Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF COMBUSTION CHARACTERISTICS OF BIOGASES OBTAINED FROM FERMENTATION OF ORGANIC WASTES

Yıl 2019, Cilt: 8 Sayı: 1, 418 - 428, 28.01.2019
https://doi.org/10.28948/ngumuh.517156

Öz

   In this
study, numerical studies have been carried out on the combustion
characteristics of the biogas obtained from a designed and manufactured biogas
reactor. Gaseous fuel mixtures obtained from the biogas reactor have been
burned in the system integrated a combustion system. Emission and temperature
distributions have been investigated throughout the combustion chamber.
Experimental results obtained from the experimental study have been compared
with numerical results and it has been determined that the predicted results
are in agreement with the experimental results considerably in terms of
temperature distributions. In the numerical modelling, k-Ɛ standard turbulence
model, P-1 radiation model and PDF / Mixture Fraction combustion model have
been used. In the modelling, biogases mixed with 55% CH4 - 45% CO2
and 45% CH4 - 55% CO2 by volume have been modelled and
the temperature and emission distributions have been predicted by Ansys Fluent
commercial code. The predicted results show that the temperature levels of 45%
CH4 - 55% CO2 biogas mixture are lower in the combustion
chamber inlet regions and higher towards the combustion chamber outlet. In CO2
and H2O predictions, CO2 levels and H2O levels
are higher for the biogas with more CO2.

Kaynakça

  • [1] HOSSEINI, S.E., BAGHERI, G., WAHID, M.A., “Numerical investigation of biogas flameless combustion”, Energy Conversion and Management, 81, 41-50, 2014.
  • [2] LEUNG, T., WIERZBA, I., “The effect of hydrogen addition on biogas non-premixed jet flame stability in a coflowing air stream”, International Journal of Hydrogen Energy, 33, 856–3862, 2008.
  • [3] SOMEHSARAEI, H.N., MAJOUMERDA, M.M., BREUHAUSB, P., ASSADIA, M., “Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model”, Applied Thermal Engineering, 66, 181-190, 2014.
  • [4] CHEN, S., ZHENG, C., “Counterflow diffusion flame of hydrogen-enriched biogas under MILD oxy-fuel condition”, International Journal of Hydrogen Energy, 36, 15403-15413, 2011.
  • [5] NIKPEY, H., ASSADI, M., BREUHAUS, P., MØRKVED, P.T., “Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas”, Applied Energy, 117, 30- 41, 2014.
  • [6] LAFAY, Y., TAUPIN, B., MARTINS, G., CABOT, G., RENOU, B., BOUKHALFA, A., “Experimental study of biogas combustion using a gas turbine configuration”, Experimental in Fluids, 43, 395-410, 2007.
  • [7] JAHANGIRIAN, S., ENGEDA, A., WICHMAN, I.S., “Thermal and Chemical Structure of Biogas Counterflow Diffusion Flames”, Energy&Fuels, 23, 5312-5321, 2009.
  • [8] ILBAS, M., SAHIN, M., KARYEYEN, S., “Combustion Behaviours of Different Biogases in an Existing Conventional Natural Gas Burner: An Experimental Study”, International Journal of Renewable Energy Research, 6, 1178-1188, 2016.
  • [9] ILBAS, M., SAHIN, M., KARYEYEN, S., “3D numerical modelling of turbulent biogas combustion in a newly generated 10 KW burner”, Journal of the Energy Institute, 91, 87-99, 2018.
  • [10] TENG, Z., HUA, J., WANG, C., LU, X. “Reactor and Process Design in Sustainable Energy Technology”, (First Edition) USA: Elsevier, 99-110, 2014.
  • [11] LINDMARK, J., THORIN, E., FDHILA, R. B., DAHLQUIST, E. “Effects of mixing on the result of anaerobic digesiton: Review”, Renewable and Sustainable Energy Reviewes, 40, 1030-1047, 2014.
  • [12] S̆ARAPATKA, B., “Factors influencing biogas production during full-scaleanaerobic fermentation of farmyard manure”, Bioresource Technology, 49, 17-23, 2003.
  • [13] VERSTEEG, H.K., MALALASEKERA, W., “An introduction to computational fluid dynamics” Second Edition, PEARSON Prentice Hall, 2007.
  • [14] ILBAS, M., “Studies of Ultra Low NOX Burners”, PhD Thesis, University of Cardiff, 1997.
  • [15] ILBAS, M., “The effect of thermal radiation and radiation models on hydrogen– hydrocarbon combustion modelling”, International Journal of Hydrogen Energy, 30, 1113-1126, 2005.
  • [16] KHALIL, A.E.E., GUPTA, A.K., “Flame fluctuations in Oxy-CO2-methane mixtures in swirl assisted distributed combustion”, Applied Energy, 204, 303-317, 2017.
  • [17] KHALIL, A.E.E., GUPTA, A.K., “Thermal field investigation under distributed combustion conditions”, Applied Energy, 160, 477-488, 2015.
  • [18] ILBAS, M., KARYEYEN, S., “Experimental analysis of premixed and non-premixed methane flames by using a new combustion system”, Research on Engineering Structures & Materials, 4(1), 1-14, 2018.

