Araştırma Makalesi
BibTex RIS Kaynak Göster

KARIŞTIRMALI BİLYALI DEĞİRMENDE KURU ÖĞÜTMEDE BAZI ÖĞÜTME PARAMETRELERİNİN MODELLENMESİ VE OPTİMİZASYONU

Yıl 2020, Cilt: 9 Sayı: 2, 1026 - 1038, 07.08.2020
https://doi.org/10.28948/ngumuh.684618

Öz

Bu makale, talkın karıştırmalı bilyalı değirmen ile kuru öğütülmesinde öğütme parametrelerinin etkilerini değerlendirmektedir. Karıştırma hızı, katı oranı, bilya doluluk oranı ve bilya boyut dağılımı da dâhil olmak üzere dört bağımsız faktörün etkilerini incelemek amacıyla üç seviyeli bir Box-Behnken deney tasarımı kullanılmıştır. Öğütme parametreleri ve yanıtlar arasında ampirik bir korelasyon oluşturmak amacıyla bir dizi deney yapılmıştır. Varyans analizi, kırılma oranı için oldukça iyi bir değer göstermiştir (R2=0,952). Yazılım çözümlerine göre, kırılma oranını maksimize etmek için en uygun koşullar, karıştırıcı hızı için 599 d/dk, katı oranı için 0,07, bilya doluluk oranı için % 65,58 ve maksimum bilya boyut dağılımında elde edilmiştir.
Öğütmede ki iyileşmeyi doğrulamak amacıyla, yukarıda belirtilen optimum koşullar kullanılarak iki kez doğrulama testleri yapılmış olup ortalama kırılma oranı 3,29 elde edilmiştir. Bu elde edilen ortalama kırılma oranı 29 testte elde edilen değerlerden daha büyüktür. Öğütmenin talk tanelerinin yapısal özellikleri üzerinde etki XRD analizi ile karakterize edilmiştir. XRD ölçümleri hiçbir işlem görmemiş talk numunesine kıyasla, öğütülmüş talk numunelerinin pik alanlarında herhangi bir değişiklik gözlemlenmediğini göstermiştir.

Destekleyen Kurum

Niğde Ömer Halisdemir Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FEB2017/02

Teşekkür

Bu çalışma FEB2017/02 numaralı proje kapsamında Niğde Ömer Halisdemir Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir. Yazar, numune temini konusunda katkılarından dolayı Mikron’S A.Ş.’ye teşekkürlerini sunar.

