1997.
  • [7] MOORE, S., “Between Rock and Salt Lake”. Industrial Minerals, June, 58-69, 2007.
  • [8] HUH, Y., CHAN, L.H., ZHANG, L., EDMOND, J.M., “Lithium and Its Isotopes in Major World Rivers: Implications for Weathering and the Oceanic Budget”, Geochimica et Cosmocihimica Acta, 62(12), 2039-2051, 1998.
  • [9] KJØLHOLT, J., STUER-LAURIDSEN, F., SKIBSTED MOGENSEN A., HAVELUND, S., “The Elements in the Second Rank-Lithium”, Miljoministeriet. Copenhagen, Denmark, 2003.
  • [10] DAHLE, J.T., ARAI, Y., “Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles”, International Journal of Environmental Research and Public Health, 12(2), 1253-1278, 2015.
  • [11] KELLER, A.A., LAZAREVA, A. “Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local”, Environmental Science and Technolgy Letters, 1(1), 65-70, 2014.
  • [12] GOTTSCHALK, F., SUN, T., NOWACK, B., “Environmental Concentrations of Engineered Nanomaterials: Review of Modeling and Analytical Studies”, Environmental Pollution, 181, 287-300, 2013.
  • [13] LIMBACH, L. K., BEREITER, R., MULLER, E., KREBS, R., GALLI,, R., STARK, W.J., “Removal of Oxide Nanoparticles in a Model Wastewater Treatment Plant: Influence of Agglomeration and Surfactants on Clearing Efficiency”, Environmental Science and Technology, 42, 5828-5833, 2008.
  • [14] LI, L., HARTMANN, G., DOBLINGER, M., SCHUSTER, M., “Quantification of Nanoscale Silver Particles Removal and Release from Municipal Wastewater Treatment Plants in Germany”, Environmental Science Technology, 47, 7317-7323, 2013.
  • [15] LOMBI, E., DONNER, E., TAHERI, S., TAVAKKOLI, E., JAEMTING, A. K., MCCLURE, S., NAIDU, R., MILLER, B.W., SCHECKEL, K.G., VASILEV, K., “Transformation of Four Silver/Silver Chloride Nanoparticles During Anaerobic Treatment of Wastewater and Post-Processing of Sewage Sludge”, Environmental Pollution, 176, 193-197, 2013.
  • [16] MA, R., LEVARD, C., JUDY, J.D., UNRINE, J. M., DURENKAMP, M., MARTIN, B., JEFFERSON, B., LOWRY, G.V., “Fate of Zinc Oxide and Silver Nanoparticles in a Pilot Wastewater Treatment Plant and in Processed Biosolids”, Environmental Science and Technology, 48, 104-112, 2013.
  • [17] BARRENA, R., CASALS, E., COLON, J., FONT, X., SANCHEZ, A., PUNTES, V., “Evaluation of the Ecotoxicity of Model Nanoparticles”, Chemosphere, 75, 850-857, 2009.
  • [18] LEE, S.W., KIM, S.M., CHOI, J., “Genotoxicity and Ecotoxicity Assays Using the Freshwater Crustacean Daphnia Magna and the Larva of the Aquatic Midge Chironomus Riparius to Screen the Ecological Risks of Nanoparticle Exposure”, Environmental Toxicology Pharmacology, 28, 86-91, 2009.
  • [19] EPA, Australian Capital Territory Environment Protection Regulation./www.legislation.act.gov.au/sl/2005-38/current/pdf/2005-38.pdfS, 2005.
  • [20] LENNTECH, Lithium and Water: Reaction Mechanisms, Environmental Impact and Health Effects. /www.lenntech.com/elements-and-water/lithium-andwater.htmS, 2007.
  • [21] KIM, H.J., YANG, J.H., KIM, H.S., KIM, Y.J., JANG, W., SEO, Y.R., “Exploring Potential Biomarker Responses to Lithium in Daphnia Magna from the Perspectives of Function and Signaling Networks”, Molecular & Cellular Toxicology, 13, 83-94, 2017.
