Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of kinetic parameters and thermodynamic properties of melon seed pyrolysis

Yıl 2021, Cilt: 10 Sayı: 2, 723 - 736, 27.07.2021
https://doi.org/10.28948/ngumuh.910277

Öz

The aim of this study is to examine the behaviour of melon seed pyrolysis and to calculate its kinetic parameters along with thermodynamic properties. The thermogravimetric analysis experiments were conducted from ambient temperature to 800°C under nitrogen atmosphere at the heating rates of 5, 10, 20 and 40°C/min. It was determined that the pyrolysis process underwent through four stages where the second and third stages were the active pyrolysis stages. Kinetic calculations were carried out using model-free Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, Starink and model-based Coats-Redfern methods. The apparent activation energy values of the second and third stages were calculated to be in the ranges of 123.9–215.5 and 141.9– 234.2 kJ/mol, respectively. The Coats-Redfern method demonstrated that the second and third stages fit the reaction mechanisms of F1.65 and D5, respectively. Moreover, the enthalpy, entropy and Gibbs energy changes of the active pyrolysis stages performed at 10°C/min heating rate were determined using the results calculated from the model-free kinetic methods. The results obtained in the present study will be useful to provide necessary information needed for the design of melon seed pyrolysis processes.

Kaynakça

  • C. A. Bermúdez, J. Porteiro, L. G. Varela, S. Chapela and D. Patiño, Three-dimensional CFD simulation of a large-scale grate-fired biomass furnace. Fuel Processing Technology, 198, 106219, 1-15, 2020. https://doi.org/10.1016/j.fuproc.2019.106219
  • S. Y. Kan, B. Chen, X. F. Wu, Z. M. Chen and G. Q. Chen, Natural gas overview for world economy: From primary supply to final demand via global supply chains. Energy Policy, 124, 215-225, 2019. https://doi.org/10.1016/j.enpol.2018.10.002
  • J. Hu, B. Jiang, J. Wang, Y. Qiao, T. Zuo, Y. Sun and X. Jiang, Physicochemical characteristics and pyrolysis performance of corn stalk torrefied in aqueous ammonia by microwave heating. Bioresource Technology, 274, 83-88, 2019. https://doi.org/ 10.1016/j.biortech.2018.11.076
  • Q. Zhang, Q. Li, L. Zhang, Z. Yu, X. Jing, Z. Wang, Y. Fang and W. Huang, Experimental study on co-pyrolysis and gasification of biomass with deoiled asphalt. Energy, 134, 301-310, 2017. https://doi.org/ 10.1016/j.energy.2017.05.157
  • K. Li, L. Zhang, L. Zhu and X. Zhu, Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry. Bioresource Technology, 234, 48-52, 2017. https://doi.org/10.1016/j.biortech.2017.03.014
  • S. Sobek and S. Werl,. Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance. Fuel, 261, 116459, 1-15, 2020. https://doi.org/10.1016/j.fuel.2019.116459
  • G. Mishra, J. Kumar and T. Bhaskar. Kinetic studies on the pyrolysis of pinewood. Bioresource Technology, 182, 282-288, 2015. https://doi.org/10.1016/j.biortech. 2015.01.087
  • N. Ertaş and M. Aslan, A study on the potential of using melon wastes in biscuit production. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23 (5), 1216-1224, 2020. https://doi.org/10.18016/ ksutarimdoga.vi.681812
  • FAO, Food and Agriculture Organization of United Nations, FAOSTAT, Crops, Cherries. http://www.fao.org/faostat/en/#data/QC . Accessed: 21 January 2021.
  • M. Ünlü, R. Kurum ve A. Ünlü, Örtüaltı kavun (Cucumis melo ssp. melo) yetiştiriciliği için geliştirilen hibritlerin verim ve meyve bakımından değerlendirilmesi. Akademik Ziraat Dergisi, 6, 121-126, 2017. https://dergipark.org.tr/tr/pub/azd/issue/ 32275/363353
  • A. Ahmed, E. A. Afolabi, M. U. Garba, U. Musa, M. Alhassan and K. Ishaq, Effect of particle size on thermal decomposition and devolatilization kinetics of melon seed shell. Chemical Engineering Communications, 206(9), 1228-1240, 2019. https://doi.org/10.1080/00986445.2018.1555530
  • B. B. Nyakuma, F. Roozbahani, O. Oladokun, Y. A. Dodo, A. S. Elnafaty and T. John-Paul Ivase, Kinetic analysis of melon seed husk using non-isothermal thermogravimetric analysis. Materials Today: Proceedings, 5, 11(2), 23249-23257, 2018. https://doi.org/10.1016/j.matpr.2018.11.057
  • Ş. Bayram and E. Güneş, Nutrients and cucurbita eaten from the seed. International Journal of Environmental Pollution and Environmental Modelling, 3 (1), 27-33, 2020. https://dergipark.org.tr/tr/pub/ijepem/issue/ 54371/789209
  • S. Sabancı, C. Celebi and F. Icier, Rheological properties of sübye. traditional beverage. Akademik Gıda, 12 (1), 11-15, 2014. https://dergipark.org.tr/ tr/download/article-file/1186530
