Araştırma Makalesi
BibTex RIS Kaynak Göster

An investigation of effects of diesel fuel-vegetable oil-diethylene glycol dimethyl ether fuel blends on performance, combustion and emission characteristics of a diesel engine

Yıl 2023, Cilt: 12 Sayı: 2, 551 - 565, 15.04.2023
https://doi.org/10.28948/ngumuh.1223930

Öz

The effects of diesel fuel-vegetable oil-diethylene glycol dimethyl ether blends on combustion, performance and emissions of a single-cylinder diesel engine are investigated at full throttle position and different engine speeds (1000-2200 rpm). Maximum cylinder temperature and the crank angle giving maximum cylinder temperature are predicted for fuels using interpolation and extrapolation methods. A 3-dimensional equation is derived using the least-squares regression for variation of cylinder temperature depending on engine speed and crank angle. The use of blends results in a decrease in ignition delay, maximum cylinder temperature, exhaust gas temperature and emissions, while an increase in specific fuel consumption. The use of the blend including 4% diethylene glycol dimethyl ether (v/v) causes an increase in effective efficiency (1.49%), effective power (2.56%), maximum cylinder pressure (2.04%) and maximum heat release rate (7.68%). The errors between measured and calculated cylinder temperature values from the 3-dimensional equation are lower than 5% for different fuels.

