Araştırma Makalesi
BibTex RIS Kaynak Göster

Rainwater harvesting in solar power plant

Yıl 2023, Cilt: 12 Sayı: 2, 334 - 342, 15.04.2023
https://doi.org/10.28948/ngumuh.1124588

Öz

Information about rainwater harvesting was given and its applicability in solar power plants was evaluated with scenarios. Rainwater harvesting is done on solar panels, and it is aimed at using the collected water for panel cleaning. For this purpose, the annual precipitation falling on the panel areas was calculated by choosing the solar power plant with the largest area in Turkey. As a result of the study, how much of the water consumption of the solar power plants can be met from rainwater was evaluated with 3 different scenarios. In the Base Scenario, the coverage rate for the amount of water required for cleaning is approximately 76% if cleaning is carried out daily. This rate drops to 59% in Scenario 1, 42% in Scenario 2 and 29% in Scenario 3.

Kaynakça

  • R. Şengür-Taşdemir, ve İ. Koyuncu, Membran Teknolojileri ile Alternatif Su Temini: Desalinasyon ve Atıksu Geri Kazanımı, Sürdürülebilir Çevre Dergisi, 1(1), 18–30, 2021.
  • S. Sekin, Dünya Tatlı Su Rezervlerinin Coğrafi Dağılımı, Marmara Coğrafya Dergisi, 1, 247–256, 2013.
  • A. Boretti and L. Rosa, Reassessing the projections of the World Water Development Report, npj Clean Water, 2(15), 2019, https://doi.org/10.1038/s41545-019-0039-9
  • M.S. Çeliktaş, G. Sonlu, S. Özgel, Y. Atalay, Endüstriyel Devrimin Son Sürümünde Mühendisliğin Yol Haritası, 56 (662), 24–34, 2015.
  • N. Saygin and P. Ulusoy, Stormwater Management and Green Infrastructure Techniques for Sustainable Campus Design, Journal of Polytechnic, 14 (3), 223-231, 2011, https://doi:10.2339/2011.14.3
  • United Nations, United Nations Climate Change Summit 2019, 2019 Retrieved from http://sdg.iisd.org/events/un-2019-climate-summit/
  • WWAP (United Nations World Water Assessment Programme). 2015. The United Nations World Water Development Report 2015: Water for a Sustainable World. Paris, UNESCO. Retrieved from https://sustainabledevelopment.un.org/content/documents/1711Water%20for%20a%20Sustainable%20World.pdf
  • TSKB, Dünya su haftasında sürdürülebilir kalkınmada suyun önemine dikkat çekiyor, 2021 Retrieved From https://www.tskb.com.tr
  • L. Zgheib, N. Karam, and N. Farajalla, SDGs and water management in the MENA region: A comparative analysis of Jordan, Lebanon and Tunisia, Orient, 61(1), 2020.
  • R. R. Weerasooriya, et al., Industrial water conservation by water footprint and sustainable development goals: a review, Environment, Development and Sustainability, 23(9), 2021, https://doi:10.1007/s10668-020-01184-0
  • M. Berger et al., Advancing the Water Footprint into an Instrument to Support Achieving the SDGs– Recommendations from the “Water as a Global Resources” Research Initiative (GRoW), Water Resources Management, 35 (4), 2021, https://doi.org/10.1007/s11269-021-02784-9
  • R. Bain, R. Johnston, and T. Slaymaker, Drinking water quality and the SDGs, npj Clean Water, 3(1), 2020, https://doi:10.1038/s41545-020-00085-z
  • D. Cheng et al., Inclusive wealth index measuring sustainable development potentials for Chinese cities, Global Environment Change, 72, 2022, https://doi:10.1016/j.gloenvcha. 2021.102417
  • G. Halkos and G. Argyropoulou, Using environmental indicators in performance evaluation of sustainable development health goals, Ecological Economics, 192, 2022, https://doi:10.1016/j.ecolecon.2021.107263
  • L. Quinlivan, D. V. Chapman, and T. Sullivan, Validating citizen science monitoring of ambient water quality for the United Nations sustainable development goals, Science of the Total Environment, 699, 2020, https://doi:10.1016/j.scitotenv.2019.134255
  • G. Mersin, and M.S. Çeliktaş, Integration of Renewable Energy Systems. In: Fathi, M., Zio, E., Pardalos, P.M. (eds) Handbook of Smart Energy Systems. Springer, Cham. 2022, https://doi.org/10.1007/978-3-030-72322-4_93-1
  • United Nations Development Programme, World Energy Assessment. Energy and the challenge of Sustainability. UNDP, 2000. Retrieved From http://medcontent.metapress.com/index/A65RM03P4874243N.pdf
  • “Sustainable Development Goals, SDGs,” 2021. Retrieved From https://www.un.org/sustainable development/
  • UNDP, “UNDP Strategic Plan, 2018-2021,” Exec. Board United Nations Dev. Program. United Nations Popul. Fund United Nations Off. Proj. Serv., vol. 18438, no. October 2017, 2017.
  • S. Dağdeviren, Sürdürülebilir Kalkınma Çerçevesinde Türkiye’de Çevre Politikaları, Yüksek Lisans Tezi, Başkent Üniversitesi Sosyal Bilimler Enstitüsü İktisat Anabilim Dalı İktisat Yüksek Lisans Programı, Türkiye, 2019.
  • UNDP, Sürdürülebilir Kalkınma Amaçları Nelerdir?, 2022, Retrieved From https://turkiye .un.org/tr/sdgs
  • B. Maurya, Global Overview of Large-Scale Photovoltaic System and Its Electrical Energy Storage Implementation, in Smart Innovation, Systems and Technologies, (239), 2022, https://doi:10.1007/978-981-16-2857-3_16
  • F. Kaya, G. Şahin, and M. H. Alma, Investigation effects of environmental and operating factors on PV panel efficiency using by multivariate linear regression, International Journal of Energy Research, 45(1). 554-567, 2020, https://doi.org/10.1002/er.5717
  • R. Stropnik and U. Stritih, Increasing the efficiency of PV panel with the use of PCM, Renewable Energy, 97, 671-679, 2016, https://doi:10.1016/j.renene.2016.06.011
