Araştırma Makalesi
BibTex RIS Kaynak Göster

Süperkapasitör performansını artırmak için grafitik karbon nitrür /grafen hibrit yapılarının kullanılması

Yıl 2022, Cilt: 11 Sayı: 4, 1188 - 1195, 14.10.2022
https://doi.org/10.28948/ngumuh.1117709

Öz

Uygun morfolojiye ve mükemmel iletkenliğe sahip yüksek verimli, düşük maliyetli hibrit nanoyapılar tasarlamak, elektrokimyasal depolama cihazlarında kullanılan elektrotlar için umut vericidir. Bu çalışma, süperkapasitör (SK) uygulamaları için grafitik karbon nitrür (g-C3N4) ve indirgenmiş grafen oksit hidrojel (rGOH) yapılarından oluşan üç boyutlu (3B) hibrit yapının üretimi ve elektrokimyasal çalışmalardan elde edilen sonuçları içermektedir. Bilindiği üzere, süperkapasitörde spesifik kapasitans miktarının artırılması yapıda kullanılan elektrot-elektrolit arasındaki temas yüzeyi ile doğru orantılıdır. Bu yüzden, rGOH yapısının yüksek yüzey alanı ve termal stabiliteye sahip olması, g-C3N4‘ün de süperkapasitörlerde elektrokimyasal aktiviteyi arttırmasından dolayı, mevcut yapılar bir araya getirilerek elde edilen elektrotun spesifik kapasitans değeri ölçülmüştür. Süperkapasitör olarak kullanılacak bu elektrotun üretilmesiyle, yüksek spesifik kapasitans değeri elde edilmiştir. Elektrokimyasal çalışmalar sonucunda, g-C3N4@rGOH hibrit yapısının 5 mVs-1 tarama hızında 157.4 F/g yüksek kapasitans değeri elde edilmiştir. Ayrıca 1000 döngüde %112’lik benzersiz bir döngüsel stabilite performansı sergilemiştir.