  • İ. Çelik ve Y. Kuzumoğlu, Farklı tane unları ve çekirdek tozları kullanılarak glutensiz lokma tatlısı üretimi ve kalite özellikleri. Akademik Gıda, 18 (2), 156-163, 2020. https://dergipark.org.tr/tr/pub /akademik-gida/issue/55310/758828
  • İ. Çelik ve K. Pozan, Kavun çekirdeği tozunun eriştenin bazı özelliklerine etkisi. Gıda, 45 (5), 907-916, 2020. https://dergipark.org.tr/tr/pub/gida/issue/56397/700627
  • T. Xu, F. Xu, Z. Hu, Z. Chen and B. Xiao, Non-isothermal kinetics of biomass-pyrolysis-derived-tar (BPDT) thermal decomposition via thermogravimetric analysis. Energy Conversion and Management, 138, 452-460, 2017. https://doi.org/10.1016/j.enconman. 2017.02.013
  • Th. Damartzis, D. Vamvuka, S. Sfakiotakis and A. Zabaniotou, Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresource Technology, 102, 6230-6238, 2011. https://doi.org/ 10.1016/ j.biortech.2011.02.060
  • A. A. Jain, A. Mehra and V. V. Ranade, Processing of TGA data: Analysis of isoconversional and model fitting methods. Fuel, 165, 490-498, 2016. https://doi.org/10.1016/j.fuel.2015.10.042
  • G. Chen, S. He, Z. Cheng, Y. Guan, B. Yan, W. Ma and D. Y. C. Leung, Comparison of kinetic analysis methods in thermal decomposition of cattle manure by themogravimetric analysis. Bioresource Technology, 243, 69-77, 2017. https://doi.org/10.1016/j.biortech. 2017.06.007
  • S. O. Giwa and T. O. Akanbi, A review on food uses and the prospect of egusi melon for biodiesel production. Bioenergy Research, 13, 1031–1045, 2020. https://doi.org/10.1007/s12155-020-10145-4
  • B. B. Nyakuma, Thermogravimetric and kinetic analysis of melon (Citrullus colocynthis l.) seed husk using the distributed activation energy model. Environmental and Climate Technologies, 15 (1), 77-89, 2015. https://doi.org/10.1515/rtuect-2015-0007
  • K. Açıkalın, Thermogravimetric analysis of walnut shell as pyrolysis feedstock. Journal of Thermal Analysis and Calorimetry, 105, 145-150, 2011. https://doi.org/10.1007/s10973-010-1267-x
  • K. Açıkalın, Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 109, 227-235, 2012. https://doi.org/10.1007/s10973-011-1714-3
  • G. Gözke and K. Açıkalın, Pyrolysis characteristics and kinetics of sour cherry stalk and flesh via thermogravimetric analysis using isoconversional methods. Journal of Thermal Analysis and Calorimetry, 2020. https://doi.org/10.1007/s10973-020-10055-9
  • M. R. B. Guerrero, M. M. d.S. Paula, M. M. Zaragoza, J. S. Gutiérrez, V. G. Velderrain, A. L. Ortiz and V. Collins-Martínez, Thermogravimetric study on the pyrolysis kinetics of apple pomace as waste biomass. International Journal of Hydrogen Energy, 39, 16619-16627, 2014. https://doi.org/10.1016/j.ijhydene. 2014.06.012
  • S. S. Tuly, M. Parveen, M. R. Islam, M. S. Rahman and H. Haniu, Pyrolysis kinetics study of three biomass solid wastes for thermochemical conversion into liquid fuels. AIP Conference Proceedings, 1851, 020083, 2017. http://dx.doi.org/10.1063/1.4984712
  • C. Gai, Y. Dong and T. Zhang, The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresource Technology, 127, 298-305, 2013. https://doi.org/10.1016/ j.biortech.2012.09.089
  • W. Gao, K. Chen, J. Zeng, J. Xu and B. Wang, Thermal pyrolysis characteristics of macroalgae Cladophora glomerata. Bioresource Technology, 243, 212-217, 2017. https://doi.org/10.1016/j.biortech.2017.06.041
  • M. J. B. Fong, A. C. M. Loy, B. L. F. Chin, M. K. Lam, S. Yusup and Z. A. Jawad, Catalytic pyrolysis of Chlorella vulgaris: Kinetic and Thermodynamic analysis. Bioresource Technology, 289, 121689, 1-10, 2019. https://doi.org/10.1016/j.biortech.2019.121689
  • L. Luo, X. Guo, Z. Zhang, M. Chai, M. Rahman, X. Zhang and J. Cai, Insight into pyrolysis kinetics of lignocellulosic biomass: ısoconversional kinetic analysis by the modified friedman method. Energy Fuels, 34 (4), 4874–4881, 2020. https://doi.org/ 10.1021/acs.energyfuels.0c00275
  • Q. V. Bach and W. H. Chen, Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresource Technology, 246, 88-100, 2017. https://doi.org/ 10.1016/j.biortech.2017.06.087
  • H. Huang, J. Liu, H. Liu, F. Evrendilek and M. Buyukada, Pyrolysis of water hyacinth biomass parts: Bioenergy. gas emissions. and by-products using TG-FTIR and Py-GS/MS analyses. Energy Conversion and Management, 207, 112552, 1-14, 2020. https://doi.org/ 10.1016/j.enconman.2020.112552
  • M. A. Mehmood, M. S. Ahmad, Q. Liu, C. G. Liu, M. H. Tahir, A. A. Aloqbi, N. I. Tarbiah, H. M. Alsufiani and M. Gull, Helianthus tuberosus as a promising feedstock for bioenergy and chemicals appraised through pyrolysis. kinetics. and TG-FTIR-MS based study. Energy Conversion and Management, 194, 37-45, 2019. https://doi.org/10.1016/j.enconman. 2019.04.076
