Derleme
BibTex RIS Kaynak Göster

SU VE ATIKSU ARITMINDA ELEKTROFLOTASYON PROSESİ

Yıl 2020, Cilt: 9 Sayı: 2, 730 - 745, 07.08.2020
https://doi.org/10.28948/ngumuh.653062

Öz

Flotasyon prosesi mineral işlemede uygulanan yerçekimi ile bir ayırma (yüzdürme) işlemidir. Son yıllarda su ve atıksu arıtmında yaygın olarak kirleticilerin ayrımında kullanılmaktadır. Flotasyon prosesleri üretilen kabarcık metoduna göre isimlendirilir. Örneğin; dağılmış-hava flotasyonu, çözünmüş-hava flotasyonu ve son yıllarda elektrokimyasal arıtma proseslerinden biri olan elektroflotasyon (Ef) verilebilir. Bu çalışmada literatür araştırmsı yapılmış ve Ef prosesinin su, ağır metal, organik ve inorganik kirleticilerin, yağ ve ürünlerinin, boyar maddelerin, deterjanların, vb. kirleticilerin gideriminde uygulanması ile elde edilen sonuçlara odaklanılmıştır. Bu çalışmaların sonuçlarına göre; Ef prosesinin sağladığı bazı avantajlar sayesinde su ve atıksu arıtımında ayrıca suyun geri kazanımında tatmin edici sonuçlar elde edilmiştir.


