Derleme
BibTex RIS Kaynak Göster

ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME

Yıl 2020, Cilt: 9 Sayı: 2, 1077 - 1089, 07.08.2020
https://doi.org/10.28948/ngumuh.600588

Öz

Günümüzde
robot kollar tıp sektöründen ambalajlama sektörüne kadar birçok alanda
kullanılmaktadır. Gelişen teknoloji ve tasarım karmaşık geometrili parçaların
ihtiyacını gün ve gün arttırmaktadır. Bu tip parçaların imalatının uygun
maliyet ve kısa sürelerde üretimi ise imalat sektörü için en önemli konulardan
biridir. Son otuz yıldır robotik işleme büyük ve karmaşık parçaların imalatında
kullanılan ve gelişmekte olan bir işleme yöntemidir. Robotik işleme yönteminde kullanılan
robotlar hareket tiplerine göre seri ve paralel kinematik tip olmak üzere iki
başlıkta incelenebilir. Seri kinematik robotlarda düşük dayanımlarından dolayı
tırlama, paralel kinematik robotlarda ise kısıtlı çalışma uzayı karşılaşılan en
önemli problemlerdir.
Bu
çalışmada robotik işleme yönteminin geliştirilerek verimliliğinin arttırılması
için literatürde yapılmış olan çalışmalar iki robot tipi (paralel ve seri
kinematik) için farklı başlıklar altında özetlenmiştir.