  • [22] LILIUS, H., ISOMAA, B., HOLMSTROM, T., “A Comparison of the Toxicity of 50 Reference Chemicals to Freshly Isolated Rainbow Trout Hepatocytes and Daphnia Magna”, Aquatic Toxicology, 30, 48-60, 1994.
  • [23] ANDERSON, B.G., “The Toxicity Threshold of Various Sodium Salts Determined by the use of Daphnia Magna”, Sewage Works Journal, 18(1), 82-87, 1946.
  • [24] KSZOS, L.A., BEAUCHAMP, J.J., STEWART, A.J., “Toxicity of Lithium to Three Freshwater Organisms and the Antagonistic Effect of Sodium”, Ecotoxicology, 12(5), 427-437, 2003.
  • [25] KSZOS, L.A., STEWART, A.J., “Review of Lithium in the Aquatic Environment: Distribution in the United States, Toxicity and Case Example of Groundwater Contamination”, Ecotoxicology, 12, 439-447, 2003.
  • [26] DWYER, F.J., BURCH, S.A., INGERSOLL, C.G., HUNN, J.B., “Toxicity of Trace Element and Salinity Mixtures to Striped Bass (Morone Saxatilis) and Daphnia Magna”, Environmental Toxicology and Chemistry, 11(4), 513-520, 1992.
  • [27] HAMILTON, S.J., “Hazard Assessment of Inorganics to Three Endangered Fish in the Green River, Utah”, Ecotoxicology and Environmental Safety, 30, 134-142, 1995.
  • [28] CALLEJA, M.C., PERSOONE, G., GELADI, P., “Human Acute Toxicity Prediction of the 50 Meic Chemicals by a Battery of Ecotoxicological Tests and Physicochemical Properties”, Food and Chemical Toxicology, 32(2), 173-187, 1994.
  • [29] LILIUS, H., HASTBACKA, T., ISOMAA, B., “A Comparison of the Toxicity of 30 Reference Chemicals to Daphnia Magna and Daphnia Pulex”, Environmental Toxicology and Chemlstry, 14(12), 2085-2088, 1995.
  • [30] LONG, K.E., BROWN, R.P., WOODBURN, K.B., “Lithium Chloride: A Flow-Through Embryo-Larval Toxicity Test with the Fathead Minnow, Pimephales Promelas Rafinesque”, Bulletin Environmental Contamination and Toxicology, 60, 312-317, 1998.
  • [31] NAGATO, E.G., D’EON, J.C., LANKADURAI, B.P., POIRIER, D.G., REINER, E.J., SIMPSON, A.J., SIMPSON, M.J., “1H NMR-based Metabolomics Investigation of Daphnia Magna Responses to Sub-lethal Exposure to Arsenic, Copper and Lithium”, Chemosphere, 93(2), 331-337, 2013.
  • [32] OKAMOTO, A., YAMAMURO, M., TATARAZAKO, N., “Acute Toxicity of 50 metals to Daphnia Magna”, Journal of Applied Toxicology, 35(7), 824-830, 2015.
  • [33] MANIER, N., BADO-NILLES A., DELALAIN, P., AGUERRE-CHARIOL O., PANDARD, P., “Ecotoxicity of Non-aged and Aged CeO2 Nanomaterials Towards Freshwater Microalgae”, Environmental Pollution, 180, 63-70, 2013.
  • [34] GARCIA, A., ESPINOSA, R., DELGADO, L., CASALS, E., GONZALEZ, E., PUNTES, V., “Acute Toxicity of Cerium Oxide, Titanium Oxide and Iron Oxide Nanoparticles Using Standardized Tests”, Desalination, 269(1), 136-141, 2011.
