Araştırma Makalesi
BibTex RIS Kaynak Göster

Improved switching-EKF based field oriented control of induction motors

Yıl 2021, Cilt: 10 Sayı: 2, 545 - 552, 27.07.2021
https://doi.org/10.28948/ngumuh.899447

Öz

In this study, the speed-sensorless improved field oriented control (FOC)-based induction motor (IM) drive has been presented. In addition to the rotor fluxes and rotor mechanical speed required for speed-sensorless FOC, the load torque, the stator resistance, and the rotor resistance are estimated by the switching extended Kalman filter (S-EKF) with improved memory requirement and design stage which use the measured stator currents and voltages as inputs. The performance of FOC is improved by the feed-forward control of the estimated load torque. In addition, the estimation errors caused by the parameter variations are reduced with the estimations of the stator and rotor resistances. The proposed speed-sensorless IM drive is tested by challenging scenarios in simulations. The results obtained demonstrate that the improved FOC-based IM drive has a high performance.

Kaynakça

  • S. Yin, Y. Huang, Y. Xue, D. Meng, C. Wang, Y. Lv, L. Diao and J. Jatskevich, Improved full-order adaptive observer for sensorless induction motor control in railway traction systems under low-switching frequency. IEEE Journal of Emerging and Selected in Topic Power Electronics, 7(4), 2333–2345, 2019. https://doi.org/10.1109/JESTPE.2019.2898875
  • M. Celebi and M. Toren, Heuristic algorithm-based estimation of rotor resistance of an induction machine by slot parameters with experimental verification. Turkish Journal of Electrical Engineering & Computer Sciences, 25, 3553-3568 2017. https://doi.org/ 10.3906 /elk-1511-232
  • A. Pal, S. Das, and A. K. Chattopadhyay, An improved rotor flux space vector based MRAS for field-oriented control of induction motor drives. IEEE Transaction on Power Electronics, 33(6), 5131–5141, 2018. https://doi.org/10.1109/TPEL.2017.2657648.
  • E. Zerdali and E. C. Mengüç, Novel complex-valued stator current-based MRAS estimators with different adaptation mechanisms. IEEE Transaction on Instrumentation and Measurement, 68(10), 3793–3795, 2019. https://doi.org/10.1109/TIM.2019.2932161.
  • J. You, W. Wu, and Y. Wang, An Adaptive Luenberger Observer for Speed-Sensorless Estimation of Induction Machines. 2018 Annual American Control Conference (ACC), pp. 307–312, Milwaukee, WI, USA, 27-29 June 2018. https://doi.org/10.23919/ACC.2018. 8431006.
  • Y. Zhang, Z. Yin, J. Liu, and X. Tong, Design and implementation of an adaptive sliding-mode observer for sensorless vector controlled induction machine drives. Journal of Electrical Engineering and Technology, 13(3), 1304–1316, 2018. https://doi.org/ 10.5370/JEET.2018.13.3.1304.
  • R. Demir and M. Barut, Novel hybrid estimator based on model reference adaptive system and extended Kalman filter for speed-sensorless induction motor control. Transactions of the Institute of Measurement and Control, 40(13), 3884–3898, 2018. https://doi.org/ 10.1177/0142331217734631.
  • M. Barut, R. Demir, E. Zerdali, and R. Inan, Real-Time implementation of bi input-extended Kalman Filter-based estimator for speed-sensorless control of induction motors. IEEE Transactions on Industrial Electronics, 59(11), 4197–4206, 2012. https://doi.org/ 10.1109/TIE.2011.2178209.
  • R. Yildiz, M. Barut, and R. Demir, Extended Kalman filter based estimations for improving speed-sensored control performance of induction motors. IET Electric Power Applications, 14(12), 2471-2479 2020. https:// doi.org/110.1049/iet-epa.2020.0319.
  • M. Barut, S. Bogosyan, and M. Gokasan, Switching EKF technique for rotor and stator resistance estimation in speed sensorless control of IMs. Energy Conversion and Management, 48(12), 3120–3134, 2007. https://doi.org/10.1016/j.enconman.2007.04.026
  • M. Barut, S. Bogosyan, and M. Gokasan, Experimental evaluation of braided EKF for sensorless control of induction motors, IEEE Transactions on Industrial Electronics, 55(2), 620–632, 2008. https://doi.org/ 10.1109/TIE.2007.911956.
  • X. Zhang, Sensorless induction motor drive using indirect vector controller and sliding-mode observer for electric vehicles. IEEE Transactions on Vehicular Technology, 62(7), 3010–3018, 2013. https://doi.org/ 10.1109/TVT.2013.2251921.
  • B. Wang, C. Luo, Y. Yu, G. Wang, and D. Xu, Antidisturbance speed control for induction machine drives using high-order fast terminal sliding-mode load torque observer. IEEE Transaction on Power Electronics, 33(9), 7927–7937, 2018. https://doi.org/ 10.1109/TPEL.2017.2765522.
  • E. Zerdali, R. Demir, and M. Barut, Speed-Sensorless FCS-PTC Based Induction Motor Drive Capable of Disturbance Rejection. 2020 2nd Global Power, Energy and Communication Conference (GPECOM), pp. 170-175, Izmir, Turkey, 20-23 October 2020 https://doi.org /10.1109/GPECOM49333.2020.9247917
  • E. Zerdali and R. Demir, Speed-sensorless predictive torque controlled induction motor drive with feed-forward control of load torque for electric vehicle applications. Turkish Journal of Electrical Engineering & Computer Sciences, 29, 223-240 2021, https://doi .org/10.3906/elk-2005-75.
  • R. Demir and E. Zerdali̇, Improved Speed-Sensorless Field-Oriented Controlled Induction Motor Drive With Feed-Forward Control of Load Torque. 2. International Turkic World Congress on Science and Engineering, (TURK-COSE 2020) pp. 525–532 Nur-Sultan, Kazakhstan, 14-15 November 2020.
  • R. Inan, R. Demir ve M. Barut, Asenkron motorun karma kestirici tabanlı hız-algılayıcılı doğrudan vektör kontrolü. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(2), 612-623 2018. https://doi.org/ 10.28948/ngumuh.443233.
  • J. Holtz, Sensorless control of induction motors-performance and limitations. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics. (ISIE 2000), pp. PL12-PL20, Cholula, Puebla, Mexico, 4-8 December 2000. https://doi .org/10.1109/ISIE.2000.930474.