Kaynakça

  • J. H. Clark, “Green chemistry: challenges and opportunities,” Green Chemistry, vol.1, pp. 1-8, 1999.
  • K. Müller, “Electroflotation from the Double Layer to Trouble Waters in Oliver”. in Electrochemistry in Transition, J. Murphy and vs, Eds., Plenum Press, New York, 1992.
  • A. Y. Hosny, “Separating Oil from Oil-Water Emulsions by Electroflotation Technique,” Separations Technology, vol. 6, pp.9-17, 1996.
  • L.B. Mansour, and S. Chalbi, “Removal of oil from oil/water emulsions using electroflotation process,” Journal of Applied Electrochemistry, vol. 36, pp. 577-581, 2006.
  • M. Kobya, E. Senturk, and M. Bayramoglu, “Treatment of poultry slaughterhouse wastewaters by electrocoagulation,” Journal of Hazardous Materials, vol.133, pp.172-176, 2006.
  • S. Zaidi, T. Chaabane, V. Sivasankar, A. Darchen, R. Maachi, T. A. Msagati, and M. Prabhakaran, “Performance efficiency of electro-coagulation coupled electro-flotation process (EC-EF) versus adsorption process in doxycycline removal from aqueous solutions,” Process Safety and Environmental Protection, vol. 102, pp. 450-461, 2016.
  • B. J. Hernlem, and L.S. Tsai, “Chlorine generation and disinfection by electroflotation,” Journal of Food Science, vol. 65, pp. 834-837, 2000.
  • X. Chen, and G. Chen, “Stable Ti/RuO2–Sb2O5–SnO2 electrodes for O2 evolution,” Electrochimica Acta, vol. 50, pp. 4155-4159, 2005.
  • R. Mraz, and J. Krýsa, “Long service life IrO2/Ta2O5 electrodes for electroflotation,” Journal of Applied Electrochemistry, vol. 24, pp.1262-1266, 1994.
  • C.C. Ho, and C. Y. Chan, “The application of lead dioxide-coated titanium anode in the electroflotation of palm oil mill effluent,” Water Research, vol. 20, pp. 1523-1527. 1986.
  • V. A. Kolesnikov, V.I. Il’in, V.A. Brodskii, T.V. Guseva, and M. A. Vartanyan, “Improvement of electroflotation treatment of waste waters from ceramic enterprises,” Glass and Ceramics, vol. 71, pp. 421-424, 2015.
  • G. Hassani, A. Alinejad, A. Sadat, A. Esmaeili, M. Ziaei, A. A. Bazrafshan, and T. Sadat, “Optimization of landfill leachate treatment process by electrocoagulation, electroflotation and sedimentation sequential method,” International Journal of Electrochemical Science, vol. 11, pp. 6705-6018, 2016.
  • F. Ozyonar, “Optimization of operational parameters of electrocoagulation process for real textile wastewater treatment using Taguchi experimental design method,” Desalination and Water Treatment, vol. 57:6, pp. 2389-2399, 2016.
  • M. Bayramoglu, M. Kobya, O. T. Can, and M. Sozbir, “Operating cost analysis of electrocoagulation of textile dye wastewater,” Separation and Purification Technology, vol. 37, pp. 117-125, 2004.
  • F. Ozyonar, and B. Karagozoglu, “Investigation of technical and economic analysis of electrocoagulation process for the treatment of great and small cattle slaughterhouse wastewater,” Desalination and Water Treatment, vol. 52:1-3, pp. 74-87, 2014.
  • M. F. Pouet, and A. Grasmick, “Urban wastewater treatment by electrocoagulation and flotation,” Water Science and Technology, vol. 31, pp.275, 1995.
  • M. Kobya, E. Demirbas, N.U. Parlak, and S. Yigit, “Treatment of cadmium and nickelelectroplating rinse water by electrocoagulation,” Environmental Technology, vol. 31, pp. 1471-1481, 2010.
  • F. Janpoor, A. Torabian, and V. Khatibikamal, “Treatment of laundry waste-water by electrocoagulation,” J. Chemical Technology Biotechnology, vol. 86, pp. 1113–1120, 2011.
  • S. Vasudevan, and J. Lakshmi,” Effects of alternating and direct current inelectrocoagulation process on the removal of cadmium from water-A novelapproach, “Separation and Purification Technology, vol. 80, pp. 643-651, 2011.
  • S. Vasudevan, J. Lakshmi, and R. Vanathi, “Electrochemical coagulation forchromium removal: process optimization, kinetics, isotherms and sludgecharacterization,” Clean, vol. 38, pp. 9-16, 2010.
  • K. Dermentzis, A. Christoforidis, and E. Valsamidou, “Removal of nickel copper, zincand chromium from synthetic and industrial wastewater byelectrocoagulation,” International Journal of Environmental Science, vol.1, pp. 697–710, 2011.
  • R. Kamaraj, P. Ganesan, and S. Vasudevan, “Removal of lead from aqueous solutionsby electrocoagulation: isotherm, kinetics and thermodynamic studies,” International Journal of Environental Science Technology, vol. 12, pp. 683-692, 2015.
  • C. T. Tanneru, and S. Chellam, “Mechanisms of virus control during iron electrocoagulation: microfiltration of surface water,” Water Research, vol. 46, pp. 2111–2120, 2012.
  • P. Canizares, P. Martinez, M. A. Rodrigo, C. Jimenez, C. Saez, and J. Lobato, “Modelling of wastewater electrocoagulation processes Part I. Generaldescription and application to kaolin-polluted wastewaters,” Separation and Purification Technology, vol. 60, pp. 155-161, 2008.
  • S. Calvo, J. P. Leclerc, G. Tanguy, M. C. Cames, G. Paternolte, G. Valentin, A. Rostan, and F. Lapicque, “An electrocoaguhtion unit for the purification of solubleoil wastes of high COD,” Environental Progress, vol. 22, pp. 57-65, 2003.
  • P. I. Omwene, and M. Kobya, “Treatment of domestic wastewater phosphate by electrocoagulationusing Fe and Al electrodes: A comparative study,” Process Safety and Environmental Protection, vol.116, pp.34-51, 2018.
  • M. Y. A. Mollah, R. Schennach, J. P. Parga, and D. L. Cocke,” Electrocoagulation (EC)-science and applications,” Journal of Hazardous Materials, vol.84, pp. 29-41, 2001.
  • G. Chen, “Electrochemical technologies in wastewater treatment,” Separation and Purification Technology, vol. 38, pp. 11-41, 2004.
  • A. Aouni, C. Fersi, M. B. S. Ali, and M. Dhahbi, “Treatment of textile wastewater by ahybrid electrocoagulation/nanofiltration process,” Journal of Hazardous Materials, vol.168, pp. 868-874, 2009.
  • D. Landolt, R. Acosta, R. H. Muller, C. W. Tobias, “An optical study of cathodic hydrogen evolution in highrate electrolysis,” Journal of the Electrochemical Society, vol.117, pp. 839-845, 1970.
  • P. J. Sides, “Phenomena and effects of electrolytic gas evolution,” in Modern Aspects of Electrochemistry, Conway BE, Bockris JO, White RE Eds., Springer, Boston, MA, pp. 303–354, 1986.
  • C. Jiménez, B. Talavera, C. Saez, P. Cañizares, and M. A. Rodrigo, “Study of the production of hydrogen bubbles at low current densities for electroflotation processes,” Journal of Chemical Technology & Biotechnology, vol.85, pp. 1368-1373, 2010.
  • R. Alam, J. Q. Shang, and A. H. Khan, “Bubble size distribution in a laboratory-scale electroflotation study,” Environmental Monitoring and Assessment, pp.189-193, Apr. 2017.
  • R. Mohtasham, and J. Q. Shang, “Electroflotation for Treatment of Industrial Wastewaters: A Focused Review,” Environmental Processes, vol.6, pp. 325-353, 2019.
  • S. Vasudevan, B. S. Kannan, J. Lakshmi, S. Mohanraj, and G. Sozhan, “Effects of alternating and direct current in electrocoagulation process on the removal of flüoride from water,” Journal of Chemical Technology and Biotechnology, vol.86, pp. 428-436, 2011.
  • K. W. Pi, Q. Xiao, H. Q. Zhang, M. Xia, and A. R. Gerson, “Decolorization of synthetic methyl orange wastewater by electrocoagulation with periodic reversal of electrodes and optimization by RSM,” Process Safety and Environmental Protection, vol.92, pp.796-806, 2014.
  • F. Ozyonar, and B. Karagozoglu, “Treatment of pretreated coke wastewater by electrocoagulation and electrochemical peroxidation processes,” Separation and Purification Technology, vol. 150, pp. 268-277, 2015.
  • R. G. Bhaskar, and P. R. Khangaonkar, “Electroflotation-A critical review,” Transactions of the Indian Institute of Metals, vol. 37, pp. 59-66, 1984.
  • C. Y. Hu, S. L. Lo, and W. H. Kuan, “Effect of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminium electrodes,” Water Research, vol. 37, pp. 4513-4523, 2003.
  • B. Lin, R. Hu, C. Ye, Y. Li, and C. Lin, “A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scannins electrochemical probes,” Electrochimica Acta, vol.55, pp. 6542-6545, 2010.
