Araştırma Makalesi
BibTex RIS Kaynak Göster

Particle swarm optimization based design of a terahertz antenna with a modified photonic band gap substrate for 6G future wireless communications

Yıl 2023, Cilt: 12 Sayı: 2, 367 - 375, 15.04.2023
https://doi.org/10.28948/ngumuh.1217148

Öz

In this study, an antenna is proposed that operates at THz spectrum for sixth generation (6G) short-range future wireless communications. A modified photonic band gap (MPBG) substrate is employed to design an octagonal ring shaped microstrip patch antenna with wideband and high gain properties. Unlike the conventional photonic band gap (PBG) form, the proposed MPBG substrate structure is created by variable sized cylindrical air holes. The radii of each air cylinder in the row is determined with the help of particle swarm optimization (PSO) algorithm, where the goal is set to achieve the highest gain and impedance bandwidth (S_11≤-10 dB) possible. The simulation results of the antennas that are built on 1) non-PBG, 2) conventional PBG and 3) the proposed MPBG substrate structures are compared. It is observed that the radiation performance is most enhanced by implementing MPBG structure. In comparison to the antenna without PBG, the reported MPBG structure offers almost 300% gain and 11% bandwidth improvement. To summarize, the designed antenna with its proposed MPBG substrate structure achieves an excellent radiation performance within a wide operating bandwidth.