  • S. K. Marudaipillai, B. Karuppudayar Ramaraj, R. K. Kottala, and M. Lakshmanan, Experimental study on thermal management and performance improvement of solar PV panel cooling using form stable phase change material, Energy Sources, Part A: Recovery, Utilization and Environmental Effects. 45(1), 160-177, 2023 https://doi.org/10.1080/15567036.2020.18064092020
  • W. Liu, C. Liu, Y. Lin, L. Ma, F. Xiong, and J. Li, Ultra-short-term forecast of photovoltaic output power under fog and haze weather, Energies, 11(3), 528, 2018, https://doi:10.3390/en11030528
  • S. Lasfar et al., Study of the influence of dust deposits on photovoltaic solar panels: Case of Nouakchott, Energy for Sustainable Development, 63, 7-15, 2021, https://doi.org/10.1016/j.esd.2021.05.002
  • E. Şen ve M. S. Çeliktaş, A Review of PV Cooling and Thermal Energy Storage In PV/T Systems Based Phase Change Materials, Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 15(1), 55-76, 2022, https://doi:10.20854/bujse.1071145
  • J. K. Kaldellis and A. Kokala, Quantifying the decrease of the photovoltaic panels’ energy yield due to phenomena of natural air pollution disposal, Energy, 35 (12), 4862-4869, 2010, https://doi:10.1016/j.energy.2010.09.002
  • D. Thevenard, Review and recommendations for improving the modelling of building integrated photovoltaic systems, in IBPSA 2005 - International Building Performance Simulation Association 2005, 2005.
  • C. Del Pero, N. Aste, and F. Leonforte, The effect of rain on photovoltaic systems, Renewable Energy, 179, 1803-1814, 2021, https://doi:10.1016/j.renene.2021.07.130
  • E. G. Luque, F. Antonanzas-Torres, and R. Escobar, Effect of soiling in bifacial PV modules and cleaning schedule optimization, Energy Conversion and Management, vol. 174, 615-625, 2018, https://doi:10.1016/j.enconman.2018.08.065
  • W. T. Chong et al., Performance assessment of a hybrid solar-wind-rain eco-roof system for buildings, Energy and Buildings, 127, 1028-1042, 2016, https://doi.org/10.1016/j.enbuild.2016.06.065
  • R. Appels et al., Effect of soiling on photovoltaic modules, Solar Energy, 96, 283-291, 2013, https://doi:10.1016/j.solener. 2013.07.017
  • M. Yalılı Kılıç ve M. N. Abuş, Bahçeli Bir Konut Örneğinde Yağmur Suyu Hasadı, Uluslararası Tarım ve Yaban Hayatı Bilim. Derg., 4(2), 209–215, 2018, https://doi:10.24180/ijaws.426795
  • A. Campisano et al., Urban rainwater harvesting systems: Research, implementation and future perspectives, Water Research, 115, 195-209, 2017, https://doi:10.1016/j.watres. 2017.02.056
  • C. C. Amos, A. Rahman, and J. M. Gathenya, Economic analysis and feasibility of rainwater harvesting systems in urban and peri-urban environments: A Review of the Global Situation with a Special Focus on Australia and Kenya, Water (Switzerland), 8(4), 149, 2016, https://doi:10.3390/w8040149
  • R. A. AbdelKhaleq and I. Alhaj Ahmed, Rainwater harvesting in ancient civilizations in Jordan, Water Supply, 7(1), 85-93, 2007, https://doi.org/10.2166/ws.2007.010
  • Y. Gao et al., Thermal performance improvement of a horizontal ground-coupled heat exchanger by rainwater harvest, Energy and Building, 110, 302-313, 2016, https://doi:10.1016/j.enbuild.2015.10.030
  • E. Kucukkaya, A. Kelesoglu, H. Gunaydin, G. A. Kilic, and U. Unver, Design of a passive rainwater harvesting system with green building approach, International Journal of Sustainable Energy, 40(2), 175-187, 2021, https://doi:10.1080/14786451.2020.1801681
  • T. Abbasi and S. A. Abbasi, Sources of pollution in rooftop rainwater harvesting systems and their control, Critical Reviews in Environmental Science and Technology, 41(23), 2097-2167, 2011, https://doi:10.1080/10643389.2010.497438
  • M. A. Alim, A. Rahman, Z. Tao, B. Samali, M. M. Khan, and S. Shirin, Suitability of roof harvested rainwater for potential potable water production: A scoping review, Journal of Cleaner Production, 248, 2020, https://doi:10.1016/j.jclepro.2019.119226
  • C. M. Silva, V. Sousa, and N. V. Carvalho, Evaluation of rainwater harvesting in Portugal: Application to single-family residences, Resources, Conservation and Recycling, 94, 21-34, 2015, https://doi:10.1016 /j.resconrec .2014.11.004
  • D. J. Sample and J. Liu, Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture, Journal of Cleaner Production, 75, 174-194, 2014, https://doi:10.1016/j.jclepro.2014.03.075.
  • Y. R. Chiu, C. H. Liaw, and L. C. Chen, Optimizing rainwater harvesting systems as an innovative approach to saving energy in hilly communities, Renewable Energy, 34(3), 492-498, 2009, https://doi:10.1016/j.renene.2008. 06.016
  • M. Semaan, S. D. Day, M. Garvin, N. Ramakrishnan, and A. Pearce, Optimal sizing of rainwater harvesting systems for domestic water usages: A systematic literature review, Resources, Conservation and Recycling, 6. 2020, https://doi:10.1016/j.rcrx.2020.100033
  • D. Roman, A. Braga, N. Shetty, and P. Culligan, Design and modeling of an adaptively controlled rainwater harvesting system, Water (Switzerland), 9(12), 974, 2017, https://doi:10.3390/w9120974
  • Z. Ö. Bektaş, İ., Dinçer ve A. Parlak Biçer, Değişen İklim Koşullarında Çatı Kaplama Malzemelerinin Verimliliğinin İncelenmesi – Safranbolu Örneği, Erciyes Üniversitesi Fen Bilim. Enstitüsü Fen Bilimleri Dergisi, 33(3), 35–53, 2017, Retrieved From https://dergipark.org.tr/tr/pub/erciyesfen/issue/35954/403437