  • [35] VAN HOECKE, K., QUIK, J.T.K., MANKIEWICZ-BOCZEK, J., DE SCHAMPHELAERE, K.A. C., ELSAESSER, A., VAN DER MEEREN, P., BARNES, C., MCKERR, G., HOWARD, C.V., VAN DE MEENT, D., RYDZYNSKI, K., DAWSON, K.A., SALVATI, A., LESNIAK, A., LYNCH, I., SILVERSMIT, G., DE SAMBER, B., VINCZE, L., JANSSEN, C.R., “Fate and Effects of CeO2 Nanoparticles in Aquatic Ecotoxicity Tests”, Environmental Science and Technology, 43, 4537-4546, 2009.
  • [36] VAN HOECKE, K., DE SCHAMPHELAERE K.A.C., VAN DER MEEREN, P., SMAGGHE, G., JANSSEN, C.R., “Aggregation and Ecotoxicity of CeO2 Nanoparticles in Synthetic and Natural Waters With Variable pH, Organic Matter Concentration and Ionic Strength”, Environmental Pollution, 159, 970-976, 2011.
  • [37] ARTELLS, E., ISSARTEL, J., AUFFAN, M., BORSCHNECK, D., THILL, A., TELLA, M., BROUSSET, L., ROSE, J., BOTTERO, J.Y., THIERY, A., “Exposure to Cerium Dioxide Nanoparticles Differently Affect Swimming Performance and Survival in Two Daphnid Species”, PLoS One, 8(8), e71260, 2013.
  • [38] MA, Y., WANG, J., PENG, C., DING, Y., HE, X., ZHANG, P., LI, N., LAN, T., WANG, D., ZHANG, Z., SUN, F., LIAO, H., ZHANG, Z., “Toxicity of Cerium and Thorium on Daphnia Magna”, Ecotoxicology and Environmental Safety, 134, 226-232, 2016.
  • [39] RODEA-PALOMARES, I., BOLTES, K., FERNÁNDEZ-PIÑAS, F., LEGANÉS, F., GARCÍA-CALVO, E., SANTIAGO, J., ROSAL, R., “Physicochemical Characterization and Ecotoxicological Assessment of CeO2 Nanoparticles Using Two Aquatic Microorganisms”, Toxicological Sciences, 119(1), 135-145, 2011.
  • [40] RÖHDER, L.A., BRANDT, T., SIGG, L., BEHRA, R., “Influence of Agglomeration of Cerium Oxide Nanoparticles and Seciation of Cerium(III) on Short Term Effects to the Green Algae Chlamydomonas Reinhardtii”, Aquatic Toxicology, 152, 121-130, 2014.
  • [41] BOOTH, A., STØRSETH, T., ALTIN D., FORNARA, A., AHNİYAZ, A., JUNGNICKEL, H., LAUX, P., LUNCH, A., SØRENSEN, L., “Freshwater Dispersion Stability of PAA-Stabilised Cerium Oxide Nanoparticles and Toxicity Towards Pseudokirchneriella Subcapitata”, Science of the Total Environment, 505, 596-605, 2015.
  • [42] CHEN, H.M., ZHENG, C.R., TU, C., SHEN, Z.G., “Chemical Methods and Phytoremediaition of Soil Contaminated With Heavy Metals”, Chemosphere, 41, 229-234, 2000.
  • [43] ADİLOĞLU S., ADİLOĞLU A., ERYILMAZ AÇIKGÖZ F., YENİARAS T., SOLMAZ Y. “Phytoremediation of Cadmium From Soil Using Patience Dock (Rumex Patientia L.).” Analytical Letters, 49 (4), 601- 606, 2016.
  • [44] MARCHIOL, L., ASSOLARI, S., SACCO, P., ZERBI, G., “Phytoextraction of Heavy Metals by Canola (Brassica Napus L.) and Radish (Raphanus Sativus L.) Grown on Multicontaminated Soil”, Environmental Pollution, 132, 21-27, 2004.
  • [45] ÖKTÜREN, F., SÖNMEZ, S., KOCABAŞ, I., “Potasyumun Bitki Sağlığı Üzerine Etkileri”, Tarımda Potasyumun Yeri ve Önemi Çalıştay, 3-4 Ekim 2005, 94-100, 2005.