Destekleyen Kurum

TARSUS ÜNİVERSİTESİ

Kaynakça

  • N. S. Shaikh, S. B. Ubale, V. J. Mane, J. S. Shaikh, V. C. Lokhande, S. Praserthdam, C. D. Lokhande, P. Kanjanaboos, Novel electrodes for supercapacitor: Conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. Journal of Alloys and Compounds, 893, 161998, 2022. https://doi.org/10.1016/ j.jallcom.2021.161998.
  • Y. Zhang, L. Chang, X. Chang, H. Chen, Y. Li, Y. Fan, J. Wang, D. Cui, C. Xue, Combining in-situ sedimentation and carbon-assisted synthesis of Co3O4/g-C3N4 nanocomposites for improved supercapacitor performance. Diamond and Related Materials, 111, 108165, 2021. https://doi.org/ 10.1016/j.diamond.2020.108165.
  • Y. Dahiya, M. Hariram, M. Kumar, A. Jain, D. Sarkar, Modified transition metal chalcogenides for high performance supercapacitors: Current trends and emerging opportunities, Coordination Chemistry Reviews, 451, 214265, 2022. https://doi.org/ 10.1016/j.ccr.2021.214265.
  • P. Liu, Y. Zheng, H. Zhu, T. Li, Mn2O3 Hollow Nanotube Arrays on Ni Foam as Efficient Supercapacitors and Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Nano Materials, 2 (2), 744-749, 2019. https://doi.org/ 10.1021/acsanm.8b01918.
  • Y. Chen, Z. Chen Y. Lin, Y. Hsu, Synthesis of Copper Phosphide Nanotube Arrays as Electrodes for Asymmetric Supercapacitors. ACS Sustainable Chemistry & Engineering, 5(5), 3863–3870 2017. https://doi.org/10.1021/acssuschemeng.6b03006.
  • A. K. Yousef, Y. Kim, P. Bhanja, P. Mei, M. Pramanik, M. M. S. Sanad, M. M. Rashad, A. Y. El-Sayed, A. A. Alshehri, Y. G. Alghamdi, K. A. Alzahrani, Y. Ide, J. Lin, Y. Yamauchi, Iron phosphide anchored nanoporous carbon as an efficient electrode for supercapacitors and the oxygen reduction reaction. RSC Advances, 9(43), 25240–25247, 2019. https://doi.org/10.1039/C9RA04326H.
  • S. Nilforoushan, M. Ghiaci, S. M. Hosseini, , S. Laurent, R. N. Muller, Selective liquid phase oxidation of ethyl benzene to acetophenone by palladium nanoparticles immobilized on a g-C3N4–rGO composite as a recyclable catalyst, New Journal of Chemistry, 43(18), 6921-6931, 2019. https://doi.org/ 10.1039/C8NJ06469E.
  • M. Majdoub, Z. Anfar, A. Amedlous, Emerging Chemical Functionalization of g-C3N4: Covalent/Noncovalent Modifications and Applications, American Chemical Society, 14 (10), 12390–12469, 2020. https://doi.org/10.1021/acsnano.0c06116.
  • D. J. Martin, K. Qiu, S. A. Shevlin, A. D. Handoko, X. Chen, Z. Guo, J. Tang, Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride, Angewandte Chemie International Edition, 53(35), 9240–9245, 2014. https://doi.org/10.1002/ anie.201403375.
  • W. Iqbal, B. Yang, X. Zhao, M. Rauf, M. Waqas, Y. Gong, J. Zhang, Y. Mao, Controllable synthesis of graphitic carbon nitride nanomaterials for solar energy conversion, and environmental remediation: The road travelled and the way forward. Catalysis Science & Technology, 8, 4576-4599, 2018. https://doi.org/ 10.1039/C8CY01061G.
  • X. Li, J. Zhang, L. Shen, Y. Ma, W. Lei, Q. Cui, G. Zou, Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine, Applied Physics A, 94(2):387-392, 2009. https://doi.org/ 10.1007/s00339-008-4816-4.
  • R. Lin, Z. Li,; D. I. Abouelamaiem, B. Zhang, D. Brett, G. He, I. P. Parkin, A general method for boosting the supercapacitor performance of graphitic carbon nitrides/graphene hybrids. Journal of Materials Chemistry A, 5(48), 25545-25554, 2017. https://doi.org/10.1039/C7TA09492B.
  • H. Soltani, H. Bahiraei, S. Ghasemi, Effect of electrodeposition time on the super-capacitive performance of electrodeposited MnO2 on g-C3N4 nanosheets, Journal of Alloys and Compounds, 904, 163565, 2022. https://doi.org/10.1016/j.jallcom.2021.163565.
  • G. Nabi, K. N. Riaz, M. Nazir, W. Raza, M. B. Tahir, M. Rafique, N. Malik, A. Siddiqa, S. S. A. Gillani, M. Rizwan, M. Shakil, M. Tanveer, Cogent synergic effect of TiS2/g-C3N4 composite with enhanced electrochemical performance for supercapacitor, Ceramics International, 46, 27601-27607, 2020. https://doi.org/10.1016/j.ceramint.2020.07.254.
  • B. Sert, Y. Ozay, E. Harputlu, S. Ozdemir, M. S. Yalcin, , K. Ocakoglu, N. Dizge, Improvement in performance of g-C3N4 nanosheets blended PES ultrafiltration membranes including biological properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 623, 126571, 2021. https://doi.org/10.1016/j.colsurfa.2021.126571.
  • E. Lökçü, N. Kaçar, M. Çayirli, R. C. Özden, M. Anik, Photoassisted Charging of Li-Ion Oxygen Batteries Using g-C3N4/rGO Nanocomposite Photocatalysts, ACS Applied Materials \& Interfaces, 14, 34583-34592, 2022. https://doi.org/10.1021/acsami.2c05607.
  • F. Mindivan, M. Göktaş, Preparation of new PVC composite using green reduced graphene oxide and its effects in thermal and mechanical properties, Polymer Bulletin, 77, 1929, 2020. https://doi.org/10.1007/ s00289-019-02831-x.
  • H.Ulus, The impact of seawater aging on basalt/graphene nanoplatelet-epoxy composites: performance evaluating by Dynamic Mechanical Analysis (DMA) and short beam shear (sbs) tests, Nigde Omer Halisdemir University Journal of Engineering Sciences, 10, 412-419, 2021. https://doi.org/10.28948/ngumuh.791161.
  • F. Mindivan, M. Göktaş, Effects of various vitamin C amounts on the green synthesis of reduced graphene oxide, Materials Testing, 61, 1007-1011, 2019. https://doi.org/10.3139/120.111416.
  • H Ulus, H. B. Kaybal, V. Eskizeybek, A. Avcı. Halloysite nanotube reinforcement endows ameliorated fracture resistance of seawater aged basalt/epoxy composites, Journal of Composite Materials, 54, 2761-2779, 2020. https://doi.org/10.1177%2F0021 998320902821.
  • Q. Ma, B. Liu, X. Han, J. Cui, Y. Zhang, W. He, Ni(OH)2 anchored on RGO-g-C3N4 carbon-based for high-performance ultracapacitor electrode, Materials Science in Semiconductor Processing, 141, 106433, 2022. https://doi.org/10.1016/j.mssp.2021.106433.
  • Y. Li, H. Zhang, P. Liu, D. Wang, Y. Li, H. Zhao, Cross-Linked g-C3N4/rGO Nanocomposites with Tunable Band Structure and Enhanced Visible Light Photocatalytic Activity, Small, 9, 3336-3344, 2013. https://doi.org/10.1002/smll.201203135.
  • B. Yuan, J. Wei, H. Yao, Z. Jiang, Z. Fang, Z. Chu, Simple synthesis of g-C3N4/rGO hybrid catalyst for the photocatalytic degradation of rhodamine B, Chinese Journal of Catalysis, 36, 1009- 1016, 2015. https://doi.org/10.1016/S1872-2067(15)60844-0.
  • F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S. C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, Journal of Materials Chemistry, 21, 15171-15174, 2011. https://doi.org/10.1039/ C1JM12844B.
  • D. Jiang, M. Zheng, Y. You, F. Li, H. Yuan, W. Zhang, L. Ma, W. Shen, β-Ni(OH)2/ nickel-cobalt layered double hydroxides coupled with fluorine-modified graphene as high-capacitance supercapacitor electrodes with improved cycle life, Journal of Alloys and Compounds, 875, 159929, 2021. https://doi.org/ 10.1016/j.jallcom.2021.159929.
  • G. U. Rehman, M. Tahir, P. S. Goh, A. F. Ismail, A. Samavati, A. K. Zulhairun, R. DashtArzhandi, Facile synthesis of GO and g-C3N4 nanosheets encapsulated magnetite ternary nanocomposite for superior photocatalytic degradation of phenol, Environmental Pollution, 253, 1066-1078, 2019. https://doi.org/ 10.1016/j.envpol.2019.07.013.
  • B.Sert, Grafitik karbon nitrür ve hekzagonal bor nitrür içeren kompozit yapıların hazırlanması; çevre ve enerji uygulamaları. Yüksek Lisans Tezi, Tarsus Üniversitesi Lisansüstü Eğitim Fakültesi, Türkiye, 2022.