Kaynakça

  • G. Knothe, J.V. Gerpen, and J. Krahl, The Biodiesel Handbook. AOCS Press, Illinois (USA), 2005.
  • E. Aytav and G. Kocar, Biodiesel from the perspective of Turkey: past, present and future. Renewable and Sustainable Energy Reviews, 25, 335-350, 2013. https://doi.org/10.1016/j.rser.2013.04.018.
  • A. E. Özçelik, M. Acaroğlu and H. Köse, Determination of combustion characteristics of olive pomace biodiesel-Eurodiesel fuel mixtures. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42, 1476-1489, 2020. https://doi.org/10.1080/15567036.2019.1604862.
  • H. M. Mahmudul, F. Y. Hagos, R. Mamat, A. Abdul Adam, W. F. W. Ishak and R. Alenezi, Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review. Renewable and Sustainable Energy Reviews, 72, 497-509, 2017. https://doi.org/10.1016/j.rser.2017.01.001.
  • V. Mittal, K. N. Talapatra and U. K. Ghosh, A comprehensive review on biodiesel production from microalgae through nanocatalytic transesterification process: lifecycle assessment and methodologies. International Nano Letters, 12, 351–378, 2022. https://doi.org/10.1007/s40089-022-00372-2.
  • H. A. R. Allami and H. Nayebzadeh, The assessment of the engine performance and emissions of a diesel engine fueled by biodiesel produced using different types of catalyst. Fuel, 305, 121525, 2021. https://doi.org/10.1016/j.fuel.2021.121525.
  • W.W. Pulkrabek, İçten Yanmalı Motorlar Mühendislik Temelleri (Çeviri Editörü: Doç. Dr. Halit Yaşar). Güven Kitabevi, İzmir, 2016.
  • A. Yakın, R. Behcet, H. Solmaz and S. Halis, Testing sodium borohydride as a fuel additive in internal combustion gasoline engine. Energy, 254, 124300, 2022. https://doi.org/10.1016/j.energy.2022.124300.
  • A. Yakın and R. Behçet, Effect of different types of fuels tested in a gasoline engine on engine performance and emissions. International Journal of Hydrogen Energy, 46, 33325-33338, 2021. https://doi.org/10.1016/j.ijhydene.2021.07.133.
  • H. Bayraktar, Experimental and theoretical investigation of using gasoline–ethanol blends in spark-ignition engines. Renewable Energy, 30, 1733-1747, 2005. https://doi.org/10.1016/j.renene.2005.01.006.
  • C.E. Mortimer, Modern Üniversite Kimyası, Cilt 2 (Çeviri Editörü: Prof. Dr. Turhan Altınata). Çağlayan Basımevi, İstanbul, 1999.
  • S. Sivanathan and H. P. Chandran, Investigation on the performance and emission characteristics of biodiesel and its blends with oxygenated additives in a diesel engine. SAE Techical Paper, 2014-01-1261, 1-11, 2014. https://doi.org/10.4271/2014-01-1261.
  • D. Yage, Z. Junjie, C. C. Shun, M. Xuelong, Z. Jinbao, P. Haiyong and W. Tao, Comparative study on combustion and particulate emissions for diesel-biodiesel and diesel-diglyme blends. Fuel, 313, 122710, 2022. https://doi.org/10.1016/j.fuel.2021.122710.
  • S.C. Gad, Bis (2-Methoxyethyl) Ether. In: Wexler, P. (ed.), Encyclopedia of Toxicology (Third Edition), Elsevier (Academic Press), pp. 509-511, 2014.
  • E. G. Varuvel, T. Subramanian and P. Khatri, Effect of diglyme addition on performance and emission characteristics of hybrid minor vegetable oil blends (rubber seed and babassu oil) in a tractor engine – an experimental study. Biofuels, 11, 829-837, 2020. https://doi.org/10.1080/17597269.2017.1418568.
  • B. Ashok, K. Nanthagopal, V. Anand, K. M. Aravind, A. K. Jeevanantham and S. Balusamy, Effects of n-octanol as a fuel blend with biodiesel on diesel engine characteristics. Fuel, 235, 363-373, 2019. https://doi.org/10.1016/j.fuel.2018.07.126.
  • Y. Devarajan, Experimental evaluation of combustion, emission and performance of research diesel engine fuelled di-methyl-carbonate and biodiesel blends. Atmospheric Pollution Research, 10, 795-801, 2019. https://doi.org/10.1016/j.apr.2018.12.007.
  • M. N. Nabi, M. G. Rasul and R. J. Brown, Influence of diglyme addition to diesel-biodiesel blends on notable reductions of particulate matter and number emissions. Fuel, 253, 811-822, 2019. https://doi.org/10.1016/j.fuel.2019.05.072.
  • S. S. Ali and M. R. Swaminathan, Effective utilization of waste cooking oil in a diesel engine equipped with CRDi system using C8 oxygenates as additives for cleaner emission. Fuel, 275, 118003, 2020. https://doi.org/10.1016/j.fuel.2020.118003.
  • S. Simsek and S. Uslu, The effect of using amyl alcohol in a diesel engine on performance and emission parameters. International Journal of Automotive Science and Technology, 5(1), 19-26, 2021. http://doi.org/10.30939/ijastech..816698.
  • M. Anwar, M. G. Rasul, N. Ashwath and M. M. K. Bhuiya, Ternary or binary blend? A case study using papaya seed oil biodiesel. AIP Conference Proceedings, 2324(050010), 1-7, 2021. https://doi.org/10.1063/5.0039519.
  • A. N. Bhatt and N. Shrivastava, Experimental investigation and neural network modelling of diesel engine using hexanol blended ternary waste cooking oil biodiesel with moderate preheating. Sustainable Energy Technologies and Assessments, 52, 102285, 2022. https://doi.org/10.1016/j.seta.2022.102285.
  • S. Simsek, Effects of biodiesel obtained from canola, sefflower oils and waste oils on the engine performance and exhaust emissions. Fuel, 265, 117026, 2020. https://doi.org/10.1016/j.fuel.2020.117026.
  • Q. Wang, J. Ni and R. Huang, The potential of oxygenated fuels (n-octanol, methylal, and dimethyl carbonate) as an alternative fuel for compression ignition engines with different load conditions. Fuel, 309, 122129, 2022. https://doi.org/10.1016/j.fuel.2021.122129.
  • S. SenthilKumar and K. Rajan, Performance and emission characteristics of diesel engine using biodiesