Retina kan damarlarını çıkarmak için eşikleme temelli morfolojik bir yöntem
Yıl 2022,
Cilt: 11 Sayı: 1, 10 - 16, 14.01.2022
Buket Toptaş
,
Davut Hanbay
Öz
Son yıllarda, diyabete bağlı retina hastalığı körlüğün önde gelen nedenlerinden biri haline gelmiştir. Bu hastalığın önüne geçebilmek için retina ağ yapısının doğru bölütlenmesi gerekir. Retina ağ yapısının doğru ve hızlı bölütlenmesi için bilgisayar destekli tanı sistemlerine ihtiyaç duyulur. Bu makalede, renkli retina fundus görüntüsü üzerinde retina damarlarını otomatik olarak bölütleyen bir yöntem önerilmiştir. Retina damar ağ yapısını bölütlemek için morfolojik işlemlere dayalı bir yöntem retina görüntüleri üzerine uygulanmıştır. Morfolojik işlemlerin uygulandığı fundus görüntüsüne üç farklı eşikleme yöntemi uygulanmıştır. Bu eşikleme yöntemleri; Çoklu Eşikleme, Maksimum Entropi Tabanlı Eşikleme ve Bulanık Kümeleme Tabanlı Eşikleme yöntemleridir. Eşikleme sonucunda bölütlenmiş damar görüntüleri elde edilmiştir. Bu makalede amaç farklı eşikleme algoritmalarının aynı görüntüler üzerindeki performans karşılaştırmasını sağlamaktır. Uygulanan yöntem, herkese açık olarak sunulan retina görüntü veri seti üzerinde doğrulanmıştır. Deneysel sonuçlar, önerilen yöntemin doğru bir şekilde tespit edebildiğini göstermektedir. Eşikleme algoritmalarının 40 görüntüden oluşan veri seti üzerindeki doğruluk oranı Bulanık Mantık Tabanlı Eşikleme için 0.952, Maksimum Entopi Tabanlı Eşikleme için 0.950 ve Çoklu Eşikleme için 0.925 olarak hesaplanmıştır.
Destekleyen Kurum
İnönü Üniversitesi bilimsel araştırma ve koordinasyon birimi
Proje Numarası
FDK-2020-2109
Teşekkür
Bu çalışma, İnönü Üniversitesi bilimsel araştırma ve koordinasyon birimi tarafından FDK-2020-2109 proje numarası ile finanse edilmiştir.
Kaynakça
- J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imaging, vol. 23, no. 4, pp. 501–509, 2004, doi: 10.1109/TMI.2004.825627.
- J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Trans. Med. Imaging, vol. 25, no. 9, pp. 1214–1222, Sep. 2006, doi:10.1109/ TMI.2006.879967.
- U. T. V. Nguyen, A. Bhuiyan, L. A. F. Park, and K. Ramamohanarao, “An effective retinal blood vessel segmentation method using multi-scale line detection,” Pattern Recognit., vol. 46, no. 3, pp. 703–715, 2013, doi: 10.1016/j.patcog.2012.08.009.
- C. A. Lupaşcu, D. Tegolo, and E. Trucco, “FABC: Retinal vessel segmentation using AdaBoost,” IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 5, pp. 1267–1274, 2010, doi: 10.1109/TITB.2010.2052282.
- M. Niemeijer, J. Staal, B. Van Ginneken, M. Loog, and M. . Abramoff, “Comparative study of retinal vessel segmentation methods,” in 2015 IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2015, 2004, pp. 9–18.
- D. Marín, A. Aquino, M. E. Gegúndez-Arias, and J. M. Bravo, “A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features,” IEEE Trans. Med. Imaging, vol. 30, no. 1, pp. 146–158, 2011, doi: 10.1109/TMI.2010.2064333.
- M. M. Fraz et al., “Blood vessel segmentation methodologies in retinal images - A survey,” Comput. Methods Programs Biomed., vol. 108, no. 1, pp. 407–433, 2012, doi: 10.1016/j.cmpb.2012.03.009.