Using graphitic carbon nitride/graphene hybrid structures to ımprove supercapacitor performance

Yıl 2022, Cilt: 11 Sayı: 4, 1188 - 1195, 14.10.2022
https://doi.org/10.28948/ngumuh.1117709

Öz

Designing high-efficiency, low-cost hybrid nanostructures with suitable morphology and excellent conductivity is promising for electrodes used in electrochemical storage devices. This study includes the results obtained from electrochemical studies and the production of a three-dimensional (3D) hybrid structure consisting of graphitic carbon nitride (g-C3N4) and reduced graphene oxide hydrogel (rGOH) structures for supercapacitor (SC) applications. As it is known, increasing the amount of specific capacitance in the supercapacitor is directly proportional to the contact surface between the electrode and the electrolyte used in the structure. Therefore, since the rGOH structure has a high surface area and thermal stability, and g-C3N4 increases the electrochemical activity in supercapacitors, the specific capacitance value of the electrode obtained by combining the existing structures was measured. By producing this electrode to be used as a supercapacitor, a high specific capacitance value was obtained. As a result of electrochemical studies, a high capacitance value of 157.4 F/g was obtained at 5 mVs-1 scanning speed of the g-C3N4@rGOH hybrid structure. It also demonstrated an unmatched cyclic stability performance of 112% at 1000 cycles.