Kaynakça

  • I. Malhotra, KR. Jha and G. Singh, Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications. Optics Communications,397, 129-139, 2017. https://doi.org/10.101 6/j.optcom.2017.04.008
  • A. El-Fatimy, JC. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham and P. Mounaix, Plasma wave field effect transistor as a resonant detector for 1 terahertz imaging applications. Optics Communications, 282(15), 3055-3058, 2009. https://doi.org/10.1016/j.optcom .2009.04.054
  • G. Geetharamani and T. Aathmanesan, Split ring resonator inspired THz antenna for breast cancer detection. Optics & Laser Technology,126, 106111, 2020. https://doi .org/10.1016/j.optlastec.2020.106111
  • S. Asgari, N. Granpayeh and T. Fabritius, Controllable terahertz cross-shaped three-dimensional graphene intrinsically chiral metastructure and its biosensing application. Optics Communications,474, 126080, 2020. https://doi.org/10.1016/j.optcom.2020.126080
  • R. Zhang, K. Yang, QH. Abbasi, KA. Qaraqe and A. Alomainy, Analytical modelling of the effect of noise on the terahertz in-vivo communication channel for body-centric nano-networks. Nano Communication Networks, 15, 59-68, 2018.https://doi.org/10.1016/j.nancom.2017.04.001
  • T. Okan, High efficiency unslotted ultra-wideband microstrip antenna for sub-terahertz short range wireless communication systems. Optik, 242, 166859, 2021. https ://doi.org/10.1016/j.ijleo.2021.166859
  • KR. Jha and G. Singh, Design of highly directive cavity type terahertz antenna for wireless communication. Optics Communications,284 (20), 4996-5002, 2011. https://doi.org/ 10.1016/j.optcom.2011.06.052
  • X. Ma, Z. Chen, W. Chen, Y. Chi, Z. Li, C. Han and Q. Wen, Intelligent reflecting surface enhanced indoor terahertz communication systems. Nano Communication Networks, 24, 100284, 2020. https://doi.org/10.1016/j.nancom.2020.1 00284
  • T. Nagatsuma, K. Oogimoto, Y. Inubushi and J. Hirokawa, Practical considerations of terahertz communications for short distance applications. Nano Communication Networks, 10,1-12, 2016. https://doi.org/10 .1016/j.nancom.2016.07.005
  • Q. Rubani, SH. Gupta, S. Pani and A. Kumar, Design and Analysis of a Terahertz Antenna for Wireless Body Area Networks. Optik, 179, 684-690, 2018. https://doi.org/10.101 6/j.ijleo.2018.10.202
  • IF. Akyildiz, JM. Jornet and C. Han, Terahertz band: next frontier for wireless communications. Physical Communication, 12, 16-32, 2014. https://doi.org/10.1016/j.p hycom.2014.01.006
  • FR. Yang, Y. Qian, R. Coccioli and T. Itoh, Analysis and Application of Photonic Band-Gap (PBG) Structures for Microwave Circuits. Electromagnetics, 19 (3), 241-254, 1999. 10.1080/02726349908908642
  • B. Dokmetas, GO. Arican, N. Akcam and E.Yazgan E, A novel millimeter-wave U-shaped radiating slot antenna with DGS structures for 5G cellular application. In: IEEE, 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, pp: 669-672 28-30 November 2019. https://doi.org/10.23919/ELECO47770. 2019.8990502
  • S. Singhal S, Four Arm Windmill Shaped Superwideband Terahertz MIMO Fractal Antenna. Optik, 219, 165093, 2020. https://doi.org/10.1016/j.ijleo.2020.165 093
  • MG. Silveirinha and CA. Fernandes, Computation of the Electromagnetic Modes in Two-Dimensional Photonic Crystals: A Technique to Improve the Convergence Rate of the Plane Wave Method. Electromagnetics. 26 (2), 175-187, 2006. https://doi.org/10.1080/02726340500486492
  • A. Sharma and G. Singh, Rectangular Microstirp Patch Antenna Design at THz Frequency for Short Distance Wireless Communication Systems. Journal of Infrared, Millimeter, and Terahertz Waves, 30 (1), 1-7, 2008.
  • Á. Gómez, A. Vegas, MA. Solano and A. Lakhtakia On One- and Two-Dimensional Electromagnetic Band Gap Structures in Rectangular Waveguides. Microwave Frequencies. Electromagnetics, 25(5), 437-460, 2005. https ://doi.org/10.1080/02726340590957443
  • M. Singh and S. Singh, Design and Performance Investigation of Miniaturized Multi-Wideband Patch Antenna for Multiple Terahertz Applications. Photonics and Nanostructures-Fundamentals and Applications, 44,100900, 2021 https://doi.org/10.1016/j.photonics.2021.100900
  • TS. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb and GC. Trichopoulos, Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access. 7,78729-78757, 2019. https:// doi.org/10.1109/ACCESS.2019.2921522
  • A. Singh and S. Singh, A trapezoidal microstrip patch antenna on photonic crystal substrate for high speed THz applications. Photonics and Nanostructures - Fundamentals and Applications,14, 52-62, 2015. https://doi.org/10.1016/ j.photonics.2015.01.003
  • S. Ullah, C. Ruan, TU. Haq and X. Zhang, High performance THz patch antenna using photonic band gap and defected ground structure. Journal of Electromagnetic Waves and Applications, 33 (15), 1943-1954, 2019. https:// doi.org/10.1080/09205071.2019.1654929
  • MNE. Temmar, A. Hocini, D. Khedrouche and M. Zamani, Analysis and design of a terahertz microstrip antenna based on a synthesized photonic bandgap substrate using BPSO. Journal of Computational Electronics, 18, 231-240, 2019.
  • BO. De Andrade and LM. De Mendonca, Frequency invariance, gain improvement, and fast design in 3D-printed photonic band gap antennas with quadratic holes. Microwave and Optical Technology Letters. 61 (10), 2295-2305, 2019.https://doi.org/10.1002/mop.31897
  • JPP. Pereira, JP. Da Silva and HD. De Andrade, A new design and analysis of a hexagonal PBG microstrip antenna. Microwave and Optical Technology Letters, 57 (9), 2147-2151, 2015. https://doi.org/10.1002/mop.29279
  • G. Singh, Design considerations for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Physics & Technology, 53 (1), 17-22, 2010. https://doi.org/10.1016/j.in frared.2009.08.002
  • MN. Eddine-Temmar, A. Hocini, D. Khedrouche and TA. Denidni, Analysis and Design of MIMO Indoor Communication System Using Terahertz Patch Antenna Based on Photonic Crystal with Graphene. Photonics and Nanostructures - Fundamentals and Applications, 43,100867, 2020. https://doi.org/10.1016/j.photonics.2020 .100867
  • S. Anand, DS. Kumar, RJ. Wu and M. Chavali, Analysis and design of optically transparent antenna on photonic band gap structures. Optik,125 (12), 2835-2839, 2014. https://doi.org/10.1016/j.ijleo.2013.11.061
  • E. Rahmati and M. Ahmadi-Boroujeni, Improving the efficiency and directivity of THz photoconductive antennas by using a defective photonic crystal substrate. Optics Communications, 412, 74-79, 2018. https://doi.org/10.10 16/j.optcom.2017.12.011
  • KR. Jha and G. Singh, Analysis and design of terahertz microstrip antenna on photonic bandgap material. Journal of Computational Electronics, 11 (4), 364-373, 2012.
  • MN. Eddine-Temmar, A. Hocini, D. Khedrouche and TA. Denidni, Enhanced Flexible Terahertz Microstrip Antenna Based on Modified Silicon-Air Photonic Crystal. Optik, 217, 164897, 2020. https://doi.org/10.1016/j.ijleo.2020.164897
  • A. Hocini, MN. Temmar,D. Khedrouche and M. Zamani, Novel Approach for the Design and Analysis of a Terahertz Microstrip Patch Antenna Based on Photonic Crystals. Photonics and Nanostructures - Fundamentals and Applications,36,100723,2019. https://doi.org/10.1016/j.pho tonics.2019.100723
  • MS. Khan, AD. Capobianco, SM. Asif, A. Iftikhar, BD. Braaten and RM. Shubair, A properties comparison between copper and graphene-based UWB MIMO planar antennas. In: IEEE, International Symposium on Antennas and Propagation (APSURSI), Puerto Rico; 26 June-1 July 2016:1767-1768. https://doi.org/10.1109/APS.2016.769659 0
  • T. Zhou, Z. Cheng, H. Zhang,M. Le Berre, L. Militaru and F. Calmon, Miniaturized tunable terahertz antenna based on graphene. Microwave and Optical Technology Letters, 56 (8), 1792-1794, 2014. https://doi.org/10.1002/mop.28450
  • R. Goyal R and DK. Vishwakarma, Design of a graphene-based patch antenna on glass substrate for high-speed terahertz communications. Microwave and Optical Technology Letters, 60 (7), 1594-1600, 2018. https://doi .org/10.1002/mop.31216
  • JY. Liu, TJ. Huang, FY. Han, LZ. Yin and PK. Liu, Terahertz routing with graphene magnetic metamaterials. Optics Communications, 464, 125506, 2020. https://doi.org/ 10.1016/j.optcom.2020.125506
  • P. Upende and A. Kumar, Quad-Band Circularly Polarized Tunable Graphene Based Dielectric Resonator Antenna for Terahertz Applications. Silicon, 2021.
  • CM. Krishna, S. Das, S. Lakrit, S. Lavadiya, BTP. Madhav and V. Sorathiya, Design and analysis of a super wideband (0.09-30.14 THz) graphene based log periodic dipole array antenna for terahertz applications. Optik, 247, 167991, 2021. https://doi.org/10.1016/j.ijleo.2021.167991
  • AE. Yilmaz and M. Kuzuoglu, Calculation of optimized parameters of rectangular microstrip patch antenna using particle swarm optimization. Microwave and Optical Technology Letters, 49 (12), 2905-2907, 2007. https://doi.org/10.1002/mop.22918
  • CA. Balanis, Antenna theory: analysis and design. 3rd ed. New York, J. Wiley, 2005.
  • CST Microwave Studio Suite, CST Inc.; 2018.

6G geleceğin kablosuz iletişimi için modifiye fotonik bant boşluğu substratına sahip bir terahertz anteninin parçacık sürü optimizasyonu temelli tasarımı

Yıl 2023, Cilt: 12 Sayı: 2, 367 - 375, 15.04.2023
https://doi.org/10.28948/ngumuh.1217148

Öz

Bu çalışmada, altıncı nesil (6G) kısa menzilli geleceğin kablosuz iletişimi için THz spektrumunda çalışan bir anten önerilmiştir. Geniş bant ve yüksek kazanç özelliklerine sahip sekizgen halka şeklinde bir mikroşerit yama anteni tasarlamak için değiştirilmiş bir fotonik bant aralığı (MPBG) kullanılır. Geleneksel fotonik bant aralığı (PBG) formunun aksine, önerilen MPBG substrat yapısı, değişken boyutlu silindirik hava delikleri tarafından oluşturulur. Sıradaki her hava silindirinin yarıçapı, hedefin mümkün olan en yüksek kazanç ve empedans bant genişliğini (S_11≤-10 dB) elde etmek olan parçacık sürü optimizasyonu (PSO) algoritması yardımıyla belirlenir. 1) PBG olmayan, 2) geleneksel PBG ve 3) önerilen MPBG substrat yapıları üzerine kurulan antenlerin simülasyon sonuçları karşılaştırılmıştır. Radyasyon performansının en çok MPBG yapısının uygulanmasıyla arttığı gözlemlenmiştir. PBG'siz antenle karşılaştırıldığında, bildirilen MPBG yapısı neredeyse %300 kazanç ve %11 bant genişliği iyileştirmesi sunuyor. Özetlemek gerekirse, önerilen MPBG substrat yapısı ile tasarlanan anten, geniş bir çalışma bant genişliği içinde mükemmel bir radyasyon performansı elde etmektedir.

