Araştırma Makalesi
BibTex RIS Kaynak Göster

BASIC YELLOW 28 REMOVAL BY ADSORPTION FROM AQUEOUS SOLUTIONS WITH NATURAL AND ACTIVATED PINE SAWDUST

Yıl 2020, Cilt: 9 Sayı: 2, 746 - 759, 07.08.2020
https://doi.org/10.28948/ngumuh.662944

Öz

Kaynakça

  • 1. Panic VV, Madzarevic ZP, Volkov-Husovic T, Velickovic SJ. Poly (methacrylic acid) based hydrogels as sorbents for removal of cationic dye basic yellow 28: Kinetics, equilibrium study and image analysis. Chemical Engineering Journal. 2013;217:192–204. 2. Konicki W, Sibera D, Narkiewicz U. Adsorptive removal of cationic dye from aqueous solutions by ZnO/ZnMn2O4 nanocomposite. Separation Science and Technology. 2018;53:1295–306.
  • 3. Ferrero F. Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. Journal of Hazardous Materials. 2007;142:144–52.
  • 4. Hamdaoui O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. Journal of Hazardous Materials. 2006;135:264–73.
  • 5. Salazar-Rabago JJ, Leyva-Ramos R, Rivera-Utrilla J, Ocampo-Perez R, Cerino-Cordova FJ. Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: Effect of operating conditions. Sustainable Environment Research. 2017;27:32–40.
  • 6. Hanafiah MAKM, Ngah WSW, Zolkafly SH, Teong LC, Majid ZAA. Acid Blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis. Journal of Environmental Sciences. 2012;24:261–8.
  • 7. Garg VK, Gupta R, Bala Yadav A, Kumar R. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology. 2003;89:121–4.
  • 8. Deniz F, Kepekci RA. Bioremoval of Malachite green from water sample by forestry waste mixture as potential biosorbent. Microchemical Journal. 2017;132:172–8.
  • 9. Batzias F, Sidiras D. Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems. Journal of Hazardous Materials. 2004;114:167–74.
  • 10. Slimani R, El Ouahabi I, Abidi F, El Haddad M, Regti A, Laamari MR, et al. Calcined eggshells as a new biosorbent to remove basic dye from aqueous solutions: Thermodynamics, kinetics, isotherms and error analysis. Journal of the Taiwan Institute of Chemical Engineers. 2014;45:1578–87.
  • 11. Ferro-García MA, Rivera-Utrilla J, Bautista-Toledo I, Moreno-Castilla C. Adsorption of Humic Substances on Activated Carbon from Aqueous Solutions and Their Effect on the Removal of Cr(III) Ions. Langmuir. 1998;14:1880–6.
  • 12. Kuśmierek K, Świątkowski A. The influence of an electrolyte on the adsorption of 4-chlorophenol onto activated carbon and multi-walled carbon nanotubes. Desalination and Water Treatment. 2015;56:2807–16.
  • 13. Jain SN, Gogate PR. Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: Batch and column studies. Journal of Environmental Management. 2018;210:226–38.
  • 14. Crini G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology. 2006;97:1061–85.
  • 15. Gerçel Ö, Özcan A, Özcan AS, Gerçel HF. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions. Applied Surface Science. 2007;253:4843–52.
  • 16. Babić BM, Milonjić SK, Polovina MJ, Kaludierović BV. Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon. 1999;37:477–81.
  • 17. Savova D, Petrov N, Yardim MF, Ekinci E, Budinova T, Razvigorova M, et al. The influence of the texture and surface properties of carbon adsorbents obtained from biomass products on the adsorption of manganese ions from aqueous solution. Carbon. 2003;41:1897–903.
  • 18. Köklü R, Özer Ç. Remazol Brillant Blue R (RBBR) boyarmaddesinin düşük maliyetli bir adsorban olan sigara külü ile giderimi. SAÜ Fen Bilimleri Enstitüsü Dergisi. 2018; 22 (2), 174-180.
  • 19. Moussavi G, Barikbin B. Biosorption of chromium(VI) from industrial wastewater onto pistachio hull waste biomass. Chemical Engineering Journal. 2010;162:893–900.
  • 20. Xiaoli C, Youcai Z. Adsorption of phenolic compound by aged-refuse. Journal of Hazardous Materials. 2006;137:410–7.
  • 21. Rajabi M, Mahanpoor K, Moradi O. Preparation of PMMA/GO and PMMA/GO-Fe3O4 nanocomposites for malachite green dye adsorption: Kinetic and thermodynamic studies. Composites Part B: Engineering. 2019;167:544–55.
  • 22. Mehrabi F, Vafaei A, Ghaedi M, Ghaedi AM, Alipanahpour Dil E, Asfaram A. Ultrasound assisted extraction of Maxilon Red GRL dye from water samples using cobalt ferrite nanoparticles loaded on activated carbon as sorbent: Optimization and modeling. Ultrasonics Sonochemistry. 2017;38:672–80.