Asenkron motorların iyileştirilmiş anahtarlamalı-GKF tabanlı alan yönlendirmeli kontrolü

Yıl 2021, Cilt: 10 Sayı: 2, 545 - 552, 27.07.2021
https://doi.org/10.28948/ngumuh.899447

Öz

Bu çalışmada hız-algılayıcısız iyileştirilmiş alan yönlendirmeli kontrol (AYK) tabanlı asenkron motor (ASM) sürücüsü sunulmuştur. Hız-algılayıcısız AYK için gerekli olan rotor akıları ve rotor mekanik hızına ek olarak yük momenti, stator direnci ve rotor direnci giriş olarak ölçülen stator akım ve gerilimlerini kullanan hafıza gereksinimi ve tasarım aşaması iyileştirilmiş anahtarlamalı genişletilmiş Kalman filtresi (A-GKF) kullanılarak kestirilmiştir. Kestirilen yük momentinin ileri beslemeli kontrolü ile AYK’nın başarımı iyileştirilmiştir. Buna ek olarak parametre değişimlerinden kaynaklanan kestirim hataları stator ve rotor dirençlerinin kestirimi ile azaltılmıştır. Önerilen hız-algılayıcısız ASM sürücü zorlayıcı senaryolar ile benzetim ortamında test edilmiştir. Elde edilen sonuçlar, iyileştirilmiş AYK tabanlı ASM sürücüsünün yüksek başarıma sahip olduğunu göstermektedir.