  • G. Ye, H. Luo, Z. Ren, M. S. Ahmad, C. G. Liu, A. Tawab, A. B. Al-Ghafari, U. Omar, M. Gull and M. A. Mehmood, Evaluating the bioenergy potential of Chinese liquor-industry waste through pyrolysis. thermogravimetric. kinetics and evolved gas analyses. Energy Conversion and Management, 163, 13-21, 2018. https://doi.org/10.1016/j.enconman.2018.02.049
  • Y. He, C. Chang, P. Li, X. Han, H. Li, S. Fang, J. Chen and X. Ma, Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis. Bioresource Technology, 259, 294-303, 2018. https://doi.org/10.1016/j.biortech.2018.03.043
  • Y. Qiao, B. Wang, P. Zong, Y. Tian, F. Xu, D. Li, F. Li and Y. Tian, Thermal behavior, kinetics and fast pyrolysis characteristics of palm oil: Analytical TG-FTIR and Py-GC/MS study. Energy Conversion and Management, 199, 111964, 1-10, 2019. https://doi.org/ 10.1016/j.enconman.2019.111964
  • M. Jeguirim, J. Bikai, Y. Elmay, L. Limousy and E. Njeugna, Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy for Sustainable Development, 23, 188-193, 2014. https://doi.org/10.1016/j.esd. 2014.09.009
  • D. Trache, A. Abdelaziz and B. Siouani, A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. Journal of Thermal Analysis and Calorimetry, 128, 335-348, 2017. https://doi.org/ 10.1007/s10973-016-5962-0
  • S. Vyazovkin, Isoconversional Kinetics of Thermally Stimulated Processes. Springer International Publishing, Switzerland, 2015.
  • A. A. D. Maia and L. C. De Morais, Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresource Technology, 204, 157-163, 2016. http://dx.doi.org/10.1016/j.biortech.2015.12.055
  • M. Radojević, B. Janković, V. Jovanović, D. Stojiljković and N. Manić. Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure. PLoS ONE, 13(10), e0206657, 1-25, 2018. https://doi.org/10.1371/journal.pone. 0206657
  • F. Rego, A. P. S. Dias, M. Casquilho, F. C. Rosa and A. Rodrigues. Pyrolysis kinetics of short rotation coppice poplar biomass. Energy, 207, 118191, 1-9, 2020. https://doi.org/10.1016/j.energy.2020.118191
  • M. Zhai, L. Guo, Y. Zhang, P. Dong, G. Qi and Y. Huang, Kinetic parameters of biomass pyrolysis by TGA. BioResources, 11(4), 8548-8557, 2016. https://bioresources.cnr.ncsu.edu/resources/kinetic-parameters-of-biomass-pyrolysis-by-tga/
  • J. Zhang, J. Liu, F. Evrendilek, X. Zhang and M. Buyukada, TG-FTIR and Py-GC/MS analyses of pyrolysis behaviors and products of cattle manure in CO2 and N2 atmospheres: Kinetic. thermodynamic. and machine-learning models. Energy Conversion and Management, 195, 346-359, 2019. https://doi.org/ 10.1016/j.enconman.2019.05.019
  • Y. Qiao, B. Wang, Y. Ji, F. Xu, P. Zong, J. Zhang and Y. Tian, Thermal decomposition of castor oil. corn starch. soy protein. lignin. xylan. and cellulose during fast pyrolysis. Bioresource Technology, 278, 287–295, 2019. https://doi.org/10.1016/j.biortech.2019.01.102
  • Y. M. Kim, J. Jae, H. W. Lee, T. U. Han, H. Lee, S. H. Park, S. Kim, C. Watanabe and Y. -K. Park, Ex-situ catalytic pyrolysis of citrus fruit peels over mesoporous MFI and Al-MCM-41. Energy Conversion and Management, 125, 277–289, 2016. https://doi.org/ 10.1016/j.enconman.2016.02.065
  • S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Naqueda, C. Popescu and N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520, 1-19, 2011. https://doi.org/10.1016/j.tca.2011.03.034
  • A. Anca-Couce, C. Tsekos, S. Retschitzegger, F. Zimbardi, A. Funke, S. Banks, T. Kraia, P. Marques, R. Scharler, W. de Jong and N. Kienzl, Biomass pyrolysis TGA assessment with an international round robin. Fuel, 276, 118002, 1-16, 2020. https://doi.org/10.1016/ j.fuel.2020.118002
  • R. Kaur, P. Gera, M. K. Jha and T. Bhaskar, Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresource Technology, 250, 422-428, 2018. https://doi.org/10.1016/j.biortech.2017.11.077
  • X. Xu, R. Pan, P. Li and R. Chen, Kinetics. thermodynamics and volatile products of Camphorwood pyrolysis in inert atmosphere. Applied Biochemistry and Biotechnology, 191, 1605-1623, 2020. https://doi.org/10.1007/s12010-020-03300-2
  • J. Huang, J. Liu, J. Chen, W. Xie, J. Kuo, X. Lu, K. Chang, S. Wen, G. Sun, H. Cai, M. Buyukada and F. Evrendilek, Combustion behaviors of spent mushroom substrate using TG-MS and TG-FTIR: Thermal conversion. kinetic. thermodynamic and emission analyses. Bioresource Technology, 266, 389-397, 2018. https://doi.org/10.1016/j.biortech.2018.06.106
  • A. Shahid, M. Ishfaq, M. S. Ahmad, S. Malik, M. Farooq, Z. Hui, A. H. Batawi, M. E. Shafi, A. A. Aloqbi, M. Gull and M. A. Mehmood, Bioenergy potential of the residual microalgal biomass produced in city wastewater assessed through pyrolysis, kinetics and thermodynamics study to design algal biorefinery. Bioresource Technology, 289, 121701, 2019. https://doi.org/10.1016/j.biortech.2019.121701