  • 23. Hamdi Karaoğlu M, Doğan M, Alkan M. Removal of cationic dyes by kaolinite. Microporous and Mesoporous Materials. 2009;122:20–7.
  • 24. Nadavala SK, Swayampakula K, Boddu VM, Abburi K. Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads. Journal of Hazardous Materials. 2009;162:482–9.
  • 25. Rawajfih Z, Nsour N. Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. Journal of Colloid and Interface Science. 2006;298:39–49.
  • 26. Allen SJ, Gan Q, Matthews R, Johnson PA. Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresource Technology. 2003;88:143–52.
  • 27. Aksu Z, Yener J. A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Management. 2001;21:695–702.
  • 28. Hamdaoui O, Naffrechoux E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbonPart I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials. 2007;147:381–94.
  • 29. Jianlong W, Yi Q, Horan N, Stentiford E. Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass. Bioresource Technology. 2000;75:157–61.
  • 30. Senturk I, Buyukgungor H, Geyikci F. Biosorption of phenol from aqueous solutions by the Aspergillus niger biomass: comparison of linear and non-linear regression analysis. Desalination and Water Treatment. 2016;57:19529–39.
  • 31. Radhika M, Palanivelu K. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent—Kinetics and isotherm analysis. Journal of Hazardous Materials. 2006;138:116–24.
  • 32. Kaykıoğlu G. Kolemanit ve Üleksit Atığı ile Sulu Çözeltilerden Metilen Mavisi Giderimi: Kinetik ve İzoterm Değerlendirmesi. CBÜ Fen Bil Dergi,. 2016;12(3):499-509.
  • 33. Çifçi̇ Dİ. Alizarin kırmızı boyasının hidroksiapatit kullanılarak adsorpsiyon prosesi ile giderimi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2018;7(1):58–66.
  • 34. Sarı A, Tuzen M. Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials. 2008;157:448–54.
  • 35. Konicki W, Cendrowski K, Bazarko G, Mijowska E. Study on efficient removal of anionic, cationic and nonionic dyes from aqueous solutions by means of mesoporous carbon nanospheres with empty cavity. Chemical Engineering Research and Design. 2015;94:242–53.
  • 36. Yener J, Kopac T, Dogu G, Dogu T. Adsorption of Basic Yellow 28 from aqueous solutions with clinoptilolite and amberlite. Journal of Colloid and Interface Science. 2006;294:255–64.
  • 37. Konicki W, Hełminiak A, Arabczyk W, Mijowska E. Adsorption of cationic dyes onto Fe@graphite core–shell magnetic nanocomposite: Equilibrium, kinetics and thermodynamics. Chemical Engineering Research and Design. 2018;129:259–70.
  • 38. Olgun A, Atar N. Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste. Journal of Hazardous Materials. 2009;161:148–56.
  • 39. Aravindhan R, Rao JR, Nair BU. Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. Journal of Hazardous Materials. 2007;142:68–76.
  • 40. Konicki W, Aleksandrzak M, Mijowska E. Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chemical Engineering Research and Design. 2017;123:35–49.
  • 41. Tehrani-Bagha AR, Nikkar H, Mahmoodi NM, Markazi M, Menger FM. The sorption of cationic dyes onto kaolin: Kinetic, isotherm and thermodynamic studies. Desalination. 2011;266:274–80.
  • 42. Nesic AR, Panic VV, Onjia AE, Velickovic SJ. The enhanced removal of cationic dyes in binary system using novel copolymers with two kinds of acidic groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015;476:24–34.
  • 43. Toumi K-H, Benguerba Y, Erto A, Dotto GL, Tiar C, Nacef S, et al. Efficient Removal of Cationic Dyes From Aqueous Solutions Using the Low-Cost Algerian Olive Cake Waste Adsorbent. JOM. 2019;71:791–800.
  • 44. El Boujaady H, Mourabet M, El Rhilassi A, Bennani-Ziatni M, El Hamri R, Taitai A. Interaction of adsorption of reactive yellow 4 from aqueous solutions onto synthesized calcium phosphate. Journal of Saudi Chemical Society. 2017;21:94–100.
  • 45. Kiran B, Kaushik A. Cyanobacterial biosorption of Cr(VI): Application of two parameter and Bohart Adams models for batch and column studies. Chemical Engineering Journal. 2008;144:391–9.