  • C. H. Huang, L. Chen, and C. L. Yang, “Effect of anions on electrochemical coagulation for cadmium removal,” Separation and Purification Technology, vol.65, pp.137-146, 2009.
  • N. Mordishahla, M. A. Behnajady, and S. Mohammadi-Aghdam, “Investigation of the effect of different electrodes and their connections on the removal efficiency of 4- nitrophenol from aqueous solution by electrocoagulation,” Journal of Hazardous Materials, vol.154, pp.778-786, 2008.
  • M. Kobya, M. Bayramoglu, and M. Eyvaz, “Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections,” Journal of Hazardous Materials, vol.148, pp.311-318, 2007.
  • M. Kobya, F. Ulu, U. Gebologlu, E. Demirbas, and M. S. Oncel, “Treatment of potable water containing low concentration of arsenic with electrocoagulation: different connection modes and Fe-Al electrodes,” Separation and Purification Technology, vol.77, pp. 283-293, 2011.
  • A. K. Golder, A. N. Samanta, and S. Ray, “Removal of Cr3+ by electrocoagulation with multiple electrodes: bipolar and monopolar configurations,” Journal of Hazardous Materials, vol.141, pp. 653-661, 2007.
  • S. Garcia-Segura, M. Maesia, S. G. Eiband, J. V. de Melo, and C. A. Martínez-Huitle, “Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other Technologies,” Journal of Electroanalytical Chemistry, vol.801, pp. 267-299, 2017.
  • D. Gosh, C. R. Medhi, and M. K. Purkait, “Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections,” Chemosphere, vol.73, pp.1393-1400, 2008.
  • Y. Esfandyari, Y. Mahdavi, M. Seyedsalehi, M. Hoseini, G. H. Safari, M. G. Ghozikali, H. Kamani, and J. Jaafari, “Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes,” Environmental Science and Pollution Research, vol.22, pp.6288-6297, 2015.
  • R. M. Bande, B. Prasad, I. M. Mishra, and K. L. Wasewar, “Oil field effluent water treatment for safe disposal by electroflotation,” Chemical Engineering Journal, vol.137, pp.503-509, 2008.
  • M. Carmona, M. Khemis, J. P. Leclerc, and F. A. Lapicque, “Simple model to predict the removal of oil suspensions from water using the electrocoagulation technique,” Chemical Engineering Science, vol.61 (4), pp. 1237-1246, 2006.
  • E. M. Kaliniichuk, I. I. Vasilenko, V. Y. Shchepanyuk, N. A. Sukhoverkhova, and I. A. Makarov, “Treating refinery wastewaters to remove emulsified oils by electrocoagulation and electroflotation,” International Chemical Engineering, vol.16 (3), pp. 434-435, 1976.
  • X. Chen, G. Chen, and P.L. Yue, “Separation of pollutants from restaurant wastewater by electrocoagulation,” Separation and Purification Technology, vol.19 (1–2), pp. 65-76, 2000.
  • N. M. Mostefa, and M. Tir, “Coupling flocculation with electroflotation for waste oil/water emulsion treatment. Optimization of the operating conditions,” Desalination, vol. 161, pp.115–121, 2004.
  • I. Hassan, I. Nirdosh, and G. H. Sedahmed, “Separation of oil from oil–water emulsions by electrocoagulation in an electrochemical reactor with a fixed-bed anode,” Water, Air & Soil Pollution, vol. 226,pp.271, 2015.
  • K. Ighilahriz, M. T. Ahmed, H. Djelal, and R. Maachi, “Electrocoagulation and electro-oxidation treatment for the leachate of oil-drilling mud,” Desalination and Water Treatment, vol.52, pp.5833-5839, 2014.
  • F. M. D. Chequer, G. A. R. de Oliveira, E. R. A. Ferraz, J. C. Cardoso, M. V. B. Zanoni, and D. P. de Oliveira “Textile dyes: dyeing process and environmental impact,” Eco Friendly Text Dye Finish, pp.151-176. 2013. http s://doi. org/10.5772 /53659.
  • U.B. Ogutveren, N. Gonen, and S. Koparal, “Removal of dye stuffs from wastewater: electrocoagulation of Acilan Blau using soluble anode,” Journal of Environmental Science and Health Part A, vol.27 (5), pp.1237-1247, 1992.
  • Z. Zaroual, M. Azzi, N. Saib, and E. Chaînet, “Contribution to the study of electrocoagulation mechanism in basic textile effluent,” Journal of Hazardous Materials, vol.131, pp.73-78, 2006.
  • M. Kobya, O.T. Can, and M. Bayramoglu, “Treatment of Textile Wastewaters by Electrocoagulation Using Iron and Aluminum Electrodes,” Journal of Hazardous Materials, vol.100 (1-3), pp.163-178, 2003.
  • J. Ibanez, M. M. Singh, and Z. Szafran, “Laboratory experiments on elecrochemical remediation of the environment. Part 4: color removal of simulated wastwater by electrocoagulation–electroflotation,” Journal of Chemical Education, vol.75 (8), pp.1040-1041, 1998.
  • L. Fan, F. Yang, and W. Yang, “Performance of the decolorization of an Azo dye with bipolar packed bed cell,” Separation and Purification Technology, vol.34, pp.89-96. 2004.
  • P. Canizares, M. Carmona, J. Lobato, F. Martinez, and M. A. Rodrigo, “Electrodissolution Of Aluminum Electrodes in Electrocoagulation Processes,” Indian journal of Engineering Chemical Research, vol.44, pp. 4178-4185, 2005.
  • M. M. Emamjomeh, M. Sivakumar, “Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes,” Journal of Environmental Management, vol. 90, pp.1663-1679, 2009.
  • D. T. Cestarolli, A. das G. de Oliveira, and E. M. Guerra, “Removal of Eriochrome Black textile dye from aqueous solution by combined electrocoagulation–electrofotation methodology,” Applied Water Science, vol.9, pp.100-106, 2019. https://doi.org/10.1007/s13201-019-0985-x.
  • M. A. Abdel Khalek, F. I. El Hosiny, K. A. Selim, and I. Osama, “A novel continuous electroflotation cell design for industrial effluent treatment,” Sustainability Water Resources Management, vol.5, pp.457-466. 2019. DOI 10.1007/s40899-017-0199-z.
  • M. A. Ahangarnokolaei, H. Ganjidoust and B. Ayat, “Optimization of parameters of electrocoagulation/ flotation process for removal of Acid Red 14 with mesh stainless steel electrodes,” Journal of Water Reuse and Desalination, vol.08-2, Pp.278-292, 2018.
  • M. V. B. Gonçalves, S. C. De Oliveira, B. M. P. N. Abreu, E. M. Guerra and D. T. Cestarolli, “Electrocoagulation/electroflotation Process Applied to Decolourization of a Solution Containing the Dye Yellow Sirius K-CF,” International Journal of Electrochemical Science, vol.11, pp.7576-7583, 2016.
  • A. Amour, B. Merzouk, J. P. Leclerc, and F. Lapicque, “Removal of reactive textile dye from aqueous solutions by electrocoagulation in a continuous cell,” Desalination and Water Treatment, vol.57(48-49), pp.22764-22773, 2016.
  • P. Koedrith, H. Kim, J. I. Weon, and Y. R. Seo, “Toxicogenomic approaches for understanding molecular mechanisms of heacy metal mutagenicity and carcinogenicity,” International Journal of Hygiene and Environmental Health, vol.216, pp.587–598, 2013.
  • S. Vasudevan, J. Lakshmi, and G. Sozhan, “Effects of alternatin and direct current in electrocoagulation process on the removal of cadmium from water,” Journal of Hazardous Materials, vol.192, pp.26-34, 2011.
  • R. Kamaraj, and S. Vasudevan, “Evaluation of electrocoagulation process for the removal of strontium and cesium from aqueous solution,” Chemical Engineering Research and Design, vol.93, pp.522-530, 2015.
  • C. Escobar, C. Soto-Salazar, and M. I. Toral, “Optimization of the electrocoagulation process for the removal of copper, lead and cádmium in natural waters and simulated wastewater,” Journal of Environmental Management, vol.81, pp. 384-391, 2006.
  • R. G. Casqueira, M. L. Torem, and H. M. Kohler, “The removal of zinc from liquid streams by electroflotation,” Minerals Engineering, vol.19, pp.1388-1392, 2006.
  • J. Zhu, F. Wu, X. Pan, J. Guo, and D. Wen, “Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminium electrodes,” Journal of Materials and Environmental Science, vol.23, pp. 1066-1071, 2011.
  • D. Lakshmanan, D. A. Clifford, and G. Samanta, “Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation,” Water Research, vol.44, pp.5641-5652, 2010.
  • J. F. Martínez-Villafañe, C. Montero-Ocampo, and A. M. García-Lara, “Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water,” Journal of Hazardous Materials, vol.172, pp.1617-1622, 2009.
  • F. Akbal, and S. Camci, “Treatment of metal plating wastewater by electrocoagulation,” Environmental Progress & Sustainable Energy, vol.31, pp.340–350, 2012.