  • TEIAS, “Kurulu güç raporları,” 2021, Retrieved From https://www.teias.gov.tr/kurulu-guc-raporlari
  • U. Şahin, Forecasting of Turkey’s electricity generation and CO2 emissions in estimating capacity factor, Environmental Progress and Sustainable Energy, 38(1), 56-65, 2019, https://doi:10.1002/ep.13076
  • IRENA, Innovative Operation of Pumped Hydropower Storage Innovation Landscape Brief, International Renewable Energy Agency, 2020, Retrieved From https://www.irena.org/-/media/Files/IRENA/Agency/ Publication/2020/Jul/IRENA_Innovative_PHS_operation_2020.pdf
  • A. Jäger-Waldau, Snapshot of photovoltaics - March 2021, EPJ Photovoltaics, 12, 2, 2021, https://doi:10.1051/epjpv/2021002
  • C. Matos, I. Bentes, C. Santos, M. Imteaz, and S. Pereira, Economic Analysis of a Rainwater Harvesting System in a Commercial Building, Water Resources Management, 29(11), 3971–3986, 2015, https://doi:10.1007/s11269-015-1040-9
  • P. E. Abas and T. M. I. Mahlia, Techno-economic and sensitivity analysis of rainwater harvesting system as alternative water source, Sustainability, 11(8), 2365, 2019, https://doi:10.3390/su11082365
  • T.C. Çevre, Şehircilik Ve İklim Değişikliği Bakanliği, Meteoroloji Genel Müdürlüğü, 2021 Retrieved From https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H
  • C. M. Silva, V. Sousa ve N. V. Carvalho, Evaluation of rainwater harvesting in Portugal: Application to single-family residences, Resources, Conservation and Recycling, 94, 21-34, 2015, https://doi:10.1016/j.resconrec.2014 .11.004
  • RG, Resmi Gazete (2017). Yağmursuyu toplama, depolama ve deşarj sistemleri hakkında yönetmelik, 30105 sayılı, 23 Haziran 2017.
  • RG, Resmi Gazete (2021). Planlı alanlar imar yönetmeliğinde değişiklik Yapılmasına dair yönetmelik, 31538 Sayılı, 11 Temmuz 2021.
  • Çevre ve Şehircilik Bakanlığı, Konya ili 2019 yılı çevre durum raporu, 2019 Retrieved From https://webdosya.csb.gov.tr/db/ced/icerikler/2019_cdr_konya-20200722143120.pdf
  • B. El-Khozondar, ve M. Köksal, Elektrik Üretiminde Su Tüketimi ve Co2 Salımı İlişkisi, VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, Hava Kirlenmesi Araştırmaları ve Denetimi Türk Milli Komitesi, Akdeniz Üniversitesi Mühendislik Fakültesi Çevre Mühendisliği Bölümü, 1-3 Kasım 2017-Antalya
  • E. Sesli ve diğerleri, Yağmur Suyu Kullanan Güneş Enerjili Damla Sulama Sistemi Tasarımı, Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, 2019
  • S. Şevik ve A. Aktaş, Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays, Renewable Energy, 181, 490-503, 2022, https://doi:10.1016/j.renene.2021.09.064
  • C. R. Fonseca, V. Hidalgo, C. Díaz-Delgado, A. Y. Vilchis-Francés, and I. Gallego Design of optimal tank size for rainwater harvesting systems through use of a web application and geo-referenced rainfall patterns. Journal of Cleaner Production, 145, 323-335, 2017 https://doi.org/10.1016/j.jclepro.2017.01.057
  • V. A. R. Lopes, G. F. Marques, F. Dornelles and J. Medellin-Azuara, Performance of rainwater harvesting systems under scenarios of non-potable water demand and roof area typologies using a stochastic approach. Journal of Cleaner Production, 148, 304-313, 2017, https://doi.org/10.1016/j.jclepro.2017.01.132
  • C. Ozay ve M. S. Celiktas, Stochastic optimization energy and reserve scheduling model application for alaçatı, Turkey, Smart Energy, 3, 2021, https://doi.org/10. 1016/j.segy.2021.100045
  • B. Helmreich and H. Horn, Opportunities in rainwater harvesting, Desalination, 248(1–3), 118-124, 2009 https://doi.org/10.1016/j.desal.2008.05.046
  • K. O. Odhiambo, B. T. Iro Ong’Or, and E. K. Kanda, Optimization of rainwater harvesting system design for smallholder irrigation farmers in Kenya: A review. Journal of Water Supply: Research and Technology-Aqua, 70(4), 483-492, 2021, https://doi.org/10.2166/aqua.2021.087
  • A. E. Coşgun, Türkiye’de 50MW Üstü GES Üretimi Gerçekleştiren Şehirlerimizde Agrivoltaic Sistem Kullanılabilirliğinin İncelenmesi, International Journal of Engineering Research and Development, 13(2), 711-718. 2021, http://doi.org/10.29137/umagd.892391
  • Çevresel ve Sosyal Etki Değerlendirmesi, 2022, Retrieved From https://kalyonpv.com/documents/Cevresel-ve-Sosyal-Etki-Degerlendirmesi.pdf
  • İ. Bektaş ve diğerleri, Değişen İklim Koşullarında Çatı Kaplama Malzemelerinin Verimliliğinin İncelenmesi–Safranbolu Örneği, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 33(3), 35-53, 2017. Retrieved From https://dergipark.org.tr/tr/pub/erciyesfen /issue/35954/403437
  • S. Temizkan ve M. Tuna Kayılı, Yağmur Suyu Toplama Sistemlerinde Optimum Depolama Yönteminin Belirlenmesi: Karabük Üniversitesi Sosyal Yaşam Merkezi Örneği, El-Cezeri, 8(1), 102-116, 2021, http://doi.org/10. 31202/ecjse.778973
  • A. Erat, Fotovoltaik panel yüzey temizliği için akıllı sistem tasarımı, Doktora Tezi, Necmettin Erbakan Üniversitesi, 2018.
  • M. Eker, Y. Avşar, ve A. Fenercioğlu, FV Panel Temizliği için Doğrusal Motor ve Mekanizma Tasarımı, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(3), 570-578, http://doi.org/10.35414/akufemu bid.890076
  • D. Deb and N.L. Brahmbhatt, Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution, Renewable and Sustainable Energy Reviews, 82, 3306-3313, 2018, https://doi.org/10.1016/j.rser.2017.10.014