Kaynakça

  • S. Yin, Y. Huang, Y. Xue, D. Meng, C. Wang, Y. Lv, L. Diao and J. Jatskevich, Improved full-order adaptive observer for sensorless induction motor control in railway traction systems under low-switching frequency. IEEE Journal of Emerging and Selected in Topic Power Electronics, 7(4), 2333–2345, 2019. https://doi.org/10.1109/JESTPE.2019.2898875
  • M. Celebi and M. Toren, Heuristic algorithm-based estimation of rotor resistance of an induction machine by slot parameters with experimental verification. Turkish Journal of Electrical Engineering & Computer Sciences, 25, 3553-3568 2017. https://doi.org/ 10.3906 /elk-1511-232
  • A. Pal, S. Das, and A. K. Chattopadhyay, An improved rotor flux space vector based MRAS for field-oriented control of induction motor drives. IEEE Transaction on Power Electronics, 33(6), 5131–5141, 2018. https://doi.org/10.1109/TPEL.2017.2657648.
  • E. Zerdali and E. C. Mengüç, Novel complex-valued stator current-based MRAS estimators with different adaptation mechanisms. IEEE Transaction on Instrumentation and Measurement, 68(10), 3793–3795, 2019. https://doi.org/10.1109/TIM.2019.2932161.
  • J. You, W. Wu, and Y. Wang, An Adaptive Luenberger Observer for Speed-Sensorless Estimation of Induction Machines. 2018 Annual American Control Conference (ACC), pp. 307–312, Milwaukee, WI, USA, 27-29 June 2018. https://doi.org/10.23919/ACC.2018. 8431006.
  • Y. Zhang, Z. Yin, J. Liu, and X. Tong, Design and implementation of an adaptive sliding-mode observer for sensorless vector controlled induction machine drives. Journal of Electrical Engineering and Technology, 13(3), 1304–1316, 2018. https://doi.org/ 10.5370/JEET.2018.13.3.1304.
  • R. Demir and M. Barut, Novel hybrid estimator based on model reference adaptive system and extended Kalman filter for speed-sensorless induction motor control. Transactions of the Institute of Measurement and Control, 40(13), 3884–3898, 2018. https://doi.org/ 10.1177/0142331217734631.
  • M. Barut, R. Demir, E. Zerdali, and R. Inan, Real-Time implementation of bi input-extended Kalman Filter-based estimator for speed-sensorless control of induction motors. IEEE Transactions on Industrial Electronics, 59(11), 4197–4206, 2012. https://doi.org/ 10.1109/TIE.2011.2178209.
  • R. Yildiz, M. Barut, and R. Demir, Extended Kalman filter based estimations for improving speed-sensored control performance of induction motors. IET Electric Power Applications, 14(12), 2471-2479 2020. https:// doi.org/110.1049/iet-epa.2020.0319.
  • M. Barut, S. Bogosyan, and M. Gokasan, Switching EKF technique for rotor and stator resistance estimation in speed sensorless control of IMs. Energy Conversion and Management, 48(12), 3120–3134, 2007. https://doi.org/10.1016/j.enconman.2007.04.026
  • M. Barut, S. Bogosyan, and M. Gokasan, Experimental evaluation of braided EKF for sensorless control of induction motors, IEEE Transactions on Industrial Electronics, 55(2), 620–632, 2008. https://doi.org/ 10.1109/TIE.2007.911956.
  • X. Zhang, Sensorless induction motor drive using indirect vector controller and sliding-mode observer for electric vehicles. IEEE Transactions on Vehicular Technology, 62(7), 3010–3018, 2013. https://doi.org/ 10.1109/TVT.2013.2251921.
  • B. Wang, C. Luo, Y. Yu, G. Wang, and D. Xu, Antidisturbance speed control for induction machine drives using high-order fast terminal sliding-mode load torque observer. IEEE Transaction on Power Electronics, 33(9), 7927–7937, 2018. https://doi.org/ 10.1109/TPEL.2017.2765522.
  • E. Zerdali, R. Demir, and M. Barut, Speed-Sensorless FCS-PTC Based Induction Motor Drive Capable of Disturbance Rejection. 2020 2nd Global Power, Energy and Communication Conference (GPECOM), pp. 170-175, Izmir, Turkey, 20-23 October 2020 https://doi.org /10.1109/GPECOM49333.2020.9247917
  • E. Zerdali and R. Demir, Speed-sensorless predictive torque controlled induction motor drive with feed-forward control of load torque for electric vehicle applications. Turkish Journal of Electrical Engineering & Computer Sciences, 29, 223-240 2021, https://doi .org/10.3906/elk-2005-75.
  • R. Demir and E. Zerdali̇, Improved Speed-Sensorless Field-Oriented Controlled Induction Motor Drive With Feed-Forward Control of Load Torque. 2. International Turkic World Congress on Science and Engineering, (TURK-COSE 2020) pp. 525–532 Nur-Sultan, Kazakhstan, 14-15 November 2020.
  • R. Inan, R. Demir ve M. Barut, Asenkron motorun karma kestirici tabanlı hız-algılayıcılı doğrudan vektör kontrolü. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(2), 612-623 2018. https://doi.org/ 10.28948/ngumuh.443233.
  • J. Holtz, Sensorless control of induction motors-performance and limitations. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics. (ISIE 2000), pp. PL12-PL20, Cholula, Puebla, Mexico, 4-8 December 2000. https://doi .org/10.1109/ISIE.2000.930474.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Elektrik Elektronik Mühendisliği
Yazarlar