  • H. J. Mansoorian, A. H. Mahvi, and A. J. Jafari, “Removal of lead and zinc from battery industry wastewater using electrocoagulation process: influence of direct and alternating current by using iron and stainless steel rod electrodes,” Separation and Purification Technology, vol.135, pp.165–175, 2014.
  • G. Moussavi, F. Majidi, and M. Farzadkia, “The influence of operational parameters on elimination of cyanide from wastewater using the electrocoagulation process,” Desalination, vol.280, pp.127-133, 2011.
  • A. H. Essadki, B. Gourich, Ch. Vial, H. Delmas, and M. Bennajah, “Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor,” Journal of Hazardous Materials, vol.168, pp.1325-1333, 2009.
  • K. Govindan, M. Noel, and R. Mohan, “Removal of nitrate ion from water by electrochemical approaches,” Journal of Water Process Engineering, vol.6, pp.58-63, 2015.
  • A. H. Mahvi, S. J. A. Ebrahimi, A. Mesdaghinia, H. Gharibi, and M. H. Sowlat, “Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation- electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent,” Journal of Hazardous Materials, vol.192, pp.1267-1274, 2011.
  • A. H. Mahvi, S. J. A. Ebrahimi, A. Mesdaghinia, H. Gharibi, and M. H. Sowlat, “Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation- electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent,” Journal of Hazardous Materials, vol.192, pp.1267-1274, 2011.
  • M. Murugananthan, G. B. Raju, and S. Prabhakar, “Removal of sulfide, sulfate and sülfite ions by electro coagulation,” Journal of Hazardous Materials, vol.109(1-3), pp.37-44, 2004.
  • Y. Yu, X. Wang, D. Yang, B. Lei, X. Zhang, and X. Zhang, “Evaluation of human health risks posed by carcinogenic and non-carcinogenic multiple contaminants associated with consumption of fish from Taihu Lake, China,” Food Chemical Toxicology, vol 69, pp.86-93, 2014.
  • O. T. Can, and M. Bayramoglu, “The effect of process conditions on the treatment of benzoquinone solution by electrocoagulation,” Journal of Hazardous Materials, vol.173, pp.731-736, 2010.
  • A. S. Fajardo, R. C. Martins, and R. M. Quinta-Ferreira, “Treatment of a synthetic phenolic mixture by electrocoagulation using Al, Cu, Fe, Pb, and Zn as anode materials,” Industrial & Engineering Chemistry Research, vol.53, pp.18339-18345, 2014.
  • E. Mohora, S. Rončević, J. Agbaba, A. Tubić, M. Mitić, M. Klašnia, and B. Dalmacija, “Removal of arsenic from groundwater rich in natural organic matter (NOM) by continuous electrocoagulation/floculation (ECF),” Separation and Purification Technology, vol.136, pp.150-156, 2014.
  • M. Vepsäläinen, M. Pulliainen, and M. Sillanpää, “Effect of electrochemical cell structure on natural organic matter (NOM) removal from surface water through electrocoagulation (EC),” Separation and Purification Technology, vol.99, pp.20-27, 2012.
  • F. Ulu, S. Barisci, M. Kobya, and M. Sillanpää, “An evaluation on different origins of natural organic matters using various anodes by electrocoagulation,” Chemosphere, vol.125, pp.108-114, 2015.
  • T. Olmez-Hanci, Z. Kartal, and I. Arslan-Alaton, “Electrocoagulation of commercial naphthalene sulfonates: process optimization and assessment of implementation potential,” Journal of Environmental Management, vol.99, pp.44-51, 2012.
  • N. Mordishahla, M. A. Behnajady, and S. Mohammadi-Aghdam, “Investigation of the effect of different electrodes and their connections on the removal efficiency of 4- nitrophenol from aqueous solution by electrocoagulation,” Journal of Hazardous Materials, vol.154, pp.778-78, 2008.
  • K. L. Dubrawski, and M. Mohseni, “In-situ identification of iron electrocoagulation speciation and application for natural organic matter (NOM) removal,” Water Research, vol.47, vol.5371-5380, 2013.
  • M. Ben-Sasson, Y. Zidon, R. Calvo, and A. Adin, “Enhanced removal of natural organic matter by hybrid process of electrocoagulation and dead-end microfiltration,” Chemical Engineering Journal, vol.232, pp.338-345, 2013.
  • F. Ozyonar, and S. Aksoy, “Removal of Salicylic Acid from Aqueous Solutions Using Various Electrodes and Different Connection Modes by Electrocoagulation,” International Journal of Electrochemical Science, vol.11, pp.3680-3696, 2016.
  • W. L. Chou, C. T. Wang, and K. Y. Huang, “Investigation of process parameters for the removal of polyvinyl alcohol from aqueous solution by iron electrocoagulation,” Desalination, vol.251, pp.12-19, 2010.
  • E. Brillas, B. Boye, M. A. Baños, J. C. Calpe, and J. A. Garrido, “Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous médium by the peroxi-coagulation method,” Chemosphere, vol.51, pp.227-235, 2003.
  • H. L. Kim, J. B. Cho, Y. J. Park, and I. H. Cho, “Treatment and toxicity reduction of textile dyeing wastewater using the electrocoagulation-electroflotation process,” Journal of Environmental Science and Health, vol.51(8), pp.661-668, 2016.
  • O. Chavalparit, and M. Ongwandee, “Optimizing electrocoagulation process for the treatment of biodiesel wastewater using response surface methodology,” Journal of Environmental Sciences, vol.21, pp.1491-1496, 2009.
  • R. S. Bejankiwar, “Electrochemical treatment of cigarette industry wastewater: feasibility study,” Water Research, vol.36, pp. 4386-4390, 2002.
  • M. Panizza, and G. Cerisola, “Applicability of electrochemical methods to carwash wastewaters for reuse. Part 2: Electrocoagulation and anodic oxidation integrated process,” Journal of Electroanalytical Chemistry, vol.638, pp.236-240, 2010.
  • K. P. Kalyani, N. Balasubramanian, and C. Srinivasakannan, “Decolorization and COD reduction of paper industrial effluent using electro-coagulation,” Chemical Engineering Journal, vol.151, pp.97-104, 2009.
  • X. Yunqing, and L. Jianwei, “Application of electrochemical treatment for the effluent from marine recirculating aquaculture systems,” Procedia Environmental Sciences, vol.10, pp.2329-2335, 2011.
  • M. Murugananthan, G. B. Raju, and S. Prabhakar, “Separation of pollutants from tannery effluents by electro flotation,” Separation and Purification Technology, vol.40, pp.69-75, 2004.
  • E. A. Maksimov, and A. A. Ostsemin, “Intensifying the cleaning of emulsion-and oil-bearing waste water from rolled-product manufacturing by electroflotation,” Metallurgist, vol.58, pp.945-949, 2015.
  • G. Hassani, A. Alinejad, A. Sadat, A. Esmaeili, M. Ziaei, A. A. Bazrafshan, and T. Sadat, “Optimization of landfill leachate treatment process by electrocoagulation, electroflotation and sedimentation sequential method,” International Journal of Electrochemical Science, vol.11, pp.6705-6018, 2016.
  • R. Mahajan, V. Khandegar, and A. K. Saroha, “Treatment of hospital operation theatre effluent by electrocoagulation,” International Journal of Chemical Environmental Engineering, vol.4, pp.104-107, 2013.
  • A. S. Fajardo, R. F. Rodrigues, R. C. Martins, L. M. Castro, and R. M. Quinta-Ferreira, “Phenolic wastewaters treatment by electrocoagulation process using Zn anode,” Chemical Engineering Journal, vol.275 pp.331-341, 2015.
  • S. Zodi, O. Potier, F. Lapicque, and J. P. Leclerc, “Treatment of the textile wastewaters by electrocoagulation: effect of operating parameters on the sludge settling characteristics,” Separation and Purification Technology, vol.69, pp.29-36, 2009.
  • M. Kobya, H. Hiz, E. Senturk, C. Aydiner, and E. Demirbas, “Treatment of potato chips manufacturing wastewater by electrocoagulation,” Desalination, vol.190, pp.201-211, 2006.
  • X. Chen, G. Chen, and P. L. Yue, “Separation of pollutants from restaurant wastewater by electrocoagulation,” Separation and Purification Technology, vol.19, pp.65-76, 2000.
  • T. U. Un, and E. Ozel, “Electrocoagulation of yogurt industry wastewater and the production of ceramic pigments from the sludge,” Separation and Purification Technology, vol.120, pp.386-391, 2013.
  • G. Z. Kyzas, and K. A. Matis, “Electroflotation process: A review” Journal of Molecular Liquids, vol.220, pp.657-664, 2016.