Kaynakça

  • H. S. Katz and J. W. Milewski, Eds., Handbook of Fillers for plastics. New York: Van Nostrand Reinhold, 1987.
  • K. S. Özdemir and E. Özdemir “Delikli nano CaCO3 üretimi,” in 3. Sanayi Şurası, Ankara.
  • H. Bel Fadhel and C. Frances “Wet batch grinding of alumina in a stirred bead mill,” Powder Technol., vol. 119, no. 2-3, Sep., pp. 257-268, 2001. https://doi.org/10.1016/S0032-5910(01)00266-2
  • C. T. Jayasundara, R. Y. Yang, A. B. YU and J. Rubenstein “Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill”, Int. J. Miner. Process, vol. 96, no. 1-4, Sep., pp. 27–35, 2010. https://doi.org/ 10.1016/j.minpro.2010.07.006
  • C. T. Jayasundara, R. Y., Yang and A. B. Yu “Effect of the size of media on grinding performance in stirred mills,” Miner. Eng., vol. 33, pp. 66–71, June, 2012. https://doi.org/10.1016/j.mineng.2011.10.012
  • A. Jankovic “Variables affecting the fine grinding of minerals using stirred mills,” Miner. Eng., vol. 16, no.4, Apr, pp. 337–345, 2003. https://doi.org/10.1016/S0892-6875(03)00007-4
  • O. Celep, N. Aslan, I. Alp, and G. Taşdemir “Optimization of some parameters of stirred mill for ultra-fine grinding of refractory Au/Ag ores,” Powder Technol., vol. 208, no. 1, Mar, pp. 121–7, 2011. https://doi.org/10.1016/j.powtec.2010.12.009
  • P. Radziszewski “Assessing the stirred mill design space,” Miner. Eng., vol. 41, Feb., pp. 9–16, 2013. http://dx.doi.org/10.1016/j.mineng.2012.10.012
  • C. Bernhart, E. Reinsdh, and K. Husemann “The influence of suspension properties on ultra-fine grinding in stirred ball mills”, Powder Technol.,vol. 105, no.1-3, Nov., 357–361, 1999. https://doi.org/10.1016/S0032-5910(99)00159-X
  • W. S. Choi “Grinding rate improvement using a composite grinding ball size for an ultra-fine grinding mill”, Journal of the Society of Powder Technol., vol. 33, no. 9, Sep., pp. 747–752, 1996. http://doi.org/10.4164/sptj.33.747
  • K. Shinohara, B. Golman, T. Uchiyama, and M. Otani “Fine-grinding characteristic of hard material by attrition mill,” Powder Technol, vol. 103, no. 3, Jul., pp. 292–296, 1999. https://doi.org/10.1016/S0032-5910(99)00042-X
  • H. Choi and L. Wang “A quantitative study of grinding characteristics on particle size and grinding consumption energy by stirred ball mill,” Korean J .Mater. Res., vol.17. no. 10, Oct., pp. 532–537, 2007.
  • H. Choi, W. Lee, J. Lee, H. Chung, and W. Choi “Ultra-fine grinding of inorganic powders by stirred ball mill: effect of process parameters on the particle size distribution of ground products and grinding energy efficiency,” Metals and Materials International, vol.13, no.4, Aug., pp. 353–358, 2007. https://doi.org/10.1007/BF03027893
  • F. Shi, R. Morrison, A. Cervellin, F. Burns, and F. Musa “Comparison of energy efficiency between ball mills and stirred mills in coarse grinding,” Miner. Eng., vol. 22, no. 7-8, Jun.- Jul., pp. 673–680, 2009. https://doi.org/10.1016/j.mineng.2008.12.002
  • M. J. Mankosa, G. T. Adel, and R. H. Yoon “Effect of media size in stirred ball mill grinding of coal,” Powder Technol., vol. 49, no. 1, Dec., pp.75–82, 1986. https://doi.org/10.1016/0032-5910(86)85008-2
  • D. Katircioglu-Bayel, S. G. Ozkan, and O. Y. Toraman “Effect of Operating Parameters on the Breakage Process of Calcite in a Stirred Media Mill,” Mining, Metallurgy & Exploration, vol. 36, no. 2, Sep., pp. 399-408, 2019. https://doi.org/10.1007/s42461-018-0008-8
  • O. Celep and E. Y. Yazici “Ultra fine grinding of silver plant tailings of refractory ore using vertical stirred media mill,” Transactions of Nonferrous Metals Society of China, vol. 23, Apr., pp. 3412-3420, 2013. https://doi.org/10.1016/S1003-6326(13)62882-4
  • C. M. Anderson-Cook, C. M. Borror, and D. C. Montgomery “Response surface design evaluation and comparison,” J. Stat. Plan. Inference, vol. 139, no.2, Feb., pp. 629–641, 2009. https://doi.org/10.1016/j.jspi.2008.04.004
  • M. Hasan, S. Palaniandy, M. Hilden, and M. Powell “Calculating breakage parameters of a batch vertical stirred mill,” Miner. Eng., vol. 111, Sep., pp. 229–237, 2017. https://doi.org/10.1016/j.mineng.2017.06.024
  • C. E. Gibson, R. Hansuld, S. Kelebek, and M. Aghamirian “Behaviour of ilmenite as a gangue mineral in the benzohydroxamic flotation of a complex pyrochlore-bearing ore”, Miner. Eng., vol. 109, Aug., pp. 98–108, 2017. https://doi.org/10.1016/j.mineng.2017.02.009
  • S. Kirboga and M. Öner “Investigating the effect of ultrasonic irradiation on synthesis of calcium carbonate using Box-Behnken experimental design,” Powder Technol., vol. 308, Feb., pp. 442–450, 2017. https://doi.org/10.1016/j.powtec.2016.11.042
  • O. Celep, P. Altinkaya, E. Y. Yazici and H. Deveci “Thiosulphate leaching of silver from an arsenical refractory ore,” Miner. Eng., vol. 122, Jun., pp. 285–295, 2018. https://doi.org/10.1016/j.mineng.2018.04.011
  • D. Shukla and R. Venugopal “Optimization of the process parameters for fine coal–oil agglomeration process using waste mustard oil,” Powder technol., vol. 346, Mar., pp. 316-325, 2019. https://doi.org/10.1080/01496395.2019.1612913
  • K. Pariyan, M. R.,Hosseini, A. Ahmadi, and A. Zahiri “Optimization and kinetics of oxalic acid treatment of feldspar for removing the iron oxide impurities,” Separation Science and Technol., 2019. https://doi.org/10.1080/01496395.2019.1612913
  • S. Rahmati, A. Ahmadi, M. R. Hosseini, and M. M. Nasab “Optimization of continuous air-assisted solvent extraction for treating dilute Cu leach solutions using response surface methodology,” Miner. Eng., vol. 131, Jan., pp. 154-163, 2019. https://doi.org/10.1016/j.mineng.2018.11
  • S. L. Ferreira, R .E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandão, E. G. Da Silva, L. A. Portugal, P. S. Dos Reis, A. S. Souza, and W. N. Dos Santos “Box-Behnken design: an alternative for the optimization of analytical methods”., Anal. Chim. Acta , vol. 597, no. 2, Aug., pp. 179–186, 2007. https://doi.org/10.1016/j.aca.2007.07.011
  • M. Erşan and Ü. R. Açikel, “Delemar’ın Asit Fosfataz Üretimi ve Zn(Iı) Biyobirikiminin Cevap Yüzey Yöntemi Kullanarak Optimize Edilmesi,” Gazi Üniv. Müh. Mim. Fak. Der., vol. 29, no. 2, Aralık, pp. 321-329, 2014.
  • A.C. Atkinson and A.N. Donev, Eds., Optimum experimental designs, Oxford: Clarendon, 1992.
  • D.C. Montgomery, Eds., Design and analysis of experiments, John Wiley and Sons, New York, 2001.
  • O. Altun, H. Benzer and U. Enderle “Effects of operating parameters on the efficiency of dry stirred milling,” Miner. Eng., vol. 43–44, Apr., pp. 58-66, 2013. https://doi.org/10. 1016 /j.mineng.2012.08.003.
  • J. Yue and B. Klein “Effects of bead size on ultrafine grinding in a stirred bead mill” in Advances in Comminution, S. Kawatra Eds. Society for Mining, Metallurgy and Exploration, Inc., 2006.
  • M. Gao, R. Holmes and J. Pease “The latest developments in fine and ultrafine grinding Technologies,” In Proc. XXIII. International Mineral Processing Congress, 2006, pp. 30-37.
  • V. N. Mochalin, A. Sagar, S. Gour, and Y. Gogotsi, “Manufacturing nanosized fenofibrate by salt assisted milling,” Pharmaceutical Research, vol. 26, no. 6, Feb., pp. 1365−1370, 2009. https://doi.org/ 10.1007/s11095-009-9846-x