DOĞAL VE AKTİVE EDİLEN ÇAM TALAŞI İLE SUCUL ÇÖZELTİDEN ADSORPSİYONLA BAZİK SARI 28 GİDERİMİ

Yıl 2020, Cilt: 9 Sayı: 2, 746 - 759, 07.08.2020
https://doi.org/10.28948/ngumuh.662944

Öz

Bu çalışmada, ham ve kimyasal aktivasyon uygulanan çam talaşı kullanılarak Bazik Sarı 28 tekstil boyar maddesinin sulu çözeltiden adsorpsiyonu çalışılmıştır. Temas süresi, adsorbent madde dozajı, başlangıç boya konsantrasyonu ve kimyasal aktivasyonun verime etkisi belirlenen koşullarda çalışılmıştır. Kimyasal aktivasyon sonrası adsorbent karakterizasyonu için SEM, FTIR ve izoelektrik nokta belirleme yöntemlerinden yararlanılmıştır. Bazik Sarı 28 adsorpsiyonu için denge verisi Langmuir eşitliği ile daha iyi uyum göstermiştir, maksimum tek tabakalı adsorpsiyon kapasitesi Qo değeri 62,89 mg/g olarak bulunmuştur. Bazik Sarı 28’in adsorpsiyonu sözde ikinci derece kinetik model ile en iyi şekilde tanımlanmıştır. Aktive olan çam talaşının adsorbent olarak yeniden kullanılabilirliği test edilmiş, dördüncü döngüden sonra bile hala %90’nın üzerinde Bazik Sarı 28 boya giderimi olduğu görülmüştür. Elde edilen sonuçlar, talaşın H2SO4 ile aktivasyonu sonrasında elde edilen adsorbentin atık sulardan Bazik Sarı 28 tekstil boyasının adsorpsiyonla arıtılmasında etkin olarak kullanılabileceğini göstermiştir. Aktive edilen çam talaşı, düşük maliyetli üretim ve adsorpsiyon performansı ile sürdürülebilir uygulamalar için yüksek bir potansiyele sahiptir.