Güneş enerjisi santrallerinde yağmur suyu hasadı

Yıl 2023, Cilt: 12 Sayı: 2, 334 - 342, 15.04.2023
https://doi.org/10.28948/ngumuh.1124588

Öz

Bu çalışmada yağmur suyu hasadı hakkında bilgi verilerek, güneş enerjisi santrallerinde uygulanabilirliği senaryolar eşliğinde değerlendirilmiştir. Yağmur suyu hasadının güneş panelleri üzerinde yapılarak, toplanan suyun panel temizliğinde kullanılması hedeflenmektedir. Bu amaçla Türkiye’deki en büyük alana sahip güneş enerjisi santrali seçilerek panel alanlarına düşen yıllık yağış miktarı hesaplanmıştır. Çalışma sonucunda güneş enerjisi santrallerinin su tüketiminin ne kadarının yağmur suyundan karşılanabileceği 3 farklı senaryo eşliğinde değerlendirilmiştir. Baz Senaryoda temizlik için gereken su miktarını karşılama oranı her gün temizlik yapılması durumunda yaklaşık %76 oranındadır. Bu oran Senaryo1’de %59, Senaryo 2’de %42 ve Senaryo 3’de %29’ye düşmektedir.

Kaynakça

  • R. Şengür-Taşdemir, ve İ. Koyuncu, Membran Teknolojileri ile Alternatif Su Temini: Desalinasyon ve Atıksu Geri Kazanımı, Sürdürülebilir Çevre Dergisi, 1(1), 18–30, 2021.
  • S. Sekin, Dünya Tatlı Su Rezervlerinin Coğrafi Dağılımı, Marmara Coğrafya Dergisi, 1, 247–256, 2013.
  • A. Boretti and L. Rosa, Reassessing the projections of the World Water Development Report, npj Clean Water, 2(15), 2019, https://doi.org/10.1038/s41545-019-0039-9
  • M.S. Çeliktaş, G. Sonlu, S. Özgel, Y. Atalay, Endüstriyel Devrimin Son Sürümünde Mühendisliğin Yol Haritası, 56 (662), 24–34, 2015.
  • N. Saygin and P. Ulusoy, Stormwater Management and Green Infrastructure Techniques for Sustainable Campus Design, Journal of Polytechnic, 14 (3), 223-231, 2011, https://doi:10.2339/2011.14.3
  • United Nations, United Nations Climate Change Summit 2019, 2019 Retrieved from http://sdg.iisd.org/events/un-2019-climate-summit/
  • WWAP (United Nations World Water Assessment Programme). 2015. The United Nations World Water Development Report 2015: Water for a Sustainable World. Paris, UNESCO. Retrieved from https://sustainabledevelopment.un.org/content/documents/1711Water%20for%20a%20Sustainable%20World.pdf
  • TSKB, Dünya su haftasında sürdürülebilir kalkınmada suyun önemine dikkat çekiyor, 2021 Retrieved From https://www.tskb.com.tr
  • L. Zgheib, N. Karam, and N. Farajalla, SDGs and water management in the MENA region: A comparative analysis of Jordan, Lebanon and Tunisia, Orient, 61(1), 2020.
  • R. R. Weerasooriya, et al., Industrial water conservation by water footprint and sustainable development goals: a review, Environment, Development and Sustainability, 23(9), 2021, https://doi:10.1007/s10668-020-01184-0
  • M. Berger et al., Advancing the Water Footprint into an Instrument to Support Achieving the SDGs– Recommendations from the “Water as a Global Resources” Research Initiative (GRoW), Water Resources Management, 35 (4), 2021, https://doi.org/10.1007/s11269-021-02784-9
  • R. Bain, R. Johnston, and T. Slaymaker, Drinking water quality and the SDGs, npj Clean Water, 3(1), 2020, https://doi:10.1038/s41545-020-00085-z
  • D. Cheng et al., Inclusive wealth index measuring sustainable development potentials for Chinese cities, Global Environment Change, 72, 2022, https://doi:10.1016/j.gloenvcha. 2021.102417
  • G. Halkos and G. Argyropoulou, Using environmental indicators in performance evaluation of sustainable development health goals, Ecological Economics, 192, 2022, https://doi:10.1016/j.ecolecon.2021.107263
  • L. Quinlivan, D. V. Chapman, and T. Sullivan, Validating citizen science monitoring of ambient water quality for the United Nations sustainable development goals, Science of the Total Environment, 699, 2020, https://doi:10.1016/j.scitotenv.2019.134255
  • G. Mersin, and M.S. Çeliktaş, Integration of Renewable Energy Systems. In: Fathi, M., Zio, E., Pardalos, P.M. (eds) Handbook of Smart Energy Systems. Springer, Cham. 2022, https://doi.org/10.1007/978-3-030-72322-4_93-1