Kavun çekirdeği pirolizine ait kinetik parametrelerin ve termodinamik özelliklerin belirlenmesi

Yıl 2021, Cilt: 10 Sayı: 2, 723 - 736, 27.07.2021
https://doi.org/10.28948/ngumuh.910277

Öz

Bu çalışmanın amacı, kavun çekirdeği pirolizinin davranışını incelemek ve kinetik parametreleri ile termodinamik özelliklerini hesaplamaktır. Termogravimetrik analiz deneyleri azot atmosferinde çevre sıcaklığından 800°C’ye 5, 10, 20 ve 40°C/dk ısıtma hızlarında çalışılmıştır. Piroliz prosesinin, ikinci ve üçüncü basamakları aktif piroliz basamağı olan dört basamakta gerçekleştiği tespit edilmiştir. Kinetik hesaplamalar model içermeyen Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, Starink ve model bazlı Coats-Redfern yöntemi ile gerçekleştirilmiştir. İkinci ve üçüncü basamaklara ait görünen aktivasyon enerjisi değerlerinin sırasıyla, 123.9– 215.5 ve 141.9–234.2 kJ/mol aralıklarında olduğu hesaplanmıştır. Coats-Redfern yöntemi, ikinci ve üçüncü basamakların sırasıyla F1.65 ve D5 reaksiyon mekanizmalarına uyduğunu ortaya koymuştur. Ayrıca, 10°C/dk ısıtma hızında gerçekleştirilen piroliz prosesinin aktif piroliz basamakları için, model içermeyen kinetik yöntemlerden hesaplanan sonuçlar kullanılarak entalpi, entropi ve Gibbs enerji değişimleri hesaplanmıştır. Mevcut çalışmada elde edilen sonuçlar, kavun çekirdeği piroliz proseslerinin tasarlanmasında gerekli olan bilgileri sağlamada faydalı olacaktır.