ELECTROFLOTATION PROCESS IN WATER AND WASTEWATER TREATMENT

Yıl 2020, Cilt: 9 Sayı: 2, 730 - 745, 07.08.2020
https://doi.org/10.28948/ngumuh.653062

Öz

The flotation process is a gravitational separation (flotation) process applied in mineral processing. In recent years, water and wastewater treatment is widely used in the separation of pollutants. Flotation processes are named according to the bubble method produced. For example; dispersed-air flotation, dissolved-air flotation and electroflotation (Ef), one of the electrochemical treatment processes in recent years, can be given. In this study, electroflotation process of water, heavy metal, organic and inorganic pollutants, oil and products, dyes, detergents, etc. The results obtained by applying the removal of pollutants were focused on. In the results of these studies, some advantages of electroflotation process have provided satisfactory results in water and wastewater treatment or water recovery.


Kaynakça

  • J. H. Clark, “Green chemistry: challenges and opportunities,” Green Chemistry, vol.1, pp. 1-8, 1999.
  • K. Müller, “Electroflotation from the Double Layer to Trouble Waters in Oliver”. in Electrochemistry in Transition, J. Murphy and vs, Eds., Plenum Press, New York, 1992.
  • A. Y. Hosny, “Separating Oil from Oil-Water Emulsions by Electroflotation Technique,” Separations Technology, vol. 6, pp.9-17, 1996.
  • L.B. Mansour, and S. Chalbi, “Removal of oil from oil/water emulsions using electroflotation process,” Journal of Applied Electrochemistry, vol. 36, pp. 577-581, 2006.
  • M. Kobya, E. Senturk, and M. Bayramoglu, “Treatment of poultry slaughterhouse wastewaters by electrocoagulation,” Journal of Hazardous Materials, vol.133, pp.172-176, 2006.
  • S. Zaidi, T. Chaabane, V. Sivasankar, A. Darchen, R. Maachi, T. A. Msagati, and M. Prabhakaran, “Performance efficiency of electro-coagulation coupled electro-flotation process (EC-EF) versus adsorption process in doxycycline removal from aqueous solutions,” Process Safety and Environmental Protection, vol. 102, pp. 450-461, 2016.
  • B. J. Hernlem, and L.S. Tsai, “Chlorine generation and disinfection by electroflotation,” Journal of Food Science, vol. 65, pp. 834-837, 2000.
  • X. Chen, and G. Chen, “Stable Ti/RuO2–Sb2O5–SnO2 electrodes for O2 evolution,” Electrochimica Acta, vol. 50, pp. 4155-4159, 2005.
  • R. Mraz, and J. Krýsa, “Long service life IrO2/Ta2O5 electrodes for electroflotation,” Journal of Applied Electrochemistry, vol. 24, pp.1262-1266, 1994.
  • C.C. Ho, and C. Y. Chan, “The application of lead dioxide-coated titanium anode in the electroflotation of palm oil mill effluent,” Water Research, vol. 20, pp. 1523-1527. 1986.
  • V. A. Kolesnikov, V.I. Il’in, V.A. Brodskii, T.V. Guseva, and M. A. Vartanyan, “Improvement of electroflotation treatment of waste waters from ceramic enterprises,” Glass and Ceramics, vol. 71, pp. 421-424, 2015.
  • G. Hassani, A. Alinejad, A. Sadat, A. Esmaeili, M. Ziaei, A. A. Bazrafshan, and T. Sadat, “Optimization of landfill leachate treatment process by electrocoagulation, electroflotation and sedimentation sequential method,” International Journal of Electrochemical Science, vol. 11, pp. 6705-6018, 2016.
  • F. Ozyonar, “Optimization of operational parameters of electrocoagulation process for real textile wastewater treatment using Taguchi experimental design method,” Desalination and Water Treatment, vol. 57:6, pp. 2389-2399, 2016.
  • M. Bayramoglu, M. Kobya, O. T. Can, and M. Sozbir, “Operating cost analysis of electrocoagulation of textile dye wastewater,” Separation and Purification Technology, vol. 37, pp. 117-125, 2004.
  • F. Ozyonar, and B. Karagozoglu, “Investigation of technical and economic analysis of electrocoagulation process for the treatment of great and small cattle slaughterhouse wastewater,” Desalination and Water Treatment, vol. 52:1-3, pp. 74-87, 2014.
  • M. F. Pouet, and A. Grasmick, “Urban wastewater treatment by electrocoagulation and flotation,” Water Science and Technology, vol. 31, pp.275, 1995.
  • M. Kobya, E. Demirbas, N.U. Parlak, and S. Yigit, “Treatment of cadmium and nickelelectroplating rinse water by electrocoagulation,” Environmental Technology, vol. 31, pp. 1471-1481, 2010.
  • F. Janpoor, A. Torabian, and V. Khatibikamal, “Treatment of laundry waste-water by electrocoagulation,” J. Chemical Technology Biotechnology, vol. 86, pp. 1113–1120, 2011.
  • S. Vasudevan, and J. Lakshmi,” Effects of alternating and direct current inelectrocoagulation process on the removal of cadmium from water-A novelapproach, “Separation and Purification Technology, vol. 80, pp. 643-651, 2011.
  • S. Vasudevan, J. Lakshmi, and R. Vanathi, “Electrochemical coagulation forchromium removal: process optimization, kinetics, isotherms and sludgecharacterization,” Clean, vol. 38, pp. 9-16, 2010.
  • K. Dermentzis, A. Christoforidis, and E. Valsamidou, “Removal of nickel copper, zincand chromium from synthetic and industrial wastewater byelectrocoagulation,” International Journal of Environmental Science, vol.1, pp. 697–710, 2011.
  • R. Kamaraj, P. Ganesan, and S. Vasudevan, “Removal of lead from aqueous solutionsby electrocoagulation: isotherm, kinetics and thermodynamic studies,” International Journal of Environental Science Technology, vol. 12, pp. 683-692, 2015.
  • C. T. Tanneru, and S. Chellam, “Mechanisms of virus control during iron electrocoagulation: microfiltration of surface water,” Water Research, vol. 46, pp. 2111–2120, 2012.
  • P. Canizares, P. Martinez, M. A. Rodrigo, C. Jimenez, C. Saez, and J. Lobato, “Modelling of wastewater electrocoagulation processes Part I. Generaldescription and application to kaolin-polluted wastewaters,” Separation and Purification Technology, vol. 60, pp. 155-161, 2008.
  • S. Calvo, J. P. Leclerc, G. Tanguy, M. C. Cames, G. Paternolte, G. Valentin, A. Rostan, and F. Lapicque, “An electrocoaguhtion unit for the purification of solubleoil wastes of high COD,” Environental Progress, vol. 22, pp. 57-65, 2003.
  • P. I. Omwene, and M. Kobya, “Treatment of domestic wastewater phosphate by electrocoagulationusing Fe and Al electrodes: A comparative study,” Process Safety and Environmental Protection, vol.116, pp.34-51, 2018.
  • M. Y. A. Mollah, R. Schennach, J. P. Parga, and D. L. Cocke,” Electrocoagulation (EC)-science and applications,” Journal of Hazardous Materials, vol.84, pp. 29-41, 2001.
  • G. Chen, “Electrochemical technologies in wastewater treatment,” Separation and Purification Technology, vol. 38, pp. 11-41, 2004.
  • A. Aouni, C. Fersi, M. B. S. Ali, and M. Dhahbi, “Treatment of textile wastewater by ahybrid electrocoagulation/nanofiltration process,” Journal of Hazardous Materials, vol.168, pp. 868-874, 2009.
  • D. Landolt, R. Acosta, R. H. Muller, C. W. Tobias, “An optical study of cathodic hydrogen evolution in highrate electrolysis,” Journal of the Electrochemical Society, vol.117, pp. 839-845, 1970.
  • P. J. Sides, “Phenomena and effects of electrolytic gas evolution,” in Modern Aspects of Electrochemistry, Conway BE, Bockris JO, White RE Eds., Springer, Boston, MA, pp. 303–354, 1986.
  • C. Jiménez, B. Talavera, C. Saez, P. Cañizares, and M. A. Rodrigo, “Study of the production of hydrogen bubbles at low current densities for electroflotation processes,” Journal of Chemical Technology & Biotechnology, vol.85, pp. 1368-1373, 2010.
  • R. Alam, J. Q. Shang, and A. H. Khan, “Bubble size distribution in a laboratory-scale electroflotation study,” Environmental Monitoring and Assessment, pp.189-193, Apr. 2017.
  • R. Mohtasham, and J. Q. Shang, “Electroflotation for Treatment of Industrial Wastewaters: A Focused Review,” Environmental Processes, vol.6, pp. 325-353, 2019.
  • S. Vasudevan, B. S. Kannan, J. Lakshmi, S. Mohanraj, and G. Sozhan, “Effects of alternating and direct current in electrocoagulation process on the removal of flüoride from water,” Journal of Chemical Technology and Biotechnology, vol.86, pp. 428-436, 2011.
  • K. W. Pi, Q. Xiao, H. Q. Zhang, M. Xia, and A. R. Gerson, “Decolorization of synthetic methyl orange wastewater by electrocoagulation with periodic reversal of electrodes and optimization by RSM,” Process Safety and Environmental Protection, vol.92, pp.796-806, 2014.