Kaynakça

  • 1. Panic VV, Madzarevic ZP, Volkov-Husovic T, Velickovic SJ. Poly (methacrylic acid) based hydrogels as sorbents for removal of cationic dye basic yellow 28: Kinetics, equilibrium study and image analysis. Chemical Engineering Journal. 2013;217:192–204. 2. Konicki W, Sibera D, Narkiewicz U. Adsorptive removal of cationic dye from aqueous solutions by ZnO/ZnMn2O4 nanocomposite. Separation Science and Technology. 2018;53:1295–306.
  • 3. Ferrero F. Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. Journal of Hazardous Materials. 2007;142:144–52.
  • 4. Hamdaoui O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. Journal of Hazardous Materials. 2006;135:264–73.
  • 5. Salazar-Rabago JJ, Leyva-Ramos R, Rivera-Utrilla J, Ocampo-Perez R, Cerino-Cordova FJ. Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: Effect of operating conditions. Sustainable Environment Research. 2017;27:32–40.
  • 6. Hanafiah MAKM, Ngah WSW, Zolkafly SH, Teong LC, Majid ZAA. Acid Blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis. Journal of Environmental Sciences. 2012;24:261–8.
  • 7. Garg VK, Gupta R, Bala Yadav A, Kumar R. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology. 2003;89:121–4.
  • 8. Deniz F, Kepekci RA. Bioremoval of Malachite green from water sample by forestry waste mixture as potential biosorbent. Microchemical Journal. 2017;132:172–8.
  • 9. Batzias F, Sidiras D. Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems. Journal of Hazardous Materials. 2004;114:167–74.
  • 10. Slimani R, El Ouahabi I, Abidi F, El Haddad M, Regti A, Laamari MR, et al. Calcined eggshells as a new biosorbent to remove basic dye from aqueous solutions: Thermodynamics, kinetics, isotherms and error analysis. Journal of the Taiwan Institute of Chemical Engineers. 2014;45:1578–87.
  • 11. Ferro-García MA, Rivera-Utrilla J, Bautista-Toledo I, Moreno-Castilla C. Adsorption of Humic Substances on Activated Carbon from Aqueous Solutions and Their Effect on the Removal of Cr(III) Ions. Langmuir. 1998;14:1880–6.
  • 12. Kuśmierek K, Świątkowski A. The influence of an electrolyte on the adsorption of 4-chlorophenol onto activated carbon and multi-walled carbon nanotubes. Desalination and Water Treatment. 2015;56:2807–16.
  • 13. Jain SN, Gogate PR. Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: Batch and column studies. Journal of Environmental Management. 2018;210:226–38.
  • 14. Crini G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology. 2006;97:1061–85.
  • 15. Gerçel Ö, Özcan A, Özcan AS, Gerçel HF. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions. Applied Surface Science. 2007;253:4843–52.
  • 16. Babić BM, Milonjić SK, Polovina MJ, Kaludierović BV. Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon. 1999;37:477–81.
  • 17. Savova D, Petrov N, Yardim MF, Ekinci E, Budinova T, Razvigorova M, et al. The influence of the texture and surface properties of carbon adsorbents obtained from biomass products on the adsorption of manganese ions from aqueous solution. Carbon. 2003;41:1897–903.
  • 18. Köklü R, Özer Ç. Remazol Brillant Blue R (RBBR) boyarmaddesinin düşük maliyetli bir adsorban olan sigara külü ile giderimi. SAÜ Fen Bilimleri Enstitüsü Dergisi. 2018; 22 (2), 174-180.
  • 19. Moussavi G, Barikbin B. Biosorption of chromium(VI) from industrial wastewater onto pistachio hull waste biomass. Chemical Engineering Journal. 2010;162:893–900.
  • 20. Xiaoli C, Youcai Z. Adsorption of phenolic compound by aged-refuse. Journal of Hazardous Materials. 2006;137:410–7.
  • 21. Rajabi M, Mahanpoor K, Moradi O. Preparation of PMMA/GO and PMMA/GO-Fe3O4 nanocomposites for malachite green dye adsorption: Kinetic and thermodynamic studies. Composites Part B: Engineering. 2019;167:544–55.
  • 22. Mehrabi F, Vafaei A, Ghaedi M, Ghaedi AM, Alipanahpour Dil E, Asfaram A. Ultrasound assisted extraction of Maxilon Red GRL dye from water samples using cobalt ferrite nanoparticles loaded on activated carbon as sorbent: Optimization and modeling. Ultrasonics Sonochemistry. 2017;38:672–80.