Kaynakça

  • C. A. Bermúdez, J. Porteiro, L. G. Varela, S. Chapela and D. Patiño, Three-dimensional CFD simulation of a large-scale grate-fired biomass furnace. Fuel Processing Technology, 198, 106219, 1-15, 2020. https://doi.org/10.1016/j.fuproc.2019.106219
  • S. Y. Kan, B. Chen, X. F. Wu, Z. M. Chen and G. Q. Chen, Natural gas overview for world economy: From primary supply to final demand via global supply chains. Energy Policy, 124, 215-225, 2019. https://doi.org/10.1016/j.enpol.2018.10.002
  • J. Hu, B. Jiang, J. Wang, Y. Qiao, T. Zuo, Y. Sun and X. Jiang, Physicochemical characteristics and pyrolysis performance of corn stalk torrefied in aqueous ammonia by microwave heating. Bioresource Technology, 274, 83-88, 2019. https://doi.org/ 10.1016/j.biortech.2018.11.076
  • Q. Zhang, Q. Li, L. Zhang, Z. Yu, X. Jing, Z. Wang, Y. Fang and W. Huang, Experimental study on co-pyrolysis and gasification of biomass with deoiled asphalt. Energy, 134, 301-310, 2017. https://doi.org/ 10.1016/j.energy.2017.05.157
  • K. Li, L. Zhang, L. Zhu and X. Zhu, Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry. Bioresource Technology, 234, 48-52, 2017. https://doi.org/10.1016/j.biortech.2017.03.014
  • S. Sobek and S. Werl,. Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance. Fuel, 261, 116459, 1-15, 2020. https://doi.org/10.1016/j.fuel.2019.116459
  • G. Mishra, J. Kumar and T. Bhaskar. Kinetic studies on the pyrolysis of pinewood. Bioresource Technology, 182, 282-288, 2015. https://doi.org/10.1016/j.biortech. 2015.01.087
  • N. Ertaş and M. Aslan, A study on the potential of using melon wastes in biscuit production. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23 (5), 1216-1224, 2020. https://doi.org/10.18016/ ksutarimdoga.vi.681812
  • FAO, Food and Agriculture Organization of United Nations, FAOSTAT, Crops, Cherries. http://www.fao.org/faostat/en/#data/QC . Accessed: 21 January 2021.
  • M. Ünlü, R. Kurum ve A. Ünlü, Örtüaltı kavun (Cucumis melo ssp. melo) yetiştiriciliği için geliştirilen hibritlerin verim ve meyve bakımından değerlendirilmesi. Akademik Ziraat Dergisi, 6, 121-126, 2017. https://dergipark.org.tr/tr/pub/azd/issue/ 32275/363353
  • A. Ahmed, E. A. Afolabi, M. U. Garba, U. Musa, M. Alhassan and K. Ishaq, Effect of particle size on thermal decomposition and devolatilization kinetics of melon seed shell. Chemical Engineering Communications, 206(9), 1228-1240, 2019. https://doi.org/10.1080/00986445.2018.1555530
  • B. B. Nyakuma, F. Roozbahani, O. Oladokun, Y. A. Dodo, A. S. Elnafaty and T. John-Paul Ivase, Kinetic analysis of melon seed husk using non-isothermal thermogravimetric analysis. Materials Today: Proceedings, 5, 11(2), 23249-23257, 2018. https://doi.org/10.1016/j.matpr.2018.11.057
  • Ş. Bayram and E. Güneş, Nutrients and cucurbita eaten from the seed. International Journal of Environmental Pollution and Environmental Modelling, 3 (1), 27-33, 2020. https://dergipark.org.tr/tr/pub/ijepem/issue/ 54371/789209
  • S. Sabancı, C. Celebi and F. Icier, Rheological properties of sübye. traditional beverage. Akademik Gıda, 12 (1), 11-15, 2014. https://dergipark.org.tr/ tr/download/article-file/1186530
  • İ. Çelik ve Y. Kuzumoğlu, Farklı tane unları ve çekirdek tozları kullanılarak glutensiz lokma tatlısı üretimi ve kalite özellikleri. Akademik Gıda, 18 (2), 156-163, 2020. https://dergipark.org.tr/tr/pub /akademik-gida/issue/55310/758828
  • İ. Çelik ve K. Pozan, Kavun çekirdeği tozunun eriştenin bazı özelliklerine etkisi. Gıda, 45 (5), 907-916, 2020. https://dergipark.org.tr/tr/pub/gida/issue/56397/700627
  • T. Xu, F. Xu, Z. Hu, Z. Chen and B. Xiao, Non-isothermal kinetics of biomass-pyrolysis-derived-tar (BPDT) thermal decomposition via thermogravimetric analysis. Energy Conversion and Management, 138, 452-460, 2017. https://doi.org/10.1016/j.enconman. 2017.02.013
  • Th. Damartzis, D. Vamvuka, S. Sfakiotakis and A. Zabaniotou, Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresource Technology, 102, 6230-6238, 2011. https://doi.org/ 10.1016/ j.biortech.2011.02.060
  • A. A. Jain, A. Mehra and V. V. Ranade, Processing of TGA data: Analysis of isoconversional and model fitting methods. Fuel, 165, 490-498, 2016. https://doi.org/10.1016/j.fuel.2015.10.042