  • F. Ozyonar, and B. Karagozoglu, “Treatment of pretreated coke wastewater by electrocoagulation and electrochemical peroxidation processes,” Separation and Purification Technology, vol. 150, pp. 268-277, 2015.
  • R. G. Bhaskar, and P. R. Khangaonkar, “Electroflotation-A critical review,” Transactions of the Indian Institute of Metals, vol. 37, pp. 59-66, 1984.
  • C. Y. Hu, S. L. Lo, and W. H. Kuan, “Effect of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminium electrodes,” Water Research, vol. 37, pp. 4513-4523, 2003.
  • B. Lin, R. Hu, C. Ye, Y. Li, and C. Lin, “A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scannins electrochemical probes,” Electrochimica Acta, vol.55, pp. 6542-6545, 2010.
  • C. H. Huang, L. Chen, and C. L. Yang, “Effect of anions on electrochemical coagulation for cadmium removal,” Separation and Purification Technology, vol.65, pp.137-146, 2009.
  • N. Mordishahla, M. A. Behnajady, and S. Mohammadi-Aghdam, “Investigation of the effect of different electrodes and their connections on the removal efficiency of 4- nitrophenol from aqueous solution by electrocoagulation,” Journal of Hazardous Materials, vol.154, pp.778-786, 2008.
  • M. Kobya, M. Bayramoglu, and M. Eyvaz, “Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections,” Journal of Hazardous Materials, vol.148, pp.311-318, 2007.
  • M. Kobya, F. Ulu, U. Gebologlu, E. Demirbas, and M. S. Oncel, “Treatment of potable water containing low concentration of arsenic with electrocoagulation: different connection modes and Fe-Al electrodes,” Separation and Purification Technology, vol.77, pp. 283-293, 2011.
  • A. K. Golder, A. N. Samanta, and S. Ray, “Removal of Cr3+ by electrocoagulation with multiple electrodes: bipolar and monopolar configurations,” Journal of Hazardous Materials, vol.141, pp. 653-661, 2007.
  • S. Garcia-Segura, M. Maesia, S. G. Eiband, J. V. de Melo, and C. A. Martínez-Huitle, “Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other Technologies,” Journal of Electroanalytical Chemistry, vol.801, pp. 267-299, 2017.
  • D. Gosh, C. R. Medhi, and M. K. Purkait, “Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections,” Chemosphere, vol.73, pp.1393-1400, 2008.
  • Y. Esfandyari, Y. Mahdavi, M. Seyedsalehi, M. Hoseini, G. H. Safari, M. G. Ghozikali, H. Kamani, and J. Jaafari, “Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes,” Environmental Science and Pollution Research, vol.22, pp.6288-6297, 2015.
  • R. M. Bande, B. Prasad, I. M. Mishra, and K. L. Wasewar, “Oil field effluent water treatment for safe disposal by electroflotation,” Chemical Engineering Journal, vol.137, pp.503-509, 2008.
  • M. Carmona, M. Khemis, J. P. Leclerc, and F. A. Lapicque, “Simple model to predict the removal of oil suspensions from water using the electrocoagulation technique,” Chemical Engineering Science, vol.61 (4), pp. 1237-1246, 2006.
  • E. M. Kaliniichuk, I. I. Vasilenko, V. Y. Shchepanyuk, N. A. Sukhoverkhova, and I. A. Makarov, “Treating refinery wastewaters to remove emulsified oils by electrocoagulation and electroflotation,” International Chemical Engineering, vol.16 (3), pp. 434-435, 1976.
  • X. Chen, G. Chen, and P.L. Yue, “Separation of pollutants from restaurant wastewater by electrocoagulation,” Separation and Purification Technology, vol.19 (1–2), pp. 65-76, 2000.
  • N. M. Mostefa, and M. Tir, “Coupling flocculation with electroflotation for waste oil/water emulsion treatment. Optimization of the operating conditions,” Desalination, vol. 161, pp.115–121, 2004.
  • I. Hassan, I. Nirdosh, and G. H. Sedahmed, “Separation of oil from oil–water emulsions by electrocoagulation in an electrochemical reactor with a fixed-bed anode,” Water, Air & Soil Pollution, vol. 226,pp.271, 2015.
  • K. Ighilahriz, M. T. Ahmed, H. Djelal, and R. Maachi, “Electrocoagulation and electro-oxidation treatment for the leachate of oil-drilling mud,” Desalination and Water Treatment, vol.52, pp.5833-5839, 2014.
  • F. M. D. Chequer, G. A. R. de Oliveira, E. R. A. Ferraz, J. C. Cardoso, M. V. B. Zanoni, and D. P. de Oliveira “Textile dyes: dyeing process and environmental impact,” Eco Friendly Text Dye Finish, pp.151-176. 2013. http s://doi. org/10.5772 /53659.
  • U.B. Ogutveren, N. Gonen, and S. Koparal, “Removal of dye stuffs from wastewater: electrocoagulation of Acilan Blau using soluble anode,” Journal of Environmental Science and Health Part A, vol.27 (5), pp.1237-1247, 1992.
  • Z. Zaroual, M. Azzi, N. Saib, and E. Chaînet, “Contribution to the study of electrocoagulation mechanism in basic textile effluent,” Journal of Hazardous Materials, vol.131, pp.73-78, 2006.
  • M. Kobya, O.T. Can, and M. Bayramoglu, “Treatment of Textile Wastewaters by Electrocoagulation Using Iron and Aluminum Electrodes,” Journal of Hazardous Materials, vol.100 (1-3), pp.163-178, 2003.
  • J. Ibanez, M. M. Singh, and Z. Szafran, “Laboratory experiments on elecrochemical remediation of the environment. Part 4: color removal of simulated wastwater by electrocoagulation–electroflotation,” Journal of Chemical Education, vol.75 (8), pp.1040-1041, 1998.
  • L. Fan, F. Yang, and W. Yang, “Performance of the decolorization of an Azo dye with bipolar packed bed cell,” Separation and Purification Technology, vol.34, pp.89-96. 2004.
  • P. Canizares, M. Carmona, J. Lobato, F. Martinez, and M. A. Rodrigo, “Electrodissolution Of Aluminum Electrodes in Electrocoagulation Processes,” Indian journal of Engineering Chemical Research, vol.44, pp. 4178-4185, 2005.
  • M. M. Emamjomeh, M. Sivakumar, “Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes,” Journal of Environmental Management, vol. 90, pp.1663-1679, 2009.
  • D. T. Cestarolli, A. das G. de Oliveira, and E. M. Guerra, “Removal of Eriochrome Black textile dye from aqueous solution by combined electrocoagulation–electrofotation methodology,” Applied Water Science, vol.9, pp.100-106, 2019. https://doi.org/10.1007/s13201-019-0985-x.
  • M. A. Abdel Khalek, F. I. El Hosiny, K. A. Selim, and I. Osama, “A novel continuous electroflotation cell design for industrial effluent treatment,” Sustainability Water Resources Management, vol.5, pp.457-466. 2019. DOI 10.1007/s40899-017-0199-z.
  • M. A. Ahangarnokolaei, H. Ganjidoust and B. Ayat, “Optimization of parameters of electrocoagulation/ flotation process for removal of Acid Red 14 with mesh stainless steel electrodes,” Journal of Water Reuse and Desalination, vol.08-2, Pp.278-292, 2018.
  • M. V. B. Gonçalves, S. C. De Oliveira, B. M. P. N. Abreu, E. M. Guerra and D. T. Cestarolli, “Electrocoagulation/electroflotation Process Applied to Decolourization of a Solution Containing the Dye Yellow Sirius K-CF,” International Journal of Electrochemical Science, vol.11, pp.7576-7583, 2016.
  • A. Amour, B. Merzouk, J. P. Leclerc, and F. Lapicque, “Removal of reactive textile dye from aqueous solutions by electrocoagulation in a continuous cell,” Desalination and Water Treatment, vol.57(48-49), pp.22764-22773, 2016.
  • P. Koedrith, H. Kim, J. I. Weon, and Y. R. Seo, “Toxicogenomic approaches for understanding molecular mechanisms of heacy metal mutagenicity and carcinogenicity,” International Journal of Hygiene and Environmental Health, vol.216, pp.587–598, 2013.
  • S. Vasudevan, J. Lakshmi, and G. Sozhan, “Effects of alternatin and direct current in electrocoagulation process on the removal of cadmium from water,” Journal of Hazardous Materials, vol.192, pp.26-34, 2011.
  • R. Kamaraj, and S. Vasudevan, “Evaluation of electrocoagulation process for the removal of strontium and cesium from aqueous solution,” Chemical Engineering Research and Design, vol.93, pp.522-530, 2015.
  • C. Escobar, C. Soto-Salazar, and M. I. Toral, “Optimization of the electrocoagulation process for the removal of copper, lead and cádmium in natural waters and simulated wastewater,” Journal of Environmental Management, vol.81, pp. 384-391, 2006.
  • R. G. Casqueira, M. L. Torem, and H. M. Kohler, “The removal of zinc from liquid streams by electroflotation,” Minerals Engineering, vol.19, pp.1388-1392, 2006.
  • J. Zhu, F. Wu, X. Pan, J. Guo, and D. Wen, “Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminium electrodes,” Journal of Materials and Environmental Science, vol.23, pp. 1066-1071, 2011.
  • D. Lakshmanan, D. A. Clifford, and G. Samanta, “Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation,” Water Research, vol.44, pp.5641-5652, 2010.