Kaynakça

  • N. S. Shaikh, S. B. Ubale, V. J. Mane, J. S. Shaikh, V. C. Lokhande, S. Praserthdam, C. D. Lokhande, P. Kanjanaboos, Novel electrodes for supercapacitor: Conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. Journal of Alloys and Compounds, 893, 161998, 2022. https://doi.org/10.1016/ j.jallcom.2021.161998.
  • Y. Zhang, L. Chang, X. Chang, H. Chen, Y. Li, Y. Fan, J. Wang, D. Cui, C. Xue, Combining in-situ sedimentation and carbon-assisted synthesis of Co3O4/g-C3N4 nanocomposites for improved supercapacitor performance. Diamond and Related Materials, 111, 108165, 2021. https://doi.org/ 10.1016/j.diamond.2020.108165.
  • Y. Dahiya, M. Hariram, M. Kumar, A. Jain, D. Sarkar, Modified transition metal chalcogenides for high performance supercapacitors: Current trends and emerging opportunities, Coordination Chemistry Reviews, 451, 214265, 2022. https://doi.org/ 10.1016/j.ccr.2021.214265.
  • P. Liu, Y. Zheng, H. Zhu, T. Li, Mn2O3 Hollow Nanotube Arrays on Ni Foam as Efficient Supercapacitors and Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Nano Materials, 2 (2), 744-749, 2019. https://doi.org/ 10.1021/acsanm.8b01918.
  • Y. Chen, Z. Chen Y. Lin, Y. Hsu, Synthesis of Copper Phosphide Nanotube Arrays as Electrodes for Asymmetric Supercapacitors. ACS Sustainable Chemistry & Engineering, 5(5), 3863–3870 2017. https://doi.org/10.1021/acssuschemeng.6b03006.
  • A. K. Yousef, Y. Kim, P. Bhanja, P. Mei, M. Pramanik, M. M. S. Sanad, M. M. Rashad, A. Y. El-Sayed, A. A. Alshehri, Y. G. Alghamdi, K. A. Alzahrani, Y. Ide, J. Lin, Y. Yamauchi, Iron phosphide anchored nanoporous carbon as an efficient electrode for supercapacitors and the oxygen reduction reaction. RSC Advances, 9(43), 25240–25247, 2019. https://doi.org/10.1039/C9RA04326H.
  • S. Nilforoushan, M. Ghiaci, S. M. Hosseini, , S. Laurent, R. N. Muller, Selective liquid phase oxidation of ethyl benzene to acetophenone by palladium nanoparticles immobilized on a g-C3N4–rGO composite as a recyclable catalyst, New Journal of Chemistry, 43(18), 6921-6931, 2019. https://doi.org/ 10.1039/C8NJ06469E.
  • M. Majdoub, Z. Anfar, A. Amedlous, Emerging Chemical Functionalization of g-C3N4: Covalent/Noncovalent Modifications and Applications, American Chemical Society, 14 (10), 12390–12469, 2020. https://doi.org/10.1021/acsnano.0c06116.
  • D. J. Martin, K. Qiu, S. A. Shevlin, A. D. Handoko, X. Chen, Z. Guo, J. Tang, Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride, Angewandte Chemie International Edition, 53(35), 9240–9245, 2014. https://doi.org/10.1002/ anie.201403375.
  • W. Iqbal, B. Yang, X. Zhao, M. Rauf, M. Waqas, Y. Gong, J. Zhang, Y. Mao, Controllable synthesis of graphitic carbon nitride nanomaterials for solar energy conversion, and environmental remediation: The road travelled and the way forward. Catalysis Science & Technology, 8, 4576-4599, 2018. https://doi.org/ 10.1039/C8CY01061G.
  • X. Li, J. Zhang, L. Shen, Y. Ma, W. Lei, Q. Cui, G. Zou, Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine, Applied Physics A, 94(2):387-392, 2009. https://doi.org/ 10.1007/s00339-008-4816-4.
  • R. Lin, Z. Li,; D. I. Abouelamaiem, B. Zhang, D. Brett, G. He, I. P. Parkin, A general method for boosting the supercapacitor performance of graphitic carbon nitrides/graphene hybrids. Journal of Materials Chemistry A, 5(48), 25545-25554, 2017. https://doi.org/10.1039/C7TA09492B.
  • H. Soltani, H. Bahiraei, S. Ghasemi, Effect of electrodeposition time on the super-capacitive performance of electrodeposited MnO2 on g-C3N4 nanosheets, Journal of Alloys and Compounds, 904, 163565, 2022. https://doi.org/10.1016/j.jallcom.2021.163565.