  • United Nations Development Programme, World Energy Assessment. Energy and the challenge of Sustainability. UNDP, 2000. Retrieved From http://medcontent.metapress.com/index/A65RM03P4874243N.pdf
  • “Sustainable Development Goals, SDGs,” 2021. Retrieved From https://www.un.org/sustainable development/
  • UNDP, “UNDP Strategic Plan, 2018-2021,” Exec. Board United Nations Dev. Program. United Nations Popul. Fund United Nations Off. Proj. Serv., vol. 18438, no. October 2017, 2017.
  • S. Dağdeviren, Sürdürülebilir Kalkınma Çerçevesinde Türkiye’de Çevre Politikaları, Yüksek Lisans Tezi, Başkent Üniversitesi Sosyal Bilimler Enstitüsü İktisat Anabilim Dalı İktisat Yüksek Lisans Programı, Türkiye, 2019.
  • UNDP, Sürdürülebilir Kalkınma Amaçları Nelerdir?, 2022, Retrieved From https://turkiye .un.org/tr/sdgs
  • B. Maurya, Global Overview of Large-Scale Photovoltaic System and Its Electrical Energy Storage Implementation, in Smart Innovation, Systems and Technologies, (239), 2022, https://doi:10.1007/978-981-16-2857-3_16
  • F. Kaya, G. Şahin, and M. H. Alma, Investigation effects of environmental and operating factors on PV panel efficiency using by multivariate linear regression, International Journal of Energy Research, 45(1). 554-567, 2020, https://doi.org/10.1002/er.5717
  • R. Stropnik and U. Stritih, Increasing the efficiency of PV panel with the use of PCM, Renewable Energy, 97, 671-679, 2016, https://doi:10.1016/j.renene.2016.06.011
  • S. K. Marudaipillai, B. Karuppudayar Ramaraj, R. K. Kottala, and M. Lakshmanan, Experimental study on thermal management and performance improvement of solar PV panel cooling using form stable phase change material, Energy Sources, Part A: Recovery, Utilization and Environmental Effects. 45(1), 160-177, 2023 https://doi.org/10.1080/15567036.2020.18064092020
  • W. Liu, C. Liu, Y. Lin, L. Ma, F. Xiong, and J. Li, Ultra-short-term forecast of photovoltaic output power under fog and haze weather, Energies, 11(3), 528, 2018, https://doi:10.3390/en11030528
  • S. Lasfar et al., Study of the influence of dust deposits on photovoltaic solar panels: Case of Nouakchott, Energy for Sustainable Development, 63, 7-15, 2021, https://doi.org/10.1016/j.esd.2021.05.002
  • E. Şen ve M. S. Çeliktaş, A Review of PV Cooling and Thermal Energy Storage In PV/T Systems Based Phase Change Materials, Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 15(1), 55-76, 2022, https://doi:10.20854/bujse.1071145
  • J. K. Kaldellis and A. Kokala, Quantifying the decrease of the photovoltaic panels’ energy yield due to phenomena of natural air pollution disposal, Energy, 35 (12), 4862-4869, 2010, https://doi:10.1016/j.energy.2010.09.002
  • D. Thevenard, Review and recommendations for improving the modelling of building integrated photovoltaic systems, in IBPSA 2005 - International Building Performance Simulation Association 2005, 2005.
  • C. Del Pero, N. Aste, and F. Leonforte, The effect of rain on photovoltaic systems, Renewable Energy, 179, 1803-1814, 2021, https://doi:10.1016/j.renene.2021.07.130
  • E. G. Luque, F. Antonanzas-Torres, and R. Escobar, Effect of soiling in bifacial PV modules and cleaning schedule optimization, Energy Conversion and Management, vol. 174, 615-625, 2018, https://doi:10.1016/j.enconman.2018.08.065
  • W. T. Chong et al., Performance assessment of a hybrid solar-wind-rain eco-roof system for buildings, Energy and Buildings, 127, 1028-1042, 2016, https://doi.org/10.1016/j.enbuild.2016.06.065
  • R. Appels et al., Effect of soiling on photovoltaic modules, Solar Energy, 96, 283-291, 2013, https://doi:10.1016/j.solener. 2013.07.017
  • M. Yalılı Kılıç ve M. N. Abuş, Bahçeli Bir Konut Örneğinde Yağmur Suyu Hasadı, Uluslararası Tarım ve Yaban Hayatı Bilim. Derg., 4(2), 209–215, 2018, https://doi:10.24180/ijaws.426795
  • A. Campisano et al., Urban rainwater harvesting systems: Research, implementation and future perspectives, Water Research, 115, 195-209, 2017, https://doi:10.1016/j.watres. 2017.02.056