  • 23. Hamdi Karaoğlu M, Doğan M, Alkan M. Removal of cationic dyes by kaolinite. Microporous and Mesoporous Materials. 2009;122:20–7.
  • 24. Nadavala SK, Swayampakula K, Boddu VM, Abburi K. Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads. Journal of Hazardous Materials. 2009;162:482–9.
  • 25. Rawajfih Z, Nsour N. Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. Journal of Colloid and Interface Science. 2006;298:39–49.
  • 26. Allen SJ, Gan Q, Matthews R, Johnson PA. Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresource Technology. 2003;88:143–52.
  • 27. Aksu Z, Yener J. A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Management. 2001;21:695–702.
  • 28. Hamdaoui O, Naffrechoux E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbonPart I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials. 2007;147:381–94.
  • 29. Jianlong W, Yi Q, Horan N, Stentiford E. Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass. Bioresource Technology. 2000;75:157–61.
  • 30. Senturk I, Buyukgungor H, Geyikci F. Biosorption of phenol from aqueous solutions by the Aspergillus niger biomass: comparison of linear and non-linear regression analysis. Desalination and Water Treatment. 2016;57:19529–39.
  • 31. Radhika M, Palanivelu K. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent—Kinetics and isotherm analysis. Journal of Hazardous Materials. 2006;138:116–24.
  • 32. Kaykıoğlu G. Kolemanit ve Üleksit Atığı ile Sulu Çözeltilerden Metilen Mavisi Giderimi: Kinetik ve İzoterm Değerlendirmesi. CBÜ Fen Bil Dergi,. 2016;12(3):499-509.
  • 33. Çifçi̇ Dİ. Alizarin kırmızı boyasının hidroksiapatit kullanılarak adsorpsiyon prosesi ile giderimi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2018;7(1):58–66.
  • 34. Sarı A, Tuzen M. Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials. 2008;157:448–54.
  • 35. Konicki W, Cendrowski K, Bazarko G, Mijowska E. Study on efficient removal of anionic, cationic and nonionic dyes from aqueous solutions by means of mesoporous carbon nanospheres with empty cavity. Chemical Engineering Research and Design. 2015;94:242–53.
  • 36. Yener J, Kopac T, Dogu G, Dogu T. Adsorption of Basic Yellow 28 from aqueous solutions with clinoptilolite and amberlite. Journal of Colloid and Interface Science. 2006;294:255–64.
  • 37. Konicki W, Hełminiak A, Arabczyk W, Mijowska E. Adsorption of cationic dyes onto Fe@graphite core–shell magnetic nanocomposite: Equilibrium, kinetics and thermodynamics. Chemical Engineering Research and Design. 2018;129:259–70.
  • 38. Olgun A, Atar N. Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste. Journal of Hazardous Materials. 2009;161:148–56.
  • 39. Aravindhan R, Rao JR, Nair BU. Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. Journal of Hazardous Materials. 2007;142:68–76.
  • 40. Konicki W, Aleksandrzak M, Mijowska E. Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chemical Engineering Research and Design. 2017;123:35–49.
  • 41. Tehrani-Bagha AR, Nikkar H, Mahmoodi NM, Markazi M, Menger FM. The sorption of cationic dyes onto kaolin: Kinetic, isotherm and thermodynamic studies. Desalination. 2011;266:274–80.
  • 42. Nesic AR, Panic VV, Onjia AE, Velickovic SJ. The enhanced removal of cationic dyes in binary system using novel copolymers with two kinds of acidic groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015;476:24–34.
  • 43. Toumi K-H, Benguerba Y, Erto A, Dotto GL, Tiar C, Nacef S, et al. Efficient Removal of Cationic Dyes From Aqueous Solutions Using the Low-Cost Algerian Olive Cake Waste Adsorbent. JOM. 2019;71:791–800.
  • 44. El Boujaady H, Mourabet M, El Rhilassi A, Bennani-Ziatni M, El Hamri R, Taitai A. Interaction of adsorption of reactive yellow 4 from aqueous solutions onto synthesized calcium phosphate. Journal of Saudi Chemical Society. 2017;21:94–100.
  • 45. Kiran B, Kaushik A. Cyanobacterial biosorption of Cr(VI): Application of two parameter and Bohart Adams models for batch and column studies. Chemical Engineering Journal. 2008;144:391–9.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği
Yazarlar