MODELING AND OPTIMIZATION OF SOME GRINDING PARAMETERS ON DRY GRINDING IN STIRRED MEDIA MILL

Yıl 2020, Cilt: 9 Sayı: 2, 1026 - 1038, 07.08.2020
https://doi.org/10.28948/ngumuh.684618

Öz

This article evaluates the effects of operating parameters on dry grinding of talc with a stirred media mill. A three-level Box-Behnken design was used for the purpose of examining the impacts of four independent factors, including the stirrer speed, solid ratio, media filling ratio, and the media size distribution on the reduction ratio. For the purpose of establishing an empirical correlation between operating parameters and responses, a series of experiments were carried out. Variance analysis showed quite a good value for reduction ratio (R2=0.952). According to the software solutions, the optimum conditions for maximizing the reduction ratio were obtained to be 599 rpm for stirrer speed, 0.07 for solid ratio, 65.58% for media filling ratio, and at maximum level of media size distribution.
To verify the improvement of grinding, verification tests were performed two times using the above-mentioned optimum conditions and an average reduction ratio of 3.29 was obtained. This average reduction ratio value obtained was greater than those obtained in the 29 tests. The impacts of grinding on structural characteristics of talc particles were characterized by XRD analysis. XRD measurements indicated that any change was not observed in the peak areas of ground talc specimens compared to the untreated talc specimen.