  • C. C. Amos, A. Rahman, and J. M. Gathenya, Economic analysis and feasibility of rainwater harvesting systems in urban and peri-urban environments: A Review of the Global Situation with a Special Focus on Australia and Kenya, Water (Switzerland), 8(4), 149, 2016, https://doi:10.3390/w8040149
  • R. A. AbdelKhaleq and I. Alhaj Ahmed, Rainwater harvesting in ancient civilizations in Jordan, Water Supply, 7(1), 85-93, 2007, https://doi.org/10.2166/ws.2007.010
  • Y. Gao et al., Thermal performance improvement of a horizontal ground-coupled heat exchanger by rainwater harvest, Energy and Building, 110, 302-313, 2016, https://doi:10.1016/j.enbuild.2015.10.030
  • E. Kucukkaya, A. Kelesoglu, H. Gunaydin, G. A. Kilic, and U. Unver, Design of a passive rainwater harvesting system with green building approach, International Journal of Sustainable Energy, 40(2), 175-187, 2021, https://doi:10.1080/14786451.2020.1801681
  • T. Abbasi and S. A. Abbasi, Sources of pollution in rooftop rainwater harvesting systems and their control, Critical Reviews in Environmental Science and Technology, 41(23), 2097-2167, 2011, https://doi:10.1080/10643389.2010.497438
  • M. A. Alim, A. Rahman, Z. Tao, B. Samali, M. M. Khan, and S. Shirin, Suitability of roof harvested rainwater for potential potable water production: A scoping review, Journal of Cleaner Production, 248, 2020, https://doi:10.1016/j.jclepro.2019.119226
  • C. M. Silva, V. Sousa, and N. V. Carvalho, Evaluation of rainwater harvesting in Portugal: Application to single-family residences, Resources, Conservation and Recycling, 94, 21-34, 2015, https://doi:10.1016 /j.resconrec .2014.11.004
  • D. J. Sample and J. Liu, Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture, Journal of Cleaner Production, 75, 174-194, 2014, https://doi:10.1016/j.jclepro.2014.03.075.
  • Y. R. Chiu, C. H. Liaw, and L. C. Chen, Optimizing rainwater harvesting systems as an innovative approach to saving energy in hilly communities, Renewable Energy, 34(3), 492-498, 2009, https://doi:10.1016/j.renene.2008. 06.016
  • M. Semaan, S. D. Day, M. Garvin, N. Ramakrishnan, and A. Pearce, Optimal sizing of rainwater harvesting systems for domestic water usages: A systematic literature review, Resources, Conservation and Recycling, 6. 2020, https://doi:10.1016/j.rcrx.2020.100033
  • D. Roman, A. Braga, N. Shetty, and P. Culligan, Design and modeling of an adaptively controlled rainwater harvesting system, Water (Switzerland), 9(12), 974, 2017, https://doi:10.3390/w9120974
  • Z. Ö. Bektaş, İ., Dinçer ve A. Parlak Biçer, Değişen İklim Koşullarında Çatı Kaplama Malzemelerinin Verimliliğinin İncelenmesi – Safranbolu Örneği, Erciyes Üniversitesi Fen Bilim. Enstitüsü Fen Bilimleri Dergisi, 33(3), 35–53, 2017, Retrieved From https://dergipark.org.tr/tr/pub/erciyesfen/issue/35954/403437
  • TEIAS, “Kurulu güç raporları,” 2021, Retrieved From https://www.teias.gov.tr/kurulu-guc-raporlari
  • U. Şahin, Forecasting of Turkey’s electricity generation and CO2 emissions in estimating capacity factor, Environmental Progress and Sustainable Energy, 38(1), 56-65, 2019, https://doi:10.1002/ep.13076
  • IRENA, Innovative Operation of Pumped Hydropower Storage Innovation Landscape Brief, International Renewable Energy Agency, 2020, Retrieved From https://www.irena.org/-/media/Files/IRENA/Agency/ Publication/2020/Jul/IRENA_Innovative_PHS_operation_2020.pdf
  • A. Jäger-Waldau, Snapshot of photovoltaics - March 2021, EPJ Photovoltaics, 12, 2, 2021, https://doi:10.1051/epjpv/2021002
  • C. Matos, I. Bentes, C. Santos, M. Imteaz, and S. Pereira, Economic Analysis of a Rainwater Harvesting System in a Commercial Building, Water Resources Management, 29(11), 3971–3986, 2015, https://doi:10.1007/s11269-015-1040-9
  • P. E. Abas and T. M. I. Mahlia, Techno-economic and sensitivity analysis of rainwater harvesting system as alternative water source, Sustainability, 11(8), 2365, 2019, https://doi:10.3390/su11082365
  • T.C. Çevre, Şehircilik Ve İklim Değişikliği Bakanliği, Meteoroloji Genel Müdürlüğü, 2021 Retrieved From https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H