  • G. Chen, S. He, Z. Cheng, Y. Guan, B. Yan, W. Ma and D. Y. C. Leung, Comparison of kinetic analysis methods in thermal decomposition of cattle manure by themogravimetric analysis. Bioresource Technology, 243, 69-77, 2017. https://doi.org/10.1016/j.biortech. 2017.06.007
  • S. O. Giwa and T. O. Akanbi, A review on food uses and the prospect of egusi melon for biodiesel production. Bioenergy Research, 13, 1031–1045, 2020. https://doi.org/10.1007/s12155-020-10145-4
  • B. B. Nyakuma, Thermogravimetric and kinetic analysis of melon (Citrullus colocynthis l.) seed husk using the distributed activation energy model. Environmental and Climate Technologies, 15 (1), 77-89, 2015. https://doi.org/10.1515/rtuect-2015-0007
  • K. Açıkalın, Thermogravimetric analysis of walnut shell as pyrolysis feedstock. Journal of Thermal Analysis and Calorimetry, 105, 145-150, 2011. https://doi.org/10.1007/s10973-010-1267-x
  • K. Açıkalın, Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 109, 227-235, 2012. https://doi.org/10.1007/s10973-011-1714-3
  • G. Gözke and K. Açıkalın, Pyrolysis characteristics and kinetics of sour cherry stalk and flesh via thermogravimetric analysis using isoconversional methods. Journal of Thermal Analysis and Calorimetry, 2020. https://doi.org/10.1007/s10973-020-10055-9
  • M. R. B. Guerrero, M. M. d.S. Paula, M. M. Zaragoza, J. S. Gutiérrez, V. G. Velderrain, A. L. Ortiz and V. Collins-Martínez, Thermogravimetric study on the pyrolysis kinetics of apple pomace as waste biomass. International Journal of Hydrogen Energy, 39, 16619-16627, 2014. https://doi.org/10.1016/j.ijhydene. 2014.06.012
  • S. S. Tuly, M. Parveen, M. R. Islam, M. S. Rahman and H. Haniu, Pyrolysis kinetics study of three biomass solid wastes for thermochemical conversion into liquid fuels. AIP Conference Proceedings, 1851, 020083, 2017. http://dx.doi.org/10.1063/1.4984712
  • C. Gai, Y. Dong and T. Zhang, The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresource Technology, 127, 298-305, 2013. https://doi.org/10.1016/ j.biortech.2012.09.089
  • W. Gao, K. Chen, J. Zeng, J. Xu and B. Wang, Thermal pyrolysis characteristics of macroalgae Cladophora glomerata. Bioresource Technology, 243, 212-217, 2017. https://doi.org/10.1016/j.biortech.2017.06.041
  • M. J. B. Fong, A. C. M. Loy, B. L. F. Chin, M. K. Lam, S. Yusup and Z. A. Jawad, Catalytic pyrolysis of Chlorella vulgaris: Kinetic and Thermodynamic analysis. Bioresource Technology, 289, 121689, 1-10, 2019. https://doi.org/10.1016/j.biortech.2019.121689
  • L. Luo, X. Guo, Z. Zhang, M. Chai, M. Rahman, X. Zhang and J. Cai, Insight into pyrolysis kinetics of lignocellulosic biomass: ısoconversional kinetic analysis by the modified friedman method. Energy Fuels, 34 (4), 4874–4881, 2020. https://doi.org/ 10.1021/acs.energyfuels.0c00275
  • Q. V. Bach and W. H. Chen, Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresource Technology, 246, 88-100, 2017. https://doi.org/ 10.1016/j.biortech.2017.06.087
  • H. Huang, J. Liu, H. Liu, F. Evrendilek and M. Buyukada, Pyrolysis of water hyacinth biomass parts: Bioenergy. gas emissions. and by-products using TG-FTIR and Py-GS/MS analyses. Energy Conversion and Management, 207, 112552, 1-14, 2020. https://doi.org/ 10.1016/j.enconman.2020.112552
  • M. A. Mehmood, M. S. Ahmad, Q. Liu, C. G. Liu, M. H. Tahir, A. A. Aloqbi, N. I. Tarbiah, H. M. Alsufiani and M. Gull, Helianthus tuberosus as a promising feedstock for bioenergy and chemicals appraised through pyrolysis. kinetics. and TG-FTIR-MS based study. Energy Conversion and Management, 194, 37-45, 2019. https://doi.org/10.1016/j.enconman. 2019.04.076
  • G. Ye, H. Luo, Z. Ren, M. S. Ahmad, C. G. Liu, A. Tawab, A. B. Al-Ghafari, U. Omar, M. Gull and M. A. Mehmood, Evaluating the bioenergy potential of Chinese liquor-industry waste through pyrolysis. thermogravimetric. kinetics and evolved gas analyses. Energy Conversion and Management, 163, 13-21, 2018. https://doi.org/10.1016/j.enconman.2018.02.049
  • Y. He, C. Chang, P. Li, X. Han, H. Li, S. Fang, J. Chen and X. Ma, Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis. Bioresource Technology, 259, 294-303, 2018. https://doi.org/10.1016/j.biortech.2018.03.043