  • [46] GÜNEŞ, A., ALPASLAN, M., İNAL, A., “Bitki Besleme ve Gübreleme”, Ankara Üniversitesi Ziraat Fakültesi Ders Kitabi yayın No:1551, 243-355, 2007.
  • [47] ADİLOĞLU, S., ADİLOĞLU, A., SUMER, A., ŞATANA, A., “The Effect of Molybdenum Application on the Growth and Some Nutrient Element Contents of Head Lettuce (Lactuca Sativa L.) in Acid Soils”, Asian Journal of Chemistry, 23(2), 937-938, 2011.
  • [48] KARAMAN, M.R., ADİLOĞLU, A., BROHI, R., GÜNEŞ, A., İNAL, A., KAPLAN, M., KATKAT, V., KORKMAZ, A., OKUR, N., ORTAŞ, İ., SALTALI, K., TABAN, S., TURAN, M., TÜFENKÇİ, Ş., ERASLAN, F., ZENGİN, M., “Bitki Besleme”, Gübretaş Rehber Kitaplar Dizisi No: 2, Dumat Ofset, Matbacılık San. Tic. Ltd. Şti. Ankara, 2012.
  • [49] KÖKSAL, F., “Yapraktan Kalsiyum Uygulamasının Karanfil Çeşitlerinde (Standart ve Sprey) Verim, Kalite ve Besin Elementi İçeriğine Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Toprak ve Bitki Besleme Anabilim Dalı, Isparta, 2011.
  • [50] MIKKELSON, R., “Soil and Fertilize Magnesium”, Better Crop, 94, 2, 2010.
  • [51] AKTAŞ, M., “Bitki Besleme ve Toprak Verimliliği”, Ankara Üniversitesi Ziraat Fakültesi, Yayın No: 1429, Ders Kitabı No: 416, 344, 1995.
  • [52] BELLİTÜRK, K., ADİLOĞLU, S., “Bitki Beslemesinde Mangan”, Hasad Dergisi, 309, 92-95, 2011.
  • [53] MARSCHNER, H., “Mineral Nutrition of Higher Plants”, 2nd ed., Academic Press, 889, San Diego, 1995.
  • [54] URLIC, B., DUMIÇIÇ, G., BAN, S.M., “Zinc and Sulfur Effects on Growth and Nutrient Concentrations in Rocket (Eruca Sativa L.)”, Communication in Soil Science and Plant Analysis, 45, 1831-1839, 2014.
  • [55] ADİLOĞLU, A., “The Effect of Zinc Application on the Available Iron Content of Calcereous Soils in Thrace Region”, Archives of Agronomy and Soil Science, 49, 283-287, 2003.
  • [56] RUTTKAY-NEDECKY, B., KRYSTOFOVA, O., NEJDL, L., ADAM, V., “Nanoparticles Based on Essential Metals and Their Phytotoxicity”, Journal of Nanobiotechnology, 15(33), 1-19, 2017.
  • [57] ANDERSON, C.P., KING, G., PLOCHER, M., STORM, M., POKHREL, L.R., JOHNSON, G., RYGIEWICZ, P.T., “Germination and Early Plant Development of Ten Plant Species Exposed to Titanium Dioxide and Cerium Oxide Nanoparticles”, Environmental Toxicology and Chemistry, 35(9), 2223-2229, 2016.
  • [58] MARCHIOL, L., MATTIELLO, A., POŠCIC, F., FELLET, G., ZAVALLONI, C., CARLINO, E., MUSETTI, R., “Changes in Physiological and Agronomical Parameters of Barley (Hordeum Vulgare) Exposed to Cerium and Titanium Dioxide Nanoparticles”, International Journal of Environmental Research and Public Health, 13(3), 332, 2016.
  • [59] VERMA, S.K., DAS, A.K., PATEL, M.K., SHAH, A., KUMAR, V., GANTAIT, S., “Engineered Nanomaterials for Plant Growth and Development: A Perspective Analysis”, Science of the Total Environment, 630, 1413-1435, 2018.