Proje Numarası

FEB2017/02

Kaynakça

  • H. S. Katz and J. W. Milewski, Eds., Handbook of Fillers for plastics. New York: Van Nostrand Reinhold, 1987.
  • K. S. Özdemir and E. Özdemir “Delikli nano CaCO3 üretimi,” in 3. Sanayi Şurası, Ankara.
  • H. Bel Fadhel and C. Frances “Wet batch grinding of alumina in a stirred bead mill,” Powder Technol., vol. 119, no. 2-3, Sep., pp. 257-268, 2001. https://doi.org/10.1016/S0032-5910(01)00266-2
  • C. T. Jayasundara, R. Y. Yang, A. B. YU and J. Rubenstein “Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill”, Int. J. Miner. Process, vol. 96, no. 1-4, Sep., pp. 27–35, 2010. https://doi.org/ 10.1016/j.minpro.2010.07.006
  • C. T. Jayasundara, R. Y., Yang and A. B. Yu “Effect of the size of media on grinding performance in stirred mills,” Miner. Eng., vol. 33, pp. 66–71, June, 2012. https://doi.org/10.1016/j.mineng.2011.10.012
  • A. Jankovic “Variables affecting the fine grinding of minerals using stirred mills,” Miner. Eng., vol. 16, no.4, Apr, pp. 337–345, 2003. https://doi.org/10.1016/S0892-6875(03)00007-4
  • O. Celep, N. Aslan, I. Alp, and G. Taşdemir “Optimization of some parameters of stirred mill for ultra-fine grinding of refractory Au/Ag ores,” Powder Technol., vol. 208, no. 1, Mar, pp. 121–7, 2011. https://doi.org/10.1016/j.powtec.2010.12.009
  • P. Radziszewski “Assessing the stirred mill design space,” Miner. Eng., vol. 41, Feb., pp. 9–16, 2013. http://dx.doi.org/10.1016/j.mineng.2012.10.012
  • C. Bernhart, E. Reinsdh, and K. Husemann “The influence of suspension properties on ultra-fine grinding in stirred ball mills”, Powder Technol.,vol. 105, no.1-3, Nov., 357–361, 1999. https://doi.org/10.1016/S0032-5910(99)00159-X
  • W. S. Choi “Grinding rate improvement using a composite grinding ball size for an ultra-fine grinding mill”, Journal of the Society of Powder Technol., vol. 33, no. 9, Sep., pp. 747–752, 1996. http://doi.org/10.4164/sptj.33.747
  • K. Shinohara, B. Golman, T. Uchiyama, and M. Otani “Fine-grinding characteristic of hard material by attrition mill,” Powder Technol, vol. 103, no. 3, Jul., pp. 292–296, 1999. https://doi.org/10.1016/S0032-5910(99)00042-X
  • H. Choi and L. Wang “A quantitative study of grinding characteristics on particle size and grinding consumption energy by stirred ball mill,” Korean J .Mater. Res., vol.17. no. 10, Oct., pp. 532–537, 2007.
  • H. Choi, W. Lee, J. Lee, H. Chung, and W. Choi “Ultra-fine grinding of inorganic powders by stirred ball mill: effect of process parameters on the particle size distribution of ground products and grinding energy efficiency,” Metals and Materials International, vol.13, no.4, Aug., pp. 353–358, 2007. https://doi.org/10.1007/BF03027893
  • F. Shi, R. Morrison, A. Cervellin, F. Burns, and F. Musa “Comparison of energy efficiency between ball mills and stirred mills in coarse grinding,” Miner. Eng., vol. 22, no. 7-8, Jun.- Jul., pp. 673–680, 2009. https://doi.org/10.1016/j.mineng.2008.12.002
  • M. J. Mankosa, G. T. Adel, and R. H. Yoon “Effect of media size in stirred ball mill grinding of coal,” Powder Technol., vol. 49, no. 1, Dec., pp.75–82, 1986. https://doi.org/10.1016/0032-5910(86)85008-2
  • D. Katircioglu-Bayel, S. G. Ozkan, and O. Y. Toraman “Effect of Operating Parameters on the Breakage Process of Calcite in a Stirred Media Mill,” Mining, Metallurgy & Exploration, vol. 36, no. 2, Sep., pp. 399-408, 2019. https://doi.org/10.1007/s42461-018-0008-8
  • O. Celep and E. Y. Yazici “Ultra fine grinding of silver plant tailings of refractory ore using vertical stirred media mill,” Transactions of Nonferrous Metals Society of China, vol. 23, Apr., pp. 3412-3420, 2013. https://doi.org/10.1016/S1003-6326(13)62882-4