Kaynakça

  • I. Malhotra, KR. Jha and G. Singh, Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications. Optics Communications,397, 129-139, 2017. https://doi.org/10.101 6/j.optcom.2017.04.008
  • A. El-Fatimy, JC. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham and P. Mounaix, Plasma wave field effect transistor as a resonant detector for 1 terahertz imaging applications. Optics Communications, 282(15), 3055-3058, 2009. https://doi.org/10.1016/j.optcom .2009.04.054
  • G. Geetharamani and T. Aathmanesan, Split ring resonator inspired THz antenna for breast cancer detection. Optics & Laser Technology,126, 106111, 2020. https://doi .org/10.1016/j.optlastec.2020.106111
  • S. Asgari, N. Granpayeh and T. Fabritius, Controllable terahertz cross-shaped three-dimensional graphene intrinsically chiral metastructure and its biosensing application. Optics Communications,474, 126080, 2020. https://doi.org/10.1016/j.optcom.2020.126080
  • R. Zhang, K. Yang, QH. Abbasi, KA. Qaraqe and A. Alomainy, Analytical modelling of the effect of noise on the terahertz in-vivo communication channel for body-centric nano-networks. Nano Communication Networks, 15, 59-68, 2018.https://doi.org/10.1016/j.nancom.2017.04.001
  • T. Okan, High efficiency unslotted ultra-wideband microstrip antenna for sub-terahertz short range wireless communication systems. Optik, 242, 166859, 2021. https ://doi.org/10.1016/j.ijleo.2021.166859
  • KR. Jha and G. Singh, Design of highly directive cavity type terahertz antenna for wireless communication. Optics Communications,284 (20), 4996-5002, 2011. https://doi.org/ 10.1016/j.optcom.2011.06.052
  • X. Ma, Z. Chen, W. Chen, Y. Chi, Z. Li, C. Han and Q. Wen, Intelligent reflecting surface enhanced indoor terahertz communication systems. Nano Communication Networks, 24, 100284, 2020. https://doi.org/10.1016/j.nancom.2020.1 00284
  • T. Nagatsuma, K. Oogimoto, Y. Inubushi and J. Hirokawa, Practical considerations of terahertz communications for short distance applications. Nano Communication Networks, 10,1-12, 2016. https://doi.org/10 .1016/j.nancom.2016.07.005
  • Q. Rubani, SH. Gupta, S. Pani and A. Kumar, Design and Analysis of a Terahertz Antenna for Wireless Body Area Networks. Optik, 179, 684-690, 2018. https://doi.org/10.101 6/j.ijleo.2018.10.202
  • IF. Akyildiz, JM. Jornet and C. Han, Terahertz band: next frontier for wireless communications. Physical Communication, 12, 16-32, 2014. https://doi.org/10.1016/j.p hycom.2014.01.006
  • FR. Yang, Y. Qian, R. Coccioli and T. Itoh, Analysis and Application of Photonic Band-Gap (PBG) Structures for Microwave Circuits. Electromagnetics, 19 (3), 241-254, 1999. 10.1080/02726349908908642
  • B. Dokmetas, GO. Arican, N. Akcam and E.Yazgan E, A novel millimeter-wave U-shaped radiating slot antenna with DGS structures for 5G cellular application. In: IEEE, 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, pp: 669-672 28-30 November 2019. https://doi.org/10.23919/ELECO47770. 2019.8990502
  • S. Singhal S, Four Arm Windmill Shaped Superwideband Terahertz MIMO Fractal Antenna. Optik, 219, 165093, 2020. https://doi.org/10.1016/j.ijleo.2020.165 093
  • MG. Silveirinha and CA. Fernandes, Computation of the Electromagnetic Modes in Two-Dimensional Photonic Crystals: A Technique to Improve the Convergence Rate of the Plane Wave Method. Electromagnetics. 26 (2), 175-187, 2006. https://doi.org/10.1080/02726340500486492
  • A. Sharma and G. Singh, Rectangular Microstirp Patch Antenna Design at THz Frequency for Short Distance Wireless Communication Systems. Journal of Infrared, Millimeter, and Terahertz Waves, 30 (1), 1-7, 2008.
  • Á. Gómez, A. Vegas, MA. Solano and A. Lakhtakia On One- and Two-Dimensional Electromagnetic Band Gap Structures in Rectangular Waveguides. Microwave Frequencies. Electromagnetics, 25(5), 437-460, 2005. https ://doi.org/10.1080/02726340590957443
  • M. Singh and S. Singh, Design and Performance Investigation of Miniaturized Multi-Wideband Patch Antenna for Multiple Terahertz Applications. Photonics and Nanostructures-Fundamentals and Applications, 44,100900, 2021 https://doi.org/10.1016/j.photonics.2021.100900
  • TS. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb and GC. Trichopoulos, Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access. 7,78729-78757, 2019. https:// doi.org/10.1109/ACCESS.2019.2921522
  • A. Singh and S. Singh, A trapezoidal microstrip patch antenna on photonic crystal substrate for high speed THz applications. Photonics and Nanostructures - Fundamentals and Applications,14, 52-62, 2015. https://doi.org/10.1016/ j.photonics.2015.01.003