  • [60] SHAHZAD, B., TANVEER, M., HASSAN, W., SHAH, A.N., ANJUM, S.A., CHEEMA, S.A., ALI, I., “Lithium Toxicity in Plants: Reasons, Mechanisms and Remediation Possibilities - A Review”, Plant Physiology and Biochemistry, 107, 104-115, 2016.
  • [61] TRIPATHI, D.K., SHWETA, S., SWATI, S., PANDEY, R, SINGH, V.P., SHARMA, N.C., PRASED, S. M., DUBEY, N.K., CHAUHAN, D.K., “An Overview on Manufactured Nanoparticles in Plants: Uptake, Translocation, Accumulation and Phytotoxicity”, Plant Physiology and Biochemistry, 110, 2-12, 2017.
  • [62] SHAHZAD, B., MUGHAL, M.N., TANVEER, M., GUPTA, D., ABBAS, G., “Is Lithium Biologically an Important or Toxic Element to Living Organisms? An Overview”, Environmental Science and Pollution Research, 24, 103-115, 2017.
  • [63] WALLACE, A., ROMNEY, E.M., CHA, J.W., CHAUDHRY, F.M., “Lithium Toxicity in Plants”, Communications in Soil Science and Plant Analysis, 8(9), 773-780, 1977.
  • [64] JONES, J.B., WOLF, B., MILLS, H.A., “Plant Analysis Handbok”, Micro-Macro Publushing Inc., USA, 213 p, 1991.
  • [65] WANG, X., LIN, Y., LIU, D., XU, H., LIU, T., ZHAO F., “Cerium Toxicity, Uptake and Translocation in Arabidopsis Thaliana Seedlings”, Journal of Rare Earths, 30(6), 579-585, 2012.
  • [66] ZHANG, W., EBBS, S.D., MUSANTE, C., WHITE, J.C., GAO, C., MA, X., “Uptake and Accumulation of Bulk and Nanosized Cerium Oxide Particles and Ionic Cerium by Radish (Raphanus Sativus L.)”, Journal of Agricultural and Food Chemistry, 63(2), 382-390, 2015.
  • [67] YANG, X., PAN, H., WANG, P., ZHAO, F.J., “Particle-Specific Toxicity and Bioavailability of Cerium Oxide (CeO2) Nanoparticles to Arabidopsis Thaliana”, Journal of Hazardous Materials, 322(A), 292-300, 2017.
  • [68] POŠČIČ, F., MATTIELLO, A., FELLET, G., MICELI, F., MARCHIOL, L., “Effects of Cerium and Titanium Oxide Nanoparticles in Soil on the Nutrient Composition of Barley (Hordeum vulgare L.) Kernels”, International Journal of Environmental Reasearch and Publich Health, 13(6), 577, 1-15, 2016.
  • [69] JIANG, J.J., HU, J.Z., XIE, Z.Y., CAO, Q.H., MA, D.F., HAN, Y.H., LI, Z.Y., “The Trivalent Cerium-Induced Call Death and Alteration of Ion Flux in Sweet Potato (Ipomoea Batatas L. Lam)”, Journal of Rare Earths, 35(12), 1273-1282, 2017.
  • [70] GUI, X., RUI, M., SONG, Y., MA, Y., RUI, Y., ZHANG, P., HE, X., LI, Y., ZHANG, Z., LIU, L., “Toxicity of CeO2 Nanoparticles on Radish Plant (Raphanus Sativus)”, Environmental Science and Pollution Reserch, 24(15), 13775-13781, 2017.
  • [71] ROSSI, L., ZHANG, W.L., SCHWAB, A.P., MA, X.M., “Uptake, Accumulation and in Plant Distribution of Coexisting Cerium Oxide Nanoparticles and Cadmium in Glycine Max (L.), Merr”, Environmental Science and Technology, 51(21), 12815-12824, 2017.
  • [72] WU, H.H., TITO, N., GIRALDO, J.P., “Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis From Abiotic Stress by Scavenging Reactive Oxygen Species”, ACS Nano, 11, 11283-11297, 2017.