- E. Ricci and R. Perfetti, “Retinal blood vessel segmentation using line operators and support vector classification,” IEEE Trans. Med. Imaging, vol. 26, no. 10, pp. 1357–1365, 2007, doi:10.1109/TMI.2007. 898551.
- B. Toptaş and D. Hanbay, “Retinal blood vessel segmentation using pixel-based feature vector,” Biomed. Signal Process. Control, vol. 70, 2021, doi: https://doi.org/10.1016/j.bspc.2021.103053.
- A. M. Mendonça and A. Campilho, “Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction,” IEEE Trans. Med. Imaging, vol. 25, no. 9, pp. 1200–1213, 2006, doi: 10.1109/TMI.2006.879955.
- M. M. Fraz et al., “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Comput. Methods Programs Biomed., vol. 108, no. 2, pp. 600–616, 2012, doi: 10.1016/j.cmpb.2011.08.009.
- M. D. Saleh and C. Eswaran, “An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding,” Comput. Methods Biomech. Biomed. Engin., vol. 15, no. 5, pp. 517–525, 2012, doi: 10.1080/10255842.2010.545949.
- B. Zhang, L. Zhang, L. Zhang, and F. Karray, “Retinal vessel extraction by matched filter with first-order derivative of Gaussian,” Comput. Biol. Med., vol. 40, no. 4, pp. 438–445, 2010, doi:10.1016/ j.compbiomed.2010.02.008.
- M. E. Martinez-Perez, A. D. Hughes, S. A. Thom, A. A. Bharath, and K. H. Parker, “Segmentation of blood vessels from red-free and fluorescein retinal images,” Med. Image Anal., vol. 11, no. 1, pp. 47–61, 2007, doi: 10.1016/j.media.2006.11.004.
- S. Holm, G. Russell, V. Nourrit, and N. McLoughlin, “DR HAGIS—a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients,” J. Med. Imaging, vol. 4, no. 1, p. 014503, 2017, doi: 10.1117/1.jmi.4.1.014503.
- C. Zhu et al., “Retinal vessel segmentation in colour fundus images using Extreme Learning Machine,” Comput. Med. Imaging Graph., vol. 55, pp. 68–77, 2017, doi: 10.1016/j.compmedimag.2016.05.004.
- J. Zhao et al., “Automatic retinal vessel segmentation using multi-scale superpixel chain tracking,” Digit. Signal Process. A Rev. J., vol. 81, pp. 26–42, 2018, doi: 10.1016/j.dsp.2018.06.006.
- S. Kotte, P. Rajesh Kumar, and S. K. Injeti, “An efficient approach for optimal multilevel thresholding selection for gray scale images based on improved differential search algorithm,” Ain Shams Eng. J., vol. 9, no. 4, pp. 1043–1067, 2018, doi:10.1016/ j.asej.2016.06.007.
- H. Üzen and A. Karcİ, “Kumaş Hatası Tespiti i çin Entropi i le Geliştirilmiş Otomatik Eşikleme Yöntemi Automatic Thresholding Method Developed With Entropy For Fabric Defect Detection,” pp. 14–17.
- P. K. Sahoo, S. Soltani, and A. K. C. Wong, “A survey of thresholding techniques,” Comput. Vision, Graph. Image Process., vol. 41, no. 2, pp. 233–260, 1988, doi: 10.1016/0734-189X(88)90022-9.
- K. Rajesh Babu, V. A. S. Chakravarthy, S. Sandeep Reddy, G. Phani Kumar, and M. Vamsi Kumar, “Automated brain tumour detection in MRI images using threshold based FCM,” Int. J. Sci. Technol. Res., vol. 8, no. 12, pp. 224–227, 2019.
- B. Yin et al., “Vessel extraction from non-fluorescein fundus images using orientation-aware detector,” Med. Image Anal., vol. 26, no. 1, pp. 232–242, 2015, doi: 10.1016/j.media.2015.09.002.