Kaynakça

  • DEPARTMENT, I.S., Executive Summary World Robotics 2018 Industrial Robots Robot, Germany (2018) 13–22 pp.
  • HUI ZHANG et al., Machining with Flexible Manipulator: Toward Improving Robotic Machining Performance, Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics., Monterey, California, USA (2005) 1127–1132.
  • PAN, W., ZHANG, H., ZHU, Z., WANG, J., “Chatter Analysis Of Robotic Machining Process”, Journal of Materials Processing Technology, 173, 301–309, 2006.
  • ZIVANOVIC, S., SLAVKOVIC, N., MILUTINOVIC, D., “An Approach For Applying STEP-NC In Robot Machining”, Robotics and Computer-Integrated Manufacturing, 49, 361–373, 2018.
  • JI, W., WANG, L., “Industrial Robotic Machining: A Review”, International Journal of Advanced Manufacturing Technology, 1–17, 2019.
  • GOK, F., The Analysis of the Effect of Cutting Tools Material to Chatter Vibrations in Turning Operations, Eskisehir Osmangazi University (2015).
  • NESELI, S., YALDIZ, S., “The Effects Of Approach Angle And Rake Angle Due To Chatter Vibrations On Surface Roughness In Turning”, Journal of Polytechnic, 10, 383–389, 2007.
  • TOBIAS, S.A., FISHWICK, W., “The Chatter Of Lathe Tools Under Orthogonal Cutting Conditions”, Trans. ASME, 80, 1079–1088, 1958.
  • TLUSTY, J., POLACEK, M., “The Stability Of Machine Tools Against Self Excited Vibrations In Machining”, Int. Res. Prod. Eng., ASME, 465–474, 1963.
  • NESELI, S., Analitical Investigation Of Effect Of Process Damping On Chatter Vibrations And Optimization Cutting Parameters Depending On Stable Depth Of Cut And Process Damping Values In Turning, Selcuk University (2013) 136 pp.
  • ALTINTAS, Y., Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, 2nd ed., Cambridge University Press (2012) 366 pp.
  • ALTINTAS, Y., BUDAK, E., “Analytical Prediction Of Stability Lobes In Milling”, CIRP Annals - Manufacturing Technology, 44, 357–362, 1995.
  • SEGUY, S., ARNAUD, L., INSPERGER, T., “Chatter In Interrupted Turning With Geometrical Defects: An Industrial Case Study”, International Journal of Advanced Manufacturing Technology, 75, 45–56, 2014.
  • SUNGURAY, C., URGUN, S., DEMIRTAS, H., GUNGOR, S., “Design, Modelling And Simulation Of Position Controlled 6x6 Degree Of Freedom Stewart Platform”, SDÜ International Technologic Science, 6, 49–61, 2014.
  • XIE, F., LIU, X., ZHANG, H., WANG, J., “Design And Experimental Study Of The SPKM165, A Five-Axis Serial-Parallel Kinematic Milling Machine”, Science China Technological Sciences, 54, 1193–1205, 2011.
  • REN, X.D., FENG, Z.R., SU, C.P., “A New Calibration Method For Parallel Kinematics Machine Tools Using Orientation Constraint”, International Journal of Machine Tools and Manufacture, 49, 708–721, 2009.
  • FU, R. et al., “Review On Structure-Based Errors Of Parallel Kinematic Machines In Comparison With Traditional NC Machines”, Communications in Computer and Information Science, 923, 249–256, 2018.
  • WAVERING, A.J., “Parallel Kinematic Machine Research At NIST: Past, Present, And Future”, Advanced Manufacturing, 17–31, 1999.
  • RAMESH, R., MANNAN, M.A., POO, A.N., “Error Compensation In Machine Tools - A Review. Part I: Geometric, Cutting-Force Induced And Fixture-Dependent Errors”, International Journal of Machine Tools and Manufacture, 40, 1235–1256, 2000.
  • LANDERS, R.G., M, B., KOREN, Y., “Reconfigurable Machine Tools”, CIRP Annals - Manufacturing Technology, 50, 269–274, 2001.
  • PAN, Y., GAO, F., “A New Six-Parallel-Legged Walking Robot For Drilling Holes On The Fuselage”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228, 753–764, 2013.
  • SOONS, J.A., “Error Analysis Of A Hexapod Machine Tool”, Transactions on Engineering Sciences, 16, 347–358, 1997.
  • SHNEOR, Y., PORTMAN, V.T., “Stiffness Of 5-Axis Machines With Serial, Parallel, And Hybrid Kinematics: Evaluation And Comparison”, CIRP Annals - Manufacturing Technology, 59, 409–412, 2010.
  • AXINTE, D.A. et al., “Free-Leg Hexapod: A Novel Approach Of Using Parallel Kinematic Platforms For Developing Miniature Machine Tools For Special Purpose Operations”, CIRP Annals - Manufacturing Technology, 60, 395–398, 2011.
  • GELDART, M. et al., “A Direct Comparison Of The Machining Performance Of A Variax 5 Axis Parallel Kinetic Machining Centre With Conventional 3 And 5 Axis Machine Tools”, International Journal of Machine Tools and Manufacture, 43, 1107–1116, 2003.
  • LI, T., LI, F., JIANG, Y., ZHANG, J., WANG, H., “Kinematic Calibration Of A 3-P(Pa)S Parallel-Type Spindle Head Considering The Thermal Error”, Mechatronics, 43, 86–98, 2017.
  • SUN, T., ZHAI, Y., SONG, Y., ZHANG, J., “Kinematic Calibration Of A 3-DoF Rotational Parallel Manipulator Using Laser Tracker”, Robotics and Computer-Integrated Manufacturing, 41, 78–91, 2016.
  • FAN, C., ZHAO, G., ZHAO, J., ZHANG, L., SUN, L., “Calibration Of A Parallel Mechanism In A Serial-Parallel Polishing Machine Tool Based On Genetic Algorithm”, The International Journal of Advanced Manufacturing Technology, 81, 27–37, 2015.
  • TUNC, L.T., SHAW, J., “Investigation Of The Effects Of Stewart Platform-Type Industrial Robot On Stability Of Robotic Milling”, International Journal of Advanced Manufacturing Technology, 87, 189–199, 2016.
  • TUNC, L.T., STODDART, D., “Tool Path Pattern And Feed Direction Selection In Robotic Milling For Increased Chatter-Free Material Removal Rate”, International Journal of Advanced Manufacturing Technology, 89, 2907–2918, 2017.
  • UGUROGLU, E., 6 Serbestlik Dereceli Rotasyonel Stewart Platformu Tasarımı Ve Yüzey Pürüzlülük Ölçümlerinde Eğim Sensörü İle Konum Kontrolü, İstanbul Technical University (2015) 125 pp.
  • DENKENA, B., BERGMANN, B., LEPPER, T., “Design And Optimization Of A Machining Robot”, Procedia Manufacturing, 14, 89–96, 2017.
  • KALDESTAD, K.B., TYAPIN, I., HOVLAND, G., Robotic Face Milling Path Correction and Vibration Reduction, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, (2015) 543–548.
  • RADOJICIC, J., SURDILOVIC, D., SCHRECK, G., “Modular Hybrid Robots For Safe Human-Robot Interaction”, International Journal of World Academy of Science, Engineering and Technology (WASET), 3, 1601–1607, 2009.
  • SURDILOVIC, D., BERNHARDT, R., ZHANG, L., “New Intelligent Power-Assist Systems Based On Differential Transmission”, Robotica, 21, 295–302, 2003.
  • TYAPIN, I., HOVLAND, G., KOSONEN, P., LINNA, T., Identification of a Static Tool Force Model for Robotic Face Milling, 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), (2014) 1–6.
  • BRUNETE, A. et al., “Hard Material Small-Batch Industrial Machining Robot”, Robotics and Computer-Integrated Manufacturing, 54, 185–199, 2018.
  • VUKOBRATOVIC, M., Dynamics and Robust Control of Robot-Environment Interaction, Vol. 2, World Scientific, Singapore (2009).
  • AHOLA, J.M., KOSKINEN, J., SEPPÄLÄ, T., HEIKKILÄ, T., Development of Impedance Control for Human/Robot Interactive Handling of Heavy Parts and Loads, ASME. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 9: 2015 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Boston (2015).
  • TERRIER, M., DUGAS, A., HASCOËT, J.Y., “Qualification Of Parallel Kinematics Machines In High-Speed Milling On Free Form Surfaces”, International Journal of Machine Tools and Manufacture, 44, 865–877, 2004.
  • SORNMO, O., OLOFSSON, B., SCHNEIDER, U., ROBERTSSON, A., JOHANSSON, R., Increasing the Milling Accuracy for Industrial Robots Using a Piezo-Actuated High-Dynamic Micro Manipulator, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Kaohsiung, Taiwan (2012) 104–110.
  • PAN, Z.P.Z., ZHANG, H.Z.H., Improving Robotic Machining Accuracy by Real-Time Compensation, 2009 Iccas-Sice International Joint Conference, Fukuoka International Congress Center, Japan (2009) 4289–4294.
  • SCHINDLBECK, C., JANZ, A., PAPE, C., REITHMEIER, E., Increasing Milling Precision for Macro-Micro-Manipulators with Disturbance Rejection Control via Visual Feedback, IEEE International Conference on Intelligent Robots and Systems, Vol. 2017-Septe, Vancouver, BC, Canada (2017) 4686–4693.
  • BU, Y., LIAO, W., TIAN, W., ZHANG, J., ZHANG, L., “Stiffness Analysis And Optimization In Robotic Drilling Application”, Precision Engineering, 49, 388–400, 2017.
  • CHEN, C. et al., “Stiffness Performance Index Based Posture And Feed Orientation Optimization In Robotic Milling Process”, Robotics and Computer-Integrated Manufacturing, 55, 29–40, 2019.
  • MOHAMMAD, A.E.K., HONG, J., WANG, D., GUAN, Y., “Synergistic Integrated Design Of An Electrochemical Mechanical Polishing End-Effector For Robotic Polishing Applications”, Robotics and Computer-Integrated Manufacturing, 55, 65–75, 2019.
  • ZHAN, J.M., ZHAO, J., XU, S.X., ZHU, P.X., “Study Of The Contact Force In Free-Form-Surfaces Compliant EDM Polishing By Robot”, Journal of Materials Processing Technology, 129, 186–189, 2002.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makine Mühendisliği
Yazarlar