  • J. F. Martínez-Villafañe, C. Montero-Ocampo, and A. M. García-Lara, “Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water,” Journal of Hazardous Materials, vol.172, pp.1617-1622, 2009.
  • F. Akbal, and S. Camci, “Treatment of metal plating wastewater by electrocoagulation,” Environmental Progress & Sustainable Energy, vol.31, pp.340–350, 2012.
  • H. J. Mansoorian, A. H. Mahvi, and A. J. Jafari, “Removal of lead and zinc from battery industry wastewater using electrocoagulation process: influence of direct and alternating current by using iron and stainless steel rod electrodes,” Separation and Purification Technology, vol.135, pp.165–175, 2014.
  • G. Moussavi, F. Majidi, and M. Farzadkia, “The influence of operational parameters on elimination of cyanide from wastewater using the electrocoagulation process,” Desalination, vol.280, pp.127-133, 2011.
  • A. H. Essadki, B. Gourich, Ch. Vial, H. Delmas, and M. Bennajah, “Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor,” Journal of Hazardous Materials, vol.168, pp.1325-1333, 2009.
  • K. Govindan, M. Noel, and R. Mohan, “Removal of nitrate ion from water by electrochemical approaches,” Journal of Water Process Engineering, vol.6, pp.58-63, 2015.
  • A. H. Mahvi, S. J. A. Ebrahimi, A. Mesdaghinia, H. Gharibi, and M. H. Sowlat, “Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation- electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent,” Journal of Hazardous Materials, vol.192, pp.1267-1274, 2011.
  • A. H. Mahvi, S. J. A. Ebrahimi, A. Mesdaghinia, H. Gharibi, and M. H. Sowlat, “Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation- electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent,” Journal of Hazardous Materials, vol.192, pp.1267-1274, 2011.
  • M. Murugananthan, G. B. Raju, and S. Prabhakar, “Removal of sulfide, sulfate and sülfite ions by electro coagulation,” Journal of Hazardous Materials, vol.109(1-3), pp.37-44, 2004.
  • Y. Yu, X. Wang, D. Yang, B. Lei, X. Zhang, and X. Zhang, “Evaluation of human health risks posed by carcinogenic and non-carcinogenic multiple contaminants associated with consumption of fish from Taihu Lake, China,” Food Chemical Toxicology, vol 69, pp.86-93, 2014.
  • O. T. Can, and M. Bayramoglu, “The effect of process conditions on the treatment of benzoquinone solution by electrocoagulation,” Journal of Hazardous Materials, vol.173, pp.731-736, 2010.
  • A. S. Fajardo, R. C. Martins, and R. M. Quinta-Ferreira, “Treatment of a synthetic phenolic mixture by electrocoagulation using Al, Cu, Fe, Pb, and Zn as anode materials,” Industrial & Engineering Chemistry Research, vol.53, pp.18339-18345, 2014.
  • E. Mohora, S. Rončević, J. Agbaba, A. Tubić, M. Mitić, M. Klašnia, and B. Dalmacija, “Removal of arsenic from groundwater rich in natural organic matter (NOM) by continuous electrocoagulation/floculation (ECF),” Separation and Purification Technology, vol.136, pp.150-156, 2014.
  • M. Vepsäläinen, M. Pulliainen, and M. Sillanpää, “Effect of electrochemical cell structure on natural organic matter (NOM) removal from surface water through electrocoagulation (EC),” Separation and Purification Technology, vol.99, pp.20-27, 2012.
  • F. Ulu, S. Barisci, M. Kobya, and M. Sillanpää, “An evaluation on different origins of natural organic matters using various anodes by electrocoagulation,” Chemosphere, vol.125, pp.108-114, 2015.
  • T. Olmez-Hanci, Z. Kartal, and I. Arslan-Alaton, “Electrocoagulation of commercial naphthalene sulfonates: process optimization and assessment of implementation potential,” Journal of Environmental Management, vol.99, pp.44-51, 2012.
  • N. Mordishahla, M. A. Behnajady, and S. Mohammadi-Aghdam, “Investigation of the effect of different electrodes and their connections on the removal efficiency of 4- nitrophenol from aqueous solution by electrocoagulation,” Journal of Hazardous Materials, vol.154, pp.778-78, 2008.
  • K. L. Dubrawski, and M. Mohseni, “In-situ identification of iron electrocoagulation speciation and application for natural organic matter (NOM) removal,” Water Research, vol.47, vol.5371-5380, 2013.
  • M. Ben-Sasson, Y. Zidon, R. Calvo, and A. Adin, “Enhanced removal of natural organic matter by hybrid process of electrocoagulation and dead-end microfiltration,” Chemical Engineering Journal, vol.232, pp.338-345, 2013.
  • F. Ozyonar, and S. Aksoy, “Removal of Salicylic Acid from Aqueous Solutions Using Various Electrodes and Different Connection Modes by Electrocoagulation,” International Journal of Electrochemical Science, vol.11, pp.3680-3696, 2016.
  • W. L. Chou, C. T. Wang, and K. Y. Huang, “Investigation of process parameters for the removal of polyvinyl alcohol from aqueous solution by iron electrocoagulation,” Desalination, vol.251, pp.12-19, 2010.
  • E. Brillas, B. Boye, M. A. Baños, J. C. Calpe, and J. A. Garrido, “Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous médium by the peroxi-coagulation method,” Chemosphere, vol.51, pp.227-235, 2003.
  • H. L. Kim, J. B. Cho, Y. J. Park, and I. H. Cho, “Treatment and toxicity reduction of textile dyeing wastewater using the electrocoagulation-electroflotation process,” Journal of Environmental Science and Health, vol.51(8), pp.661-668, 2016.
  • O. Chavalparit, and M. Ongwandee, “Optimizing electrocoagulation process for the treatment of biodiesel wastewater using response surface methodology,” Journal of Environmental Sciences, vol.21, pp.1491-1496, 2009.
  • R. S. Bejankiwar, “Electrochemical treatment of cigarette industry wastewater: feasibility study,” Water Research, vol.36, pp. 4386-4390, 2002.
  • M. Panizza, and G. Cerisola, “Applicability of electrochemical methods to carwash wastewaters for reuse. Part 2: Electrocoagulation and anodic oxidation integrated process,” Journal of Electroanalytical Chemistry, vol.638, pp.236-240, 2010.
  • K. P. Kalyani, N. Balasubramanian, and C. Srinivasakannan, “Decolorization and COD reduction of paper industrial effluent using electro-coagulation,” Chemical Engineering Journal, vol.151, pp.97-104, 2009.
  • X. Yunqing, and L. Jianwei, “Application of electrochemical treatment for the effluent from marine recirculating aquaculture systems,” Procedia Environmental Sciences, vol.10, pp.2329-2335, 2011.
  • M. Murugananthan, G. B. Raju, and S. Prabhakar, “Separation of pollutants from tannery effluents by electro flotation,” Separation and Purification Technology, vol.40, pp.69-75, 2004.
  • E. A. Maksimov, and A. A. Ostsemin, “Intensifying the cleaning of emulsion-and oil-bearing waste water from rolled-product manufacturing by electroflotation,” Metallurgist, vol.58, pp.945-949, 2015.
  • G. Hassani, A. Alinejad, A. Sadat, A. Esmaeili, M. Ziaei, A. A. Bazrafshan, and T. Sadat, “Optimization of landfill leachate treatment process by electrocoagulation, electroflotation and sedimentation sequential method,” International Journal of Electrochemical Science, vol.11, pp.6705-6018, 2016.
  • R. Mahajan, V. Khandegar, and A. K. Saroha, “Treatment of hospital operation theatre effluent by electrocoagulation,” International Journal of Chemical Environmental Engineering, vol.4, pp.104-107, 2013.
  • A. S. Fajardo, R. F. Rodrigues, R. C. Martins, L. M. Castro, and R. M. Quinta-Ferreira, “Phenolic wastewaters treatment by electrocoagulation process using Zn anode,” Chemical Engineering Journal, vol.275 pp.331-341, 2015.
  • S. Zodi, O. Potier, F. Lapicque, and J. P. Leclerc, “Treatment of the textile wastewaters by electrocoagulation: effect of operating parameters on the sludge settling characteristics,” Separation and Purification Technology, vol.69, pp.29-36, 2009.
  • M. Kobya, H. Hiz, E. Senturk, C. Aydiner, and E. Demirbas, “Treatment of potato chips manufacturing wastewater by electrocoagulation,” Desalination, vol.190, pp.201-211, 2006.
  • X. Chen, G. Chen, and P. L. Yue, “Separation of pollutants from restaurant wastewater by electrocoagulation,” Separation and Purification Technology, vol.19, pp.65-76, 2000.
  • T. U. Un, and E. Ozel, “Electrocoagulation of yogurt industry wastewater and the production of ceramic pigments from the sludge,” Separation and Purification Technology, vol.120, pp.386-391, 2013.
  • G. Z. Kyzas, and K. A. Matis, “Electroflotation process: A review” Journal of Molecular Liquids, vol.220, pp.657-664, 2016.
Toplam 113 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği
Yazarlar