  • Y. Qiao, B. Wang, P. Zong, Y. Tian, F. Xu, D. Li, F. Li and Y. Tian, Thermal behavior, kinetics and fast pyrolysis characteristics of palm oil: Analytical TG-FTIR and Py-GC/MS study. Energy Conversion and Management, 199, 111964, 1-10, 2019. https://doi.org/ 10.1016/j.enconman.2019.111964
  • M. Jeguirim, J. Bikai, Y. Elmay, L. Limousy and E. Njeugna, Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy for Sustainable Development, 23, 188-193, 2014. https://doi.org/10.1016/j.esd. 2014.09.009
  • D. Trache, A. Abdelaziz and B. Siouani, A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. Journal of Thermal Analysis and Calorimetry, 128, 335-348, 2017. https://doi.org/ 10.1007/s10973-016-5962-0
  • S. Vyazovkin, Isoconversional Kinetics of Thermally Stimulated Processes. Springer International Publishing, Switzerland, 2015.
  • A. A. D. Maia and L. C. De Morais, Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresource Technology, 204, 157-163, 2016. http://dx.doi.org/10.1016/j.biortech.2015.12.055
  • M. Radojević, B. Janković, V. Jovanović, D. Stojiljković and N. Manić. Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure. PLoS ONE, 13(10), e0206657, 1-25, 2018. https://doi.org/10.1371/journal.pone. 0206657
  • F. Rego, A. P. S. Dias, M. Casquilho, F. C. Rosa and A. Rodrigues. Pyrolysis kinetics of short rotation coppice poplar biomass. Energy, 207, 118191, 1-9, 2020. https://doi.org/10.1016/j.energy.2020.118191
  • M. Zhai, L. Guo, Y. Zhang, P. Dong, G. Qi and Y. Huang, Kinetic parameters of biomass pyrolysis by TGA. BioResources, 11(4), 8548-8557, 2016. https://bioresources.cnr.ncsu.edu/resources/kinetic-parameters-of-biomass-pyrolysis-by-tga/
  • J. Zhang, J. Liu, F. Evrendilek, X. Zhang and M. Buyukada, TG-FTIR and Py-GC/MS analyses of pyrolysis behaviors and products of cattle manure in CO2 and N2 atmospheres: Kinetic. thermodynamic. and machine-learning models. Energy Conversion and Management, 195, 346-359, 2019. https://doi.org/ 10.1016/j.enconman.2019.05.019
  • Y. Qiao, B. Wang, Y. Ji, F. Xu, P. Zong, J. Zhang and Y. Tian, Thermal decomposition of castor oil. corn starch. soy protein. lignin. xylan. and cellulose during fast pyrolysis. Bioresource Technology, 278, 287–295, 2019. https://doi.org/10.1016/j.biortech.2019.01.102
  • Y. M. Kim, J. Jae, H. W. Lee, T. U. Han, H. Lee, S. H. Park, S. Kim, C. Watanabe and Y. -K. Park, Ex-situ catalytic pyrolysis of citrus fruit peels over mesoporous MFI and Al-MCM-41. Energy Conversion and Management, 125, 277–289, 2016. https://doi.org/ 10.1016/j.enconman.2016.02.065
  • S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Naqueda, C. Popescu and N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520, 1-19, 2011. https://doi.org/10.1016/j.tca.2011.03.034
  • A. Anca-Couce, C. Tsekos, S. Retschitzegger, F. Zimbardi, A. Funke, S. Banks, T. Kraia, P. Marques, R. Scharler, W. de Jong and N. Kienzl, Biomass pyrolysis TGA assessment with an international round robin. Fuel, 276, 118002, 1-16, 2020. https://doi.org/10.1016/ j.fuel.2020.118002
  • R. Kaur, P. Gera, M. K. Jha and T. Bhaskar, Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresource Technology, 250, 422-428, 2018. https://doi.org/10.1016/j.biortech.2017.11.077
  • X. Xu, R. Pan, P. Li and R. Chen, Kinetics. thermodynamics and volatile products of Camphorwood pyrolysis in inert atmosphere. Applied Biochemistry and Biotechnology, 191, 1605-1623, 2020. https://doi.org/10.1007/s12010-020-03300-2
  • J. Huang, J. Liu, J. Chen, W. Xie, J. Kuo, X. Lu, K. Chang, S. Wen, G. Sun, H. Cai, M. Buyukada and F. Evrendilek, Combustion behaviors of spent mushroom substrate using TG-MS and TG-FTIR: Thermal conversion. kinetic. thermodynamic and emission analyses. Bioresource Technology, 266, 389-397, 2018. https://doi.org/10.1016/j.biortech.2018.06.106
  • A. Shahid, M. Ishfaq, M. S. Ahmad, S. Malik, M. Farooq, Z. Hui, A. H. Batawi, M. E. Shafi, A. A. Aloqbi, M. Gull and M. A. Mehmood, Bioenergy potential of the residual microalgal biomass produced in city wastewater assessed through pyrolysis, kinetics and thermodynamics study to design algal biorefinery. Bioresource Technology, 289, 121701, 2019. https://doi.org/10.1016/j.biortech.2019.121701
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Kimya Mühendisliği
Yazarlar