  • S. Ullah, C. Ruan, TU. Haq and X. Zhang, High performance THz patch antenna using photonic band gap and defected ground structure. Journal of Electromagnetic Waves and Applications, 33 (15), 1943-1954, 2019. https:// doi.org/10.1080/09205071.2019.1654929
  • MNE. Temmar, A. Hocini, D. Khedrouche and M. Zamani, Analysis and design of a terahertz microstrip antenna based on a synthesized photonic bandgap substrate using BPSO. Journal of Computational Electronics, 18, 231-240, 2019.
  • BO. De Andrade and LM. De Mendonca, Frequency invariance, gain improvement, and fast design in 3D-printed photonic band gap antennas with quadratic holes. Microwave and Optical Technology Letters. 61 (10), 2295-2305, 2019.https://doi.org/10.1002/mop.31897
  • JPP. Pereira, JP. Da Silva and HD. De Andrade, A new design and analysis of a hexagonal PBG microstrip antenna. Microwave and Optical Technology Letters, 57 (9), 2147-2151, 2015. https://doi.org/10.1002/mop.29279
  • G. Singh, Design considerations for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Physics & Technology, 53 (1), 17-22, 2010. https://doi.org/10.1016/j.in frared.2009.08.002
  • MN. Eddine-Temmar, A. Hocini, D. Khedrouche and TA. Denidni, Analysis and Design of MIMO Indoor Communication System Using Terahertz Patch Antenna Based on Photonic Crystal with Graphene. Photonics and Nanostructures - Fundamentals and Applications, 43,100867, 2020. https://doi.org/10.1016/j.photonics.2020 .100867
  • S. Anand, DS. Kumar, RJ. Wu and M. Chavali, Analysis and design of optically transparent antenna on photonic band gap structures. Optik,125 (12), 2835-2839, 2014. https://doi.org/10.1016/j.ijleo.2013.11.061
  • E. Rahmati and M. Ahmadi-Boroujeni, Improving the efficiency and directivity of THz photoconductive antennas by using a defective photonic crystal substrate. Optics Communications, 412, 74-79, 2018. https://doi.org/10.10 16/j.optcom.2017.12.011
  • KR. Jha and G. Singh, Analysis and design of terahertz microstrip antenna on photonic bandgap material. Journal of Computational Electronics, 11 (4), 364-373, 2012.
  • MN. Eddine-Temmar, A. Hocini, D. Khedrouche and TA. Denidni, Enhanced Flexible Terahertz Microstrip Antenna Based on Modified Silicon-Air Photonic Crystal. Optik, 217, 164897, 2020. https://doi.org/10.1016/j.ijleo.2020.164897
  • A. Hocini, MN. Temmar,D. Khedrouche and M. Zamani, Novel Approach for the Design and Analysis of a Terahertz Microstrip Patch Antenna Based on Photonic Crystals. Photonics and Nanostructures - Fundamentals and Applications,36,100723,2019. https://doi.org/10.1016/j.pho tonics.2019.100723
  • MS. Khan, AD. Capobianco, SM. Asif, A. Iftikhar, BD. Braaten and RM. Shubair, A properties comparison between copper and graphene-based UWB MIMO planar antennas. In: IEEE, International Symposium on Antennas and Propagation (APSURSI), Puerto Rico; 26 June-1 July 2016:1767-1768. https://doi.org/10.1109/APS.2016.769659 0
  • T. Zhou, Z. Cheng, H. Zhang,M. Le Berre, L. Militaru and F. Calmon, Miniaturized tunable terahertz antenna based on graphene. Microwave and Optical Technology Letters, 56 (8), 1792-1794, 2014. https://doi.org/10.1002/mop.28450
  • R. Goyal R and DK. Vishwakarma, Design of a graphene-based patch antenna on glass substrate for high-speed terahertz communications. Microwave and Optical Technology Letters, 60 (7), 1594-1600, 2018. https://doi .org/10.1002/mop.31216
  • JY. Liu, TJ. Huang, FY. Han, LZ. Yin and PK. Liu, Terahertz routing with graphene magnetic metamaterials. Optics Communications, 464, 125506, 2020. https://doi.org/ 10.1016/j.optcom.2020.125506
  • P. Upende and A. Kumar, Quad-Band Circularly Polarized Tunable Graphene Based Dielectric Resonator Antenna for Terahertz Applications. Silicon, 2021.
  • CM. Krishna, S. Das, S. Lakrit, S. Lavadiya, BTP. Madhav and V. Sorathiya, Design and analysis of a super wideband (0.09-30.14 THz) graphene based log periodic dipole array antenna for terahertz applications. Optik, 247, 167991, 2021. https://doi.org/10.1016/j.ijleo.2021.167991
  • AE. Yilmaz and M. Kuzuoglu, Calculation of optimized parameters of rectangular microstrip patch antenna using particle swarm optimization. Microwave and Optical Technology Letters, 49 (12), 2905-2907, 2007. https://doi.org/10.1002/mop.22918
  • CA. Balanis, Antenna theory: analysis and design. 3rd ed. New York, J. Wiley, 2005.
  • CST Microwave Studio Suite, CST Inc.; 2018.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Elektrik Elektronik Mühendisliği
Yazarlar