Yunus Emre Altınışık 0000-0002-9666-7533

Rıdvan Demir 0000-0001-6509-9169

Murat Barut 0000-0001-6798-0654

Yayımlanma Tarihi 27 Temmuz 2021
Gönderilme Tarihi 18 Mart 2021
Kabul Tarihi 19 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 2

Kaynak Göster

APA Altınışık, Y. E., Demir, R., & Barut, M. (2021). Asenkron motorların iyileştirilmiş anahtarlamalı-GKF tabanlı alan yönlendirmeli kontrolü. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 545-552. https://doi.org/10.28948/ngumuh.899447
AMA Altınışık YE, Demir R, Barut M. Asenkron motorların iyileştirilmiş anahtarlamalı-GKF tabanlı alan yönlendirmeli kontrolü. NÖHÜ Müh. Bilim. Derg. Temmuz 2021;10(2):545-552. doi:10.28948/ngumuh.899447
Chicago Altınışık, Yunus Emre, Rıdvan Demir, ve Murat Barut. “Asenkron motorların iyileştirilmiş Anahtarlamalı-GKF Tabanlı Alan yönlendirmeli Kontrolü”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, sy. 2 (Temmuz 2021): 545-52. https://doi.org/10.28948/ngumuh.899447.
EndNote Altınışık YE, Demir R, Barut M (01 Temmuz 2021) Asenkron motorların iyileştirilmiş anahtarlamalı-GKF tabanlı alan yönlendirmeli kontrolü. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 2 545–552.
IEEE Y. E. Altınışık, R. Demir, ve M. Barut, “Asenkron motorların iyileştirilmiş anahtarlamalı-GKF tabanlı alan yönlendirmeli kontrolü”, NÖHÜ Müh. Bilim. Derg., c. 10, sy. 2, ss. 545–552, 2021, doi: 10.28948/ngumuh.899447.
ISNAD Altınışık, Yunus Emre vd. “Asenkron motorların iyileştirilmiş Anahtarlamalı-GKF Tabanlı Alan yönlendirmeli Kontrolü”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/2 (Temmuz 2021), 545-552. https://doi.org/10.28948/ngumuh.899447.
JAMA Altınışık YE, Demir R, Barut M. Asenkron motorların iyileştirilmiş anahtarlamalı-GKF tabanlı alan yönlendirmeli kontrolü. NÖHÜ Müh. Bilim. Derg. 2021;10:545–552.
MLA Altınışık, Yunus Emre vd. “Asenkron motorların iyileştirilmiş Anahtarlamalı-GKF Tabanlı Alan yönlendirmeli Kontrolü”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sy. 2, 2021, ss. 545-52, doi:10.28948/ngumuh.899447.
Vancouver Altınışık YE, Demir R, Barut M. Asenkron motorların iyileştirilmiş anahtarlamalı-GKF tabanlı alan yönlendirmeli kontrolü. NÖHÜ Müh. Bilim. Derg. 2021;10(2):545-52.

 23135