- B. D. Barkana, I. Saricicek, and B. Yildirim, “Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion,” Knowledge-Based Syst., vol. 118, pp. 165–176, 2017, doi:10.1016/j.knosys. 2016.11.022.
- P. Bankhead, C. N. Scholfield, J. G. McGeown, and T. M. Curtis, “Fast retinal vessel detection and measurement using wavelets and edge location refinement,” PLoS One, vol. 7, no. 3, 2012, doi: 10.1371/journal.pone.0032435.
A threshold-based morphological method for extraction blood vessels from retina
Yıl 2022,
Cilt: 11 Sayı: 1, 10 - 16, 14.01.2022
Buket Toptaş
,
Davut Hanbay
Öz
In recent years, the diabetes-related retinal disease has become one of the leading causes of blindness. In order to prevent this disease, the retinal network structure needs to be segmented correctly. Computer-aided diagnostic systems are required for accurate and fast segmentation of the retinal network structure. In this paper, a method is proposed to segments retinal vessels automatically in the color retinal fundus image. A method based on morphological procedures to segmentation of vessels has been applied on retinal images. Three different thresholding methods were applied to the fundus image obtained as a result of morphological processes. These thresholding methods are; Multiple Thresholding, Maximum Entropy Based Thresholding and Fuzzy Cluster Based Thresholding methods. As a result of thresholding, segmented vessel images were obtained. The aim of this paper is to show the performance comparison of different thresholding algorithms on the same images. The method applied has been validated on the retinal image data set that is publicly available. The experimental results show that the proposed method can accurately detect. The accuracy ratio of the thresholding algorithms on the data set consisting of 40 images was calculated as 0.952 for Fuzzy Logic Based Threshold, 0.950 for Maximum Entopy Based Threshold and 0.925 for Multiple Threshold.
Proje Numarası
FDK-2020-2109
Kaynakça
- J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imaging, vol. 23, no. 4, pp. 501–509, 2004, doi: 10.1109/TMI.2004.825627.
- J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Trans. Med. Imaging, vol. 25, no. 9, pp. 1214–1222, Sep. 2006, doi:10.1109/ TMI.2006.879967.
- U. T. V. Nguyen, A. Bhuiyan, L. A. F. Park, and K. Ramamohanarao, “An effective retinal blood vessel segmentation method using multi-scale line detection,” Pattern Recognit., vol. 46, no. 3, pp. 703–715, 2013, doi: 10.1016/j.patcog.2012.08.009.
- C. A. Lupaşcu, D. Tegolo, and E. Trucco, “FABC: Retinal vessel segmentation using AdaBoost,” IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 5, pp. 1267–1274, 2010, doi: 10.1109/TITB.2010.2052282.
- M. Niemeijer, J. Staal, B. Van Ginneken, M. Loog, and M. . Abramoff, “Comparative study of retinal vessel segmentation methods,” in 2015 IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2015, 2004, pp. 9–18.
- D. Marín, A. Aquino, M. E. Gegúndez-Arias, and J. M. Bravo, “A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features,” IEEE Trans. Med. Imaging, vol. 30, no. 1, pp. 146–158, 2011, doi: 10.1109/TMI.2010.2064333.
- M. M. Fraz et al., “Blood vessel segmentation methodologies in retinal images - A survey,” Comput. Methods Programs Biomed., vol. 108, no. 1, pp. 407–433, 2012, doi: 10.1016/j.cmpb.2012.03.009.
- E. Ricci and R. Perfetti, “Retinal blood vessel segmentation using line operators and support vector classification,” IEEE Trans. Med. Imaging, vol. 26, no. 10, pp. 1357–1365, 2007, doi:10.1109/TMI.2007. 898551.
- B. Toptaş and D. Hanbay, “Retinal blood vessel segmentation using pixel-based feature vector,” Biomed. Signal Process. Control, vol. 70, 2021, doi: https://doi.org/10.1016/j.bspc.2021.103053.