Tayfun Okan 0000-0002-9913-0803

Seda Habergoturen Ates 0000-0001-9609-124X

Nursel Akçam 0000-0003-0585-3988

Yayımlanma Tarihi 15 Nisan 2023
Gönderilme Tarihi 10 Aralık 2022
Kabul Tarihi 20 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 2

Kaynak Göster

APA Okan, T., Habergoturen Ates, S., & Akçam, N. (2023). Particle swarm optimization based design of a terahertz antenna with a modified photonic band gap substrate for 6G future wireless communications. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 367-375. https://doi.org/10.28948/ngumuh.1217148
AMA Okan T, Habergoturen Ates S, Akçam N. Particle swarm optimization based design of a terahertz antenna with a modified photonic band gap substrate for 6G future wireless communications. NÖHÜ Müh. Bilim. Derg. Nisan 2023;12(2):367-375. doi:10.28948/ngumuh.1217148
Chicago Okan, Tayfun, Seda Habergoturen Ates, ve Nursel Akçam. “Particle Swarm Optimization Based Design of a Terahertz Antenna With a Modified Photonic Band Gap Substrate for 6G Future Wireless Communications”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 2 (Nisan 2023): 367-75. https://doi.org/10.28948/ngumuh.1217148.
EndNote Okan T, Habergoturen Ates S, Akçam N (01 Nisan 2023) Particle swarm optimization based design of a terahertz antenna with a modified photonic band gap substrate for 6G future wireless communications. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 2 367–375.
IEEE T. Okan, S. Habergoturen Ates, ve N. Akçam, “Particle swarm optimization based design of a terahertz antenna with a modified photonic band gap substrate for 6G future wireless communications”, NÖHÜ Müh. Bilim. Derg., c. 12, sy. 2, ss. 367–375, 2023, doi: 10.28948/ngumuh.1217148.
ISNAD Okan, Tayfun vd. “Particle Swarm Optimization Based Design of a Terahertz Antenna With a Modified Photonic Band Gap Substrate for 6G Future Wireless Communications”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/2 (Nisan 2023), 367-375. https://doi.org/10.28948/ngumuh.1217148.
JAMA Okan T, Habergoturen Ates S, Akçam N. Particle swarm optimization based design of a terahertz antenna with a modified photonic band gap substrate for 6G future wireless communications. NÖHÜ Müh. Bilim. Derg. 2023;12:367–375.
MLA Okan, Tayfun vd. “Particle Swarm Optimization Based Design of a Terahertz Antenna With a Modified Photonic Band Gap Substrate for 6G Future Wireless Communications”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 2, 2023, ss. 367-75, doi:10.28948/ngumuh.1217148.
Vancouver Okan T, Habergoturen Ates S, Akçam N. Particle swarm optimization based design of a terahertz antenna with a modified photonic band gap substrate for 6G future wireless communications. NÖHÜ Müh. Bilim. Derg. 2023;12(2):367-75.

 23135