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği
Yazarlar

Deniz İzlen Çifçi Bu kişi benim 0000-0001-7527-6130

Sevinç Adiloğlu 0000-0002-0062-0491

Sema Terzi Bu kişi benim 0000-0003-0620-5886

Süreyya Meriç Bu kişi benim 0000-0002-2491-2755

Yayımlanma Tarihi 28 Ocak 2019
Gönderilme Tarihi 31 Mayıs 2018
Kabul Tarihi 24 Eylül 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 1

Kaynak Göster

APA Çifçi, D. İ., Adiloğlu, S., Terzi, S., Meriç, S. (2019). NADİR TOPRAK ELEMENTLERİNDEN OLAN SERYUM VE LİTYUMUN SUCUL VE FİTOTOKSİK ETKİLERİNİN DERLENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 9-22. https://doi.org/10.28948/ngumuh.516788
AMA Çifçi Dİ, Adiloğlu S, Terzi S, Meriç S. NADİR TOPRAK ELEMENTLERİNDEN OLAN SERYUM VE LİTYUMUN SUCUL VE FİTOTOKSİK ETKİLERİNİN DERLENMESİ. NÖHÜ Müh. Bilim. Derg. Ocak 2019;8(1):9-22. doi:10.28948/ngumuh.516788
Chicago Çifçi, Deniz İzlen, Sevinç Adiloğlu, Sema Terzi, ve Süreyya Meriç. “NADİR TOPRAK ELEMENTLERİNDEN OLAN SERYUM VE LİTYUMUN SUCUL VE FİTOTOKSİK ETKİLERİNİN DERLENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8, sy. 1 (Ocak 2019): 9-22. https://doi.org/10.28948/ngumuh.516788.
EndNote Çifçi Dİ, Adiloğlu S, Terzi S, Meriç S (01 Ocak 2019) NADİR TOPRAK ELEMENTLERİNDEN OLAN SERYUM VE LİTYUMUN SUCUL VE FİTOTOKSİK ETKİLERİNİN DERLENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8 1 9–22.
IEEE D. İ. Çifçi, S. Adiloğlu, S. Terzi, ve S. Meriç, “NADİR TOPRAK ELEMENTLERİNDEN OLAN SERYUM VE LİTYUMUN SUCUL VE FİTOTOKSİK ETKİLERİNİN DERLENMESİ”, NÖHÜ Müh. Bilim. Derg., c. 8, sy. 1, ss. 9–22, 2019, doi: 10.28948/ngumuh.516788.
ISNAD Çifçi, Deniz İzlen vd. “NADİR TOPRAK ELEMENTLERİNDEN OLAN SERYUM VE LİTYUMUN SUCUL VE FİTOTOKSİK ETKİLERİNİN DERLENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8/1 (Ocak 2019), 9-22. https://doi.org/10.28948/ngumuh.516788.
JAMA Çifçi Dİ, Adiloğlu S, Terzi S, Meriç S. NADİR TOPRAK ELEMENTLERİNDEN OLAN SERYUM VE LİTYUMUN SUCUL VE FİTOTOKSİK ETKİLERİNİN DERLENMESİ. NÖHÜ Müh. Bilim. Derg. 2019;8:9–22.
MLA Çifçi, Deniz İzlen vd. “NADİR TOPRAK ELEMENTLERİNDEN OLAN SERYUM VE LİTYUMUN SUCUL VE FİTOTOKSİK ETKİLERİNİN DERLENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 8, sy. 1, 2019, ss. 9-22, doi:10.28948/ngumuh.516788.
Vancouver Çifçi Dİ, Adiloğlu S, Terzi S, Meriç S. NADİR TOPRAK ELEMENTLERİNDEN OLAN SERYUM VE LİTYUMUN SUCUL VE FİTOTOKSİK ETKİLERİNİN DERLENMESİ. NÖHÜ Müh. Bilim. Derg. 2019;8(1):9-22.

 23135