İlknur Şentürk 0000-0002-8217-2281

Muhammed Yıldız 0000-0001-5534-0510

Yayımlanma Tarihi 7 Ağustos 2020
Gönderilme Tarihi 21 Aralık 2019
Kabul Tarihi 19 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 2

Kaynak Göster

APA Şentürk, İ., & Yıldız, M. (2020). DOĞAL VE AKTİVE EDİLEN ÇAM TALAŞI İLE SUCUL ÇÖZELTİDEN ADSORPSİYONLA BAZİK SARI 28 GİDERİMİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 746-759. https://doi.org/10.28948/ngumuh.662944
AMA Şentürk İ, Yıldız M. DOĞAL VE AKTİVE EDİLEN ÇAM TALAŞI İLE SUCUL ÇÖZELTİDEN ADSORPSİYONLA BAZİK SARI 28 GİDERİMİ. NÖHÜ Müh. Bilim. Derg. Ağustos 2020;9(2):746-759. doi:10.28948/ngumuh.662944
Chicago Şentürk, İlknur, ve Muhammed Yıldız. “DOĞAL VE AKTİVE EDİLEN ÇAM TALAŞI İLE SUCUL ÇÖZELTİDEN ADSORPSİYONLA BAZİK SARI 28 GİDERİMİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, sy. 2 (Ağustos 2020): 746-59. https://doi.org/10.28948/ngumuh.662944.
EndNote Şentürk İ, Yıldız M (01 Ağustos 2020) DOĞAL VE AKTİVE EDİLEN ÇAM TALAŞI İLE SUCUL ÇÖZELTİDEN ADSORPSİYONLA BAZİK SARI 28 GİDERİMİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 2 746–759.
IEEE İ. Şentürk ve M. Yıldız, “DOĞAL VE AKTİVE EDİLEN ÇAM TALAŞI İLE SUCUL ÇÖZELTİDEN ADSORPSİYONLA BAZİK SARI 28 GİDERİMİ”, NÖHÜ Müh. Bilim. Derg., c. 9, sy. 2, ss. 746–759, 2020, doi: 10.28948/ngumuh.662944.
ISNAD Şentürk, İlknur - Yıldız, Muhammed. “DOĞAL VE AKTİVE EDİLEN ÇAM TALAŞI İLE SUCUL ÇÖZELTİDEN ADSORPSİYONLA BAZİK SARI 28 GİDERİMİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/2 (Ağustos 2020), 746-759. https://doi.org/10.28948/ngumuh.662944.
JAMA Şentürk İ, Yıldız M. DOĞAL VE AKTİVE EDİLEN ÇAM TALAŞI İLE SUCUL ÇÖZELTİDEN ADSORPSİYONLA BAZİK SARI 28 GİDERİMİ. NÖHÜ Müh. Bilim. Derg. 2020;9:746–759.
MLA Şentürk, İlknur ve Muhammed Yıldız. “DOĞAL VE AKTİVE EDİLEN ÇAM TALAŞI İLE SUCUL ÇÖZELTİDEN ADSORPSİYONLA BAZİK SARI 28 GİDERİMİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 9, sy. 2, 2020, ss. 746-59, doi:10.28948/ngumuh.662944.
Vancouver Şentürk İ, Yıldız M. DOĞAL VE AKTİVE EDİLEN ÇAM TALAŞI İLE SUCUL ÇÖZELTİDEN ADSORPSİYONLA BAZİK SARI 28 GİDERİMİ. NÖHÜ Müh. Bilim. Derg. 2020;9(2):746-59.

 23135