  • C. M. Silva, V. Sousa ve N. V. Carvalho, Evaluation of rainwater harvesting in Portugal: Application to single-family residences, Resources, Conservation and Recycling, 94, 21-34, 2015, https://doi:10.1016/j.resconrec.2014 .11.004
  • RG, Resmi Gazete (2017). Yağmursuyu toplama, depolama ve deşarj sistemleri hakkında yönetmelik, 30105 sayılı, 23 Haziran 2017.
  • RG, Resmi Gazete (2021). Planlı alanlar imar yönetmeliğinde değişiklik Yapılmasına dair yönetmelik, 31538 Sayılı, 11 Temmuz 2021.
  • Çevre ve Şehircilik Bakanlığı, Konya ili 2019 yılı çevre durum raporu, 2019 Retrieved From https://webdosya.csb.gov.tr/db/ced/icerikler/2019_cdr_konya-20200722143120.pdf
  • B. El-Khozondar, ve M. Köksal, Elektrik Üretiminde Su Tüketimi ve Co2 Salımı İlişkisi, VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, Hava Kirlenmesi Araştırmaları ve Denetimi Türk Milli Komitesi, Akdeniz Üniversitesi Mühendislik Fakültesi Çevre Mühendisliği Bölümü, 1-3 Kasım 2017-Antalya
  • E. Sesli ve diğerleri, Yağmur Suyu Kullanan Güneş Enerjili Damla Sulama Sistemi Tasarımı, Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, 2019
  • S. Şevik ve A. Aktaş, Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays, Renewable Energy, 181, 490-503, 2022, https://doi:10.1016/j.renene.2021.09.064
  • C. R. Fonseca, V. Hidalgo, C. Díaz-Delgado, A. Y. Vilchis-Francés, and I. Gallego Design of optimal tank size for rainwater harvesting systems through use of a web application and geo-referenced rainfall patterns. Journal of Cleaner Production, 145, 323-335, 2017 https://doi.org/10.1016/j.jclepro.2017.01.057
  • V. A. R. Lopes, G. F. Marques, F. Dornelles and J. Medellin-Azuara, Performance of rainwater harvesting systems under scenarios of non-potable water demand and roof area typologies using a stochastic approach. Journal of Cleaner Production, 148, 304-313, 2017, https://doi.org/10.1016/j.jclepro.2017.01.132
  • C. Ozay ve M. S. Celiktas, Stochastic optimization energy and reserve scheduling model application for alaçatı, Turkey, Smart Energy, 3, 2021, https://doi.org/10. 1016/j.segy.2021.100045
  • B. Helmreich and H. Horn, Opportunities in rainwater harvesting, Desalination, 248(1–3), 118-124, 2009 https://doi.org/10.1016/j.desal.2008.05.046
  • K. O. Odhiambo, B. T. Iro Ong’Or, and E. K. Kanda, Optimization of rainwater harvesting system design for smallholder irrigation farmers in Kenya: A review. Journal of Water Supply: Research and Technology-Aqua, 70(4), 483-492, 2021, https://doi.org/10.2166/aqua.2021.087
  • A. E. Coşgun, Türkiye’de 50MW Üstü GES Üretimi Gerçekleştiren Şehirlerimizde Agrivoltaic Sistem Kullanılabilirliğinin İncelenmesi, International Journal of Engineering Research and Development, 13(2), 711-718. 2021, http://doi.org/10.29137/umagd.892391
  • Çevresel ve Sosyal Etki Değerlendirmesi, 2022, Retrieved From https://kalyonpv.com/documents/Cevresel-ve-Sosyal-Etki-Degerlendirmesi.pdf
  • İ. Bektaş ve diğerleri, Değişen İklim Koşullarında Çatı Kaplama Malzemelerinin Verimliliğinin İncelenmesi–Safranbolu Örneği, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 33(3), 35-53, 2017. Retrieved From https://dergipark.org.tr/tr/pub/erciyesfen /issue/35954/403437
  • S. Temizkan ve M. Tuna Kayılı, Yağmur Suyu Toplama Sistemlerinde Optimum Depolama Yönteminin Belirlenmesi: Karabük Üniversitesi Sosyal Yaşam Merkezi Örneği, El-Cezeri, 8(1), 102-116, 2021, http://doi.org/10. 31202/ecjse.778973
  • A. Erat, Fotovoltaik panel yüzey temizliği için akıllı sistem tasarımı, Doktora Tezi, Necmettin Erbakan Üniversitesi, 2018.
  • M. Eker, Y. Avşar, ve A. Fenercioğlu, FV Panel Temizliği için Doğrusal Motor ve Mekanizma Tasarımı, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(3), 570-578, http://doi.org/10.35414/akufemu bid.890076
  • D. Deb and N.L. Brahmbhatt, Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution, Renewable and Sustainable Energy Reviews, 82, 3306-3313, 2018, https://doi.org/10.1016/j.rser.2017.10.014
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği
Yazarlar