  • C. M. Anderson-Cook, C. M. Borror, and D. C. Montgomery “Response surface design evaluation and comparison,” J. Stat. Plan. Inference, vol. 139, no.2, Feb., pp. 629–641, 2009. https://doi.org/10.1016/j.jspi.2008.04.004
  • M. Hasan, S. Palaniandy, M. Hilden, and M. Powell “Calculating breakage parameters of a batch vertical stirred mill,” Miner. Eng., vol. 111, Sep., pp. 229–237, 2017. https://doi.org/10.1016/j.mineng.2017.06.024
  • C. E. Gibson, R. Hansuld, S. Kelebek, and M. Aghamirian “Behaviour of ilmenite as a gangue mineral in the benzohydroxamic flotation of a complex pyrochlore-bearing ore”, Miner. Eng., vol. 109, Aug., pp. 98–108, 2017. https://doi.org/10.1016/j.mineng.2017.02.009
  • S. Kirboga and M. Öner “Investigating the effect of ultrasonic irradiation on synthesis of calcium carbonate using Box-Behnken experimental design,” Powder Technol., vol. 308, Feb., pp. 442–450, 2017. https://doi.org/10.1016/j.powtec.2016.11.042
  • O. Celep, P. Altinkaya, E. Y. Yazici and H. Deveci “Thiosulphate leaching of silver from an arsenical refractory ore,” Miner. Eng., vol. 122, Jun., pp. 285–295, 2018. https://doi.org/10.1016/j.mineng.2018.04.011
  • D. Shukla and R. Venugopal “Optimization of the process parameters for fine coal–oil agglomeration process using waste mustard oil,” Powder technol., vol. 346, Mar., pp. 316-325, 2019. https://doi.org/10.1080/01496395.2019.1612913
  • K. Pariyan, M. R.,Hosseini, A. Ahmadi, and A. Zahiri “Optimization and kinetics of oxalic acid treatment of feldspar for removing the iron oxide impurities,” Separation Science and Technol., 2019. https://doi.org/10.1080/01496395.2019.1612913
  • S. Rahmati, A. Ahmadi, M. R. Hosseini, and M. M. Nasab “Optimization of continuous air-assisted solvent extraction for treating dilute Cu leach solutions using response surface methodology,” Miner. Eng., vol. 131, Jan., pp. 154-163, 2019. https://doi.org/10.1016/j.mineng.2018.11
  • S. L. Ferreira, R .E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandão, E. G. Da Silva, L. A. Portugal, P. S. Dos Reis, A. S. Souza, and W. N. Dos Santos “Box-Behnken design: an alternative for the optimization of analytical methods”., Anal. Chim. Acta , vol. 597, no. 2, Aug., pp. 179–186, 2007. https://doi.org/10.1016/j.aca.2007.07.011
  • M. Erşan and Ü. R. Açikel, “Delemar’ın Asit Fosfataz Üretimi ve Zn(Iı) Biyobirikiminin Cevap Yüzey Yöntemi Kullanarak Optimize Edilmesi,” Gazi Üniv. Müh. Mim. Fak. Der., vol. 29, no. 2, Aralık, pp. 321-329, 2014.
  • A.C. Atkinson and A.N. Donev, Eds., Optimum experimental designs, Oxford: Clarendon, 1992.
  • D.C. Montgomery, Eds., Design and analysis of experiments, John Wiley and Sons, New York, 2001.
  • O. Altun, H. Benzer and U. Enderle “Effects of operating parameters on the efficiency of dry stirred milling,” Miner. Eng., vol. 43–44, Apr., pp. 58-66, 2013. https://doi.org/10. 1016 /j.mineng.2012.08.003.
  • J. Yue and B. Klein “Effects of bead size on ultrafine grinding in a stirred bead mill” in Advances in Comminution, S. Kawatra Eds. Society for Mining, Metallurgy and Exploration, Inc., 2006.
  • M. Gao, R. Holmes and J. Pease “The latest developments in fine and ultrafine grinding Technologies,” In Proc. XXIII. International Mineral Processing Congress, 2006, pp. 30-37.
  • V. N. Mochalin, A. Sagar, S. Gour, and Y. Gogotsi, “Manufacturing nanosized fenofibrate by salt assisted milling,” Pharmaceutical Research, vol. 26, no. 6, Feb., pp. 1365−1370, 2009. https://doi.org/ 10.1007/s11095-009-9846-x
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Maden Mühendisliği
Yazarlar