ORGANİK ATIKLARIN FERMANTASYONU SONUCU ELDE EDİLEN BİYOGAZLARIN YANMA KARAKTERİSTİKLERİNİN İNCELENMESİ

Yıl 2019, Cilt: 8 Sayı: 1, 418 - 428, 28.01.2019
https://doi.org/10.28948/ngumuh.517156

Öz

   Bu çalışmada, tasarlanıp imal edilmiş bir
biyogaz reaktöründen elde edilen biyogazın yanma karakteristikleri hakkında
sayısal çalışmalar yürütülmüştür. Biyogaz reaktöründen elde edilen gaz, sisteme
uyumlu yakma sisteminde yakılarak, yanma sonu emisyon değerleri ve sıcaklık
dağılımları sayısal olarak araştırılmıştır. Yapılan araştırmalarda elde edilen
deneysel sonuçlar, sayısal sonuçlarla karşılaştırılmış olup sıcaklık dağılımı
bakımından önemli derecede uyum olduğu tespit edilmiştir. Sayısal modellemelerde
k-Ɛ standard türbülans modeli, P-1 radyasyon modeli ve PDF/Mixture Fraction
yanma modeli kullanılmıştır. Modellemelerde, hacimce % 55 CH4 - % 45
CO2 ve % 45 CH4 - % 55 CO2 karışımlı
biyogazlar modellenmiş, sıcaklık ve emisyon dağılımları Ansys Fluent ticari
kodu ile tahmin edilmiştir. Elde edilen tahmin sonuçları, % 45 CH4 -
% 55 CO2 karışımlı biyogazın sıcaklık seviyelerinin yanma odası
giriş bölgelerinde daha düşük, yanma odası çıkışına doğru daha yüksek olduğunu
göstermiştir. CO2 ve H2O tahminlerinde ise, bünyesinde
daha fazla miktarda CO2 bulunduran biyogaz için CO2
seviyeleri ve H2O seviyeleri daha yüksek olarak belirlenmiştir.

Kaynakça

  • [1] HOSSEINI, S.E., BAGHERI, G., WAHID, M.A., “Numerical investigation of biogas flameless combustion”, Energy Conversion and Management, 81, 41-50, 2014.
  • [2] LEUNG, T., WIERZBA, I., “The effect of hydrogen addition on biogas non-premixed jet flame stability in a coflowing air stream”, International Journal of Hydrogen Energy, 33, 856–3862, 2008.
  • [3] SOMEHSARAEI, H.N., MAJOUMERDA, M.M., BREUHAUSB, P., ASSADIA, M., “Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model”, Applied Thermal Engineering, 66, 181-190, 2014.
  • [4] CHEN, S., ZHENG, C., “Counterflow diffusion flame of hydrogen-enriched biogas under MILD oxy-fuel condition”, International Journal of Hydrogen Energy, 36, 15403-15413, 2011.
  • [5] NIKPEY, H., ASSADI, M., BREUHAUS, P., MØRKVED, P.T., “Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas”, Applied Energy, 117, 30- 41, 2014.
  • [6] LAFAY, Y., TAUPIN, B., MARTINS, G., CABOT, G., RENOU, B., BOUKHALFA, A., “Experimental study of biogas combustion using a gas turbine configuration”, Experimental in Fluids, 43, 395-410, 2007.
  • [7] JAHANGIRIAN, S., ENGEDA, A., WICHMAN, I.S., “Thermal and Chemical Structure of Biogas Counterflow Diffusion Flames”, Energy&Fuels, 23, 5312-5321, 2009.
  • [8] ILBAS, M., SAHIN, M., KARYEYEN, S., “Combustion Behaviours of Different Biogases in an Existing Conventional Natural Gas Burner: An Experimental Study”, International Journal of Renewable Energy Research, 6, 1178-1188, 2016.
  • [9] ILBAS, M., SAHIN, M., KARYEYEN, S., “3D numerical modelling of turbulent biogas combustion in a newly generated 10 KW burner”, Journal of the Energy Institute, 91, 87-99, 2018.
  • [10] TENG, Z., HUA, J., WANG, C., LU, X. “Reactor and Process Design in Sustainable Energy Technology”, (First Edition) USA: Elsevier, 99-110, 2014.
  • [11] LINDMARK, J., THORIN, E., FDHILA, R. B., DAHLQUIST, E. “Effects of mixing on the result of anaerobic digesiton: Review”, Renewable and Sustainable Energy Reviewes, 40, 1030-1047, 2014.
  • [12] S̆ARAPATKA, B., “Factors influencing biogas production during full-scaleanaerobic fermentation of farmyard manure”, Bioresource Technology, 49, 17-23, 2003.
  • [13] VERSTEEG, H.K., MALALASEKERA, W., “An introduction to computational fluid dynamics” Second Edition, PEARSON Prentice Hall, 2007.
  • [14] ILBAS, M., “Studies of Ultra Low NOX Burners”, PhD Thesis, University of Cardiff, 1997.
  • [15] ILBAS, M., “The effect of thermal radiation and radiation models on hydrogen– hydrocarbon combustion modelling”, International Journal of Hydrogen Energy, 30, 1113-1126, 2005.
  • [16] KHALIL, A.E.E., GUPTA, A.K., “Flame fluctuations in Oxy-CO2-methane mixtures in swirl assisted distributed combustion”, Applied Energy, 204, 303-317, 2017.
  • [17] KHALIL, A.E.E., GUPTA, A.K., “Thermal field investigation under distributed combustion conditions”, Applied Energy, 160, 477-488, 2015.
  • [18] ILBAS, M., KARYEYEN, S., “Experimental analysis of premixed and non-premixed methane flames by using a new combustion system”, Research on Engineering Structures & Materials, 4(1), 1-14, 2018.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makine Mühendisliği
Yazarlar