Seçil Uysal 0000-0001-5071-0279

Melih Soner Çeliktaş 0000-0003-0597-5133

Yayımlanma Tarihi 15 Nisan 2023
Gönderilme Tarihi 1 Haziran 2022
Kabul Tarihi 28 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 2

Kaynak Göster

APA Uysal, S., & Çeliktaş, M. S. (2023). Güneş enerjisi santrallerinde yağmur suyu hasadı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 334-342. https://doi.org/10.28948/ngumuh.1124588
AMA Uysal S, Çeliktaş MS. Güneş enerjisi santrallerinde yağmur suyu hasadı. NÖHÜ Müh. Bilim. Derg. Nisan 2023;12(2):334-342. doi:10.28948/ngumuh.1124588
Chicago Uysal, Seçil, ve Melih Soner Çeliktaş. “Güneş Enerjisi Santrallerinde yağmur Suyu Hasadı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 2 (Nisan 2023): 334-42. https://doi.org/10.28948/ngumuh.1124588.
EndNote Uysal S, Çeliktaş MS (01 Nisan 2023) Güneş enerjisi santrallerinde yağmur suyu hasadı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 2 334–342.
IEEE S. Uysal ve M. S. Çeliktaş, “Güneş enerjisi santrallerinde yağmur suyu hasadı”, NÖHÜ Müh. Bilim. Derg., c. 12, sy. 2, ss. 334–342, 2023, doi: 10.28948/ngumuh.1124588.
ISNAD Uysal, Seçil - Çeliktaş, Melih Soner. “Güneş Enerjisi Santrallerinde yağmur Suyu Hasadı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/2 (Nisan 2023), 334-342. https://doi.org/10.28948/ngumuh.1124588.
JAMA Uysal S, Çeliktaş MS. Güneş enerjisi santrallerinde yağmur suyu hasadı. NÖHÜ Müh. Bilim. Derg. 2023;12:334–342.
MLA Uysal, Seçil ve Melih Soner Çeliktaş. “Güneş Enerjisi Santrallerinde yağmur Suyu Hasadı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 2, 2023, ss. 334-42, doi:10.28948/ngumuh.1124588.
Vancouver Uysal S, Çeliktaş MS. Güneş enerjisi santrallerinde yağmur suyu hasadı. NÖHÜ Müh. Bilim. Derg. 2023;12(2):334-42.

 23135