Hasan Demırtas 0000-0001-6067-9674

Yayımlanma Tarihi 7 Ağustos 2020
Gönderilme Tarihi 2 Ağustos 2019
Kabul Tarihi 29 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 2

Kaynak Göster

APA Demırtas, H. (2020). ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 1077-1089. https://doi.org/10.28948/ngumuh.600588
AMA Demırtas H. ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. NÖHÜ Müh. Bilim. Derg. Ağustos 2020;9(2):1077-1089. doi:10.28948/ngumuh.600588
Chicago Demırtas, Hasan. “ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, sy. 2 (Ağustos 2020): 1077-89. https://doi.org/10.28948/ngumuh.600588.
EndNote Demırtas H (01 Ağustos 2020) ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 2 1077–1089.
IEEE H. Demırtas, “ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME”, NÖHÜ Müh. Bilim. Derg., c. 9, sy. 2, ss. 1077–1089, 2020, doi: 10.28948/ngumuh.600588.
ISNAD Demırtas, Hasan. “ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/2 (Ağustos 2020), 1077-1089. https://doi.org/10.28948/ngumuh.600588.
JAMA Demırtas H. ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. NÖHÜ Müh. Bilim. Derg. 2020;9:1077–1089.
MLA Demırtas, Hasan. “ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 9, sy. 2, 2020, ss. 1077-89, doi:10.28948/ngumuh.600588.
Vancouver Demırtas H. ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. NÖHÜ Müh. Bilim. Derg. 2020;9(2):1077-89.

 23135