  • G. Nabi, K. N. Riaz, M. Nazir, W. Raza, M. B. Tahir, M. Rafique, N. Malik, A. Siddiqa, S. S. A. Gillani, M. Rizwan, M. Shakil, M. Tanveer, Cogent synergic effect of TiS2/g-C3N4 composite with enhanced electrochemical performance for supercapacitor, Ceramics International, 46, 27601-27607, 2020. https://doi.org/10.1016/j.ceramint.2020.07.254.
  • B. Sert, Y. Ozay, E. Harputlu, S. Ozdemir, M. S. Yalcin, , K. Ocakoglu, N. Dizge, Improvement in performance of g-C3N4 nanosheets blended PES ultrafiltration membranes including biological properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 623, 126571, 2021. https://doi.org/10.1016/j.colsurfa.2021.126571.
  • E. Lökçü, N. Kaçar, M. Çayirli, R. C. Özden, M. Anik, Photoassisted Charging of Li-Ion Oxygen Batteries Using g-C3N4/rGO Nanocomposite Photocatalysts, ACS Applied Materials \& Interfaces, 14, 34583-34592, 2022. https://doi.org/10.1021/acsami.2c05607.
  • F. Mindivan, M. Göktaş, Preparation of new PVC composite using green reduced graphene oxide and its effects in thermal and mechanical properties, Polymer Bulletin, 77, 1929, 2020. https://doi.org/10.1007/ s00289-019-02831-x.
  • H.Ulus, The impact of seawater aging on basalt/graphene nanoplatelet-epoxy composites: performance evaluating by Dynamic Mechanical Analysis (DMA) and short beam shear (sbs) tests, Nigde Omer Halisdemir University Journal of Engineering Sciences, 10, 412-419, 2021. https://doi.org/10.28948/ngumuh.791161.
  • F. Mindivan, M. Göktaş, Effects of various vitamin C amounts on the green synthesis of reduced graphene oxide, Materials Testing, 61, 1007-1011, 2019. https://doi.org/10.3139/120.111416.
  • H Ulus, H. B. Kaybal, V. Eskizeybek, A. Avcı. Halloysite nanotube reinforcement endows ameliorated fracture resistance of seawater aged basalt/epoxy composites, Journal of Composite Materials, 54, 2761-2779, 2020. https://doi.org/10.1177%2F0021 998320902821.
  • Q. Ma, B. Liu, X. Han, J. Cui, Y. Zhang, W. He, Ni(OH)2 anchored on RGO-g-C3N4 carbon-based for high-performance ultracapacitor electrode, Materials Science in Semiconductor Processing, 141, 106433, 2022. https://doi.org/10.1016/j.mssp.2021.106433.
  • Y. Li, H. Zhang, P. Liu, D. Wang, Y. Li, H. Zhao, Cross-Linked g-C3N4/rGO Nanocomposites with Tunable Band Structure and Enhanced Visible Light Photocatalytic Activity, Small, 9, 3336-3344, 2013. https://doi.org/10.1002/smll.201203135.
  • B. Yuan, J. Wei, H. Yao, Z. Jiang, Z. Fang, Z. Chu, Simple synthesis of g-C3N4/rGO hybrid catalyst for the photocatalytic degradation of rhodamine B, Chinese Journal of Catalysis, 36, 1009- 1016, 2015. https://doi.org/10.1016/S1872-2067(15)60844-0.
  • F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S. C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, Journal of Materials Chemistry, 21, 15171-15174, 2011. https://doi.org/10.1039/ C1JM12844B.
  • D. Jiang, M. Zheng, Y. You, F. Li, H. Yuan, W. Zhang, L. Ma, W. Shen, β-Ni(OH)2/ nickel-cobalt layered double hydroxides coupled with fluorine-modified graphene as high-capacitance supercapacitor electrodes with improved cycle life, Journal of Alloys and Compounds, 875, 159929, 2021. https://doi.org/ 10.1016/j.jallcom.2021.159929.
  • G. U. Rehman, M. Tahir, P. S. Goh, A. F. Ismail, A. Samavati, A. K. Zulhairun, R. DashtArzhandi, Facile synthesis of GO and g-C3N4 nanosheets encapsulated magnetite ternary nanocomposite for superior photocatalytic degradation of phenol, Environmental Pollution, 253, 1066-1078, 2019. https://doi.org/ 10.1016/j.envpol.2019.07.013.
  • B.Sert, Grafitik karbon nitrür ve hekzagonal bor nitrür içeren kompozit yapıların hazırlanması; çevre ve enerji uygulamaları. Yüksek Lisans Tezi, Tarsus Üniversitesi Lisansüstü Eğitim Fakültesi, Türkiye, 2022.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik, Malzeme Üretim Teknolojileri
Bölüm Malzeme ve Metalürji Mühendisliği
Yazarlar