Murat Şahin 0000-0003-1478-3221

Yayımlanma Tarihi 28 Ocak 2019
Gönderilme Tarihi 4 Nisan 2018
Kabul Tarihi 30 Temmuz 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 1

Kaynak Göster

APA Şahin, M. (2019). ORGANİK ATIKLARIN FERMANTASYONU SONUCU ELDE EDİLEN BİYOGAZLARIN YANMA KARAKTERİSTİKLERİNİN İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 418-428. https://doi.org/10.28948/ngumuh.517156
AMA Şahin M. ORGANİK ATIKLARIN FERMANTASYONU SONUCU ELDE EDİLEN BİYOGAZLARIN YANMA KARAKTERİSTİKLERİNİN İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. Ocak 2019;8(1):418-428. doi:10.28948/ngumuh.517156
Chicago Şahin, Murat. “ORGANİK ATIKLARIN FERMANTASYONU SONUCU ELDE EDİLEN BİYOGAZLARIN YANMA KARAKTERİSTİKLERİNİN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8, sy. 1 (Ocak 2019): 418-28. https://doi.org/10.28948/ngumuh.517156.
EndNote Şahin M (01 Ocak 2019) ORGANİK ATIKLARIN FERMANTASYONU SONUCU ELDE EDİLEN BİYOGAZLARIN YANMA KARAKTERİSTİKLERİNİN İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8 1 418–428.
IEEE M. Şahin, “ORGANİK ATIKLARIN FERMANTASYONU SONUCU ELDE EDİLEN BİYOGAZLARIN YANMA KARAKTERİSTİKLERİNİN İNCELENMESİ”, NÖHÜ Müh. Bilim. Derg., c. 8, sy. 1, ss. 418–428, 2019, doi: 10.28948/ngumuh.517156.
ISNAD Şahin, Murat. “ORGANİK ATIKLARIN FERMANTASYONU SONUCU ELDE EDİLEN BİYOGAZLARIN YANMA KARAKTERİSTİKLERİNİN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8/1 (Ocak 2019), 418-428. https://doi.org/10.28948/ngumuh.517156.
JAMA Şahin M. ORGANİK ATIKLARIN FERMANTASYONU SONUCU ELDE EDİLEN BİYOGAZLARIN YANMA KARAKTERİSTİKLERİNİN İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. 2019;8:418–428.
MLA Şahin, Murat. “ORGANİK ATIKLARIN FERMANTASYONU SONUCU ELDE EDİLEN BİYOGAZLARIN YANMA KARAKTERİSTİKLERİNİN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 8, sy. 1, 2019, ss. 418-2, doi:10.28948/ngumuh.517156.
Vancouver Şahin M. ORGANİK ATIKLARIN FERMANTASYONU SONUCU ELDE EDİLEN BİYOGAZLARIN YANMA KARAKTERİSTİKLERİNİN İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. 2019;8(1):418-2.

download