Fuat Özyonar 0000-0001-6772-8010

Yayımlanma Tarihi 7 Ağustos 2020
Gönderilme Tarihi 29 Kasım 2019
Kabul Tarihi 19 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 2

Kaynak Göster

APA Özyonar, F. (2020). SU VE ATIKSU ARITMINDA ELEKTROFLOTASYON PROSESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 730-745. https://doi.org/10.28948/ngumuh.653062
AMA Özyonar F. SU VE ATIKSU ARITMINDA ELEKTROFLOTASYON PROSESİ. NÖHÜ Müh. Bilim. Derg. Ağustos 2020;9(2):730-745. doi:10.28948/ngumuh.653062
Chicago Özyonar, Fuat. “SU VE ATIKSU ARITMINDA ELEKTROFLOTASYON PROSESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, sy. 2 (Ağustos 2020): 730-45. https://doi.org/10.28948/ngumuh.653062.
EndNote Özyonar F (01 Ağustos 2020) SU VE ATIKSU ARITMINDA ELEKTROFLOTASYON PROSESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 2 730–745.
IEEE F. Özyonar, “SU VE ATIKSU ARITMINDA ELEKTROFLOTASYON PROSESİ”, NÖHÜ Müh. Bilim. Derg., c. 9, sy. 2, ss. 730–745, 2020, doi: 10.28948/ngumuh.653062.
ISNAD Özyonar, Fuat. “SU VE ATIKSU ARITMINDA ELEKTROFLOTASYON PROSESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/2 (Ağustos 2020), 730-745. https://doi.org/10.28948/ngumuh.653062.
JAMA Özyonar F. SU VE ATIKSU ARITMINDA ELEKTROFLOTASYON PROSESİ. NÖHÜ Müh. Bilim. Derg. 2020;9:730–745.
MLA Özyonar, Fuat. “SU VE ATIKSU ARITMINDA ELEKTROFLOTASYON PROSESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 9, sy. 2, 2020, ss. 730-45, doi:10.28948/ngumuh.653062.
Vancouver Özyonar F. SU VE ATIKSU ARITMINDA ELEKTROFLOTASYON PROSESİ. NÖHÜ Müh. Bilim. Derg. 2020;9(2):730-45.

download