Diler Katırcıoğlu Bayel 0000-0002-0336-8770

Proje Numarası FEB2017/02
Yayımlanma Tarihi 7 Ağustos 2020
Gönderilme Tarihi 4 Şubat 2020
Kabul Tarihi 9 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 2

Kaynak Göster

APA Katırcıoğlu Bayel, D. (2020). KARIŞTIRMALI BİLYALI DEĞİRMENDE KURU ÖĞÜTMEDE BAZI ÖĞÜTME PARAMETRELERİNİN MODELLENMESİ VE OPTİMİZASYONU. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 1026-1038. https://doi.org/10.28948/ngumuh.684618
AMA Katırcıoğlu Bayel D. KARIŞTIRMALI BİLYALI DEĞİRMENDE KURU ÖĞÜTMEDE BAZI ÖĞÜTME PARAMETRELERİNİN MODELLENMESİ VE OPTİMİZASYONU. NÖHÜ Müh. Bilim. Derg. Ağustos 2020;9(2):1026-1038. doi:10.28948/ngumuh.684618
Chicago Katırcıoğlu Bayel, Diler. “KARIŞTIRMALI BİLYALI DEĞİRMENDE KURU ÖĞÜTMEDE BAZI ÖĞÜTME PARAMETRELERİNİN MODELLENMESİ VE OPTİMİZASYONU”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, sy. 2 (Ağustos 2020): 1026-38. https://doi.org/10.28948/ngumuh.684618.
EndNote Katırcıoğlu Bayel D (01 Ağustos 2020) KARIŞTIRMALI BİLYALI DEĞİRMENDE KURU ÖĞÜTMEDE BAZI ÖĞÜTME PARAMETRELERİNİN MODELLENMESİ VE OPTİMİZASYONU. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 2 1026–1038.
IEEE D. Katırcıoğlu Bayel, “KARIŞTIRMALI BİLYALI DEĞİRMENDE KURU ÖĞÜTMEDE BAZI ÖĞÜTME PARAMETRELERİNİN MODELLENMESİ VE OPTİMİZASYONU”, NÖHÜ Müh. Bilim. Derg., c. 9, sy. 2, ss. 1026–1038, 2020, doi: 10.28948/ngumuh.684618.
ISNAD Katırcıoğlu Bayel, Diler. “KARIŞTIRMALI BİLYALI DEĞİRMENDE KURU ÖĞÜTMEDE BAZI ÖĞÜTME PARAMETRELERİNİN MODELLENMESİ VE OPTİMİZASYONU”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/2 (Ağustos 2020), 1026-1038. https://doi.org/10.28948/ngumuh.684618.
JAMA Katırcıoğlu Bayel D. KARIŞTIRMALI BİLYALI DEĞİRMENDE KURU ÖĞÜTMEDE BAZI ÖĞÜTME PARAMETRELERİNİN MODELLENMESİ VE OPTİMİZASYONU. NÖHÜ Müh. Bilim. Derg. 2020;9:1026–1038.
MLA Katırcıoğlu Bayel, Diler. “KARIŞTIRMALI BİLYALI DEĞİRMENDE KURU ÖĞÜTMEDE BAZI ÖĞÜTME PARAMETRELERİNİN MODELLENMESİ VE OPTİMİZASYONU”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 9, sy. 2, 2020, ss. 1026-38, doi:10.28948/ngumuh.684618.
Vancouver Katırcıoğlu Bayel D. KARIŞTIRMALI BİLYALI DEĞİRMENDE KURU ÖĞÜTMEDE BAZI ÖĞÜTME PARAMETRELERİNİN MODELLENMESİ VE OPTİMİZASYONU. NÖHÜ Müh. Bilim. Derg. 2020;9(2):1026-38.

 23135