Buse Sert 0000-0003-0565-775X

Ersan Harputlu 0000-0002-2140-9070

Yayımlanma Tarihi 14 Ekim 2022
Gönderilme Tarihi 17 Mayıs 2022
Kabul Tarihi 17 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 11 Sayı: 4

Kaynak Göster

APA Sert, B., & Harputlu, E. (2022). Süperkapasitör performansını artırmak için grafitik karbon nitrür /grafen hibrit yapılarının kullanılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(4), 1188-1195. https://doi.org/10.28948/ngumuh.1117709
AMA Sert B, Harputlu E. Süperkapasitör performansını artırmak için grafitik karbon nitrür /grafen hibrit yapılarının kullanılması. NÖHÜ Müh. Bilim. Derg. Ekim 2022;11(4):1188-1195. doi:10.28948/ngumuh.1117709
Chicago Sert, Buse, ve Ersan Harputlu. “Süperkapasitör performansını artırmak için Grafitik Karbon nitrür /Grafen Hibrit yapılarının kullanılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, sy. 4 (Ekim 2022): 1188-95. https://doi.org/10.28948/ngumuh.1117709.
EndNote Sert B, Harputlu E (01 Ekim 2022) Süperkapasitör performansını artırmak için grafitik karbon nitrür /grafen hibrit yapılarının kullanılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 4 1188–1195.
IEEE B. Sert ve E. Harputlu, “Süperkapasitör performansını artırmak için grafitik karbon nitrür /grafen hibrit yapılarının kullanılması”, NÖHÜ Müh. Bilim. Derg., c. 11, sy. 4, ss. 1188–1195, 2022, doi: 10.28948/ngumuh.1117709.
ISNAD Sert, Buse - Harputlu, Ersan. “Süperkapasitör performansını artırmak için Grafitik Karbon nitrür /Grafen Hibrit yapılarının kullanılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/4 (Ekim 2022), 1188-1195. https://doi.org/10.28948/ngumuh.1117709.
JAMA Sert B, Harputlu E. Süperkapasitör performansını artırmak için grafitik karbon nitrür /grafen hibrit yapılarının kullanılması. NÖHÜ Müh. Bilim. Derg. 2022;11:1188–1195.
MLA Sert, Buse ve Ersan Harputlu. “Süperkapasitör performansını artırmak için Grafitik Karbon nitrür /Grafen Hibrit yapılarının kullanılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 11, sy. 4, 2022, ss. 1188-95, doi:10.28948/ngumuh.1117709.
Vancouver Sert B, Harputlu E. Süperkapasitör performansını artırmak için grafitik karbon nitrür /grafen hibrit yapılarının kullanılması. NÖHÜ Müh. Bilim. Derg. 2022;11(4):1188-95.

 23135