Korkut Açıkalın 0000-0002-2698-5595

Gözde Gözke 0000-0003-4576-8761

Yayımlanma Tarihi 27 Temmuz 2021
Gönderilme Tarihi 5 Nisan 2021
Kabul Tarihi 27 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 2

Kaynak Göster

APA Açıkalın, K., & Gözke, G. (2021). Kavun çekirdeği pirolizine ait kinetik parametrelerin ve termodinamik özelliklerin belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 723-736. https://doi.org/10.28948/ngumuh.910277
AMA Açıkalın K, Gözke G. Kavun çekirdeği pirolizine ait kinetik parametrelerin ve termodinamik özelliklerin belirlenmesi. NÖHÜ Müh. Bilim. Derg. Temmuz 2021;10(2):723-736. doi:10.28948/ngumuh.910277
Chicago Açıkalın, Korkut, ve Gözde Gözke. “Kavun çekirdeği Pirolizine Ait Kinetik Parametrelerin Ve Termodinamik özelliklerin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, sy. 2 (Temmuz 2021): 723-36. https://doi.org/10.28948/ngumuh.910277.
EndNote Açıkalın K, Gözke G (01 Temmuz 2021) Kavun çekirdeği pirolizine ait kinetik parametrelerin ve termodinamik özelliklerin belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 2 723–736.
IEEE K. Açıkalın ve G. Gözke, “Kavun çekirdeği pirolizine ait kinetik parametrelerin ve termodinamik özelliklerin belirlenmesi”, NÖHÜ Müh. Bilim. Derg., c. 10, sy. 2, ss. 723–736, 2021, doi: 10.28948/ngumuh.910277.
ISNAD Açıkalın, Korkut - Gözke, Gözde. “Kavun çekirdeği Pirolizine Ait Kinetik Parametrelerin Ve Termodinamik özelliklerin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/2 (Temmuz 2021), 723-736. https://doi.org/10.28948/ngumuh.910277.
JAMA Açıkalın K, Gözke G. Kavun çekirdeği pirolizine ait kinetik parametrelerin ve termodinamik özelliklerin belirlenmesi. NÖHÜ Müh. Bilim. Derg. 2021;10:723–736.
MLA Açıkalın, Korkut ve Gözde Gözke. “Kavun çekirdeği Pirolizine Ait Kinetik Parametrelerin Ve Termodinamik özelliklerin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sy. 2, 2021, ss. 723-36, doi:10.28948/ngumuh.910277.
Vancouver Açıkalın K, Gözke G. Kavun çekirdeği pirolizine ait kinetik parametrelerin ve termodinamik özelliklerin belirlenmesi. NÖHÜ Müh. Bilim. Derg. 2021;10(2):723-36.

 23135