- A. M. Mendonça and A. Campilho, “Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction,” IEEE Trans. Med. Imaging, vol. 25, no. 9, pp. 1200–1213, 2006, doi: 10.1109/TMI.2006.879955.
- M. M. Fraz et al., “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Comput. Methods Programs Biomed., vol. 108, no. 2, pp. 600–616, 2012, doi: 10.1016/j.cmpb.2011.08.009.
- M. D. Saleh and C. Eswaran, “An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding,” Comput. Methods Biomech. Biomed. Engin., vol. 15, no. 5, pp. 517–525, 2012, doi: 10.1080/10255842.2010.545949.
- B. Zhang, L. Zhang, L. Zhang, and F. Karray, “Retinal vessel extraction by matched filter with first-order derivative of Gaussian,” Comput. Biol. Med., vol. 40, no. 4, pp. 438–445, 2010, doi:10.1016/ j.compbiomed.2010.02.008.
- M. E. Martinez-Perez, A. D. Hughes, S. A. Thom, A. A. Bharath, and K. H. Parker, “Segmentation of blood vessels from red-free and fluorescein retinal images,” Med. Image Anal., vol. 11, no. 1, pp. 47–61, 2007, doi: 10.1016/j.media.2006.11.004.
- S. Holm, G. Russell, V. Nourrit, and N. McLoughlin, “DR HAGIS—a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients,” J. Med. Imaging, vol. 4, no. 1, p. 014503, 2017, doi: 10.1117/1.jmi.4.1.014503.
- C. Zhu et al., “Retinal vessel segmentation in colour fundus images using Extreme Learning Machine,” Comput. Med. Imaging Graph., vol. 55, pp. 68–77, 2017, doi: 10.1016/j.compmedimag.2016.05.004.
- J. Zhao et al., “Automatic retinal vessel segmentation using multi-scale superpixel chain tracking,” Digit. Signal Process. A Rev. J., vol. 81, pp. 26–42, 2018, doi: 10.1016/j.dsp.2018.06.006.
- S. Kotte, P. Rajesh Kumar, and S. K. Injeti, “An efficient approach for optimal multilevel thresholding selection for gray scale images based on improved differential search algorithm,” Ain Shams Eng. J., vol. 9, no. 4, pp. 1043–1067, 2018, doi:10.1016/ j.asej.2016.06.007.
- H. Üzen and A. Karcİ, “Kumaş Hatası Tespiti i çin Entropi i le Geliştirilmiş Otomatik Eşikleme Yöntemi Automatic Thresholding Method Developed With Entropy For Fabric Defect Detection,” pp. 14–17.
- P. K. Sahoo, S. Soltani, and A. K. C. Wong, “A survey of thresholding techniques,” Comput. Vision, Graph. Image Process., vol. 41, no. 2, pp. 233–260, 1988, doi: 10.1016/0734-189X(88)90022-9.
- K. Rajesh Babu, V. A. S. Chakravarthy, S. Sandeep Reddy, G. Phani Kumar, and M. Vamsi Kumar, “Automated brain tumour detection in MRI images using threshold based FCM,” Int. J. Sci. Technol. Res., vol. 8, no. 12, pp. 224–227, 2019.
- B. Yin et al., “Vessel extraction from non-fluorescein fundus images using orientation-aware detector,” Med. Image Anal., vol. 26, no. 1, pp. 232–242, 2015, doi: 10.1016/j.media.2015.09.002.
- B. D. Barkana, I. Saricicek, and B. Yildirim, “Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion,” Knowledge-Based Syst., vol. 118, pp. 165–176, 2017, doi:10.1016/j.knosys. 2016.11.022.
- P. Bankhead, C. N. Scholfield, J. G. McGeown, and T. M. Curtis, “Fast retinal vessel detection and measurement using wavelets and edge location refinement,” PLoS One, vol. 7, no. 3, 2012, doi: 10.1371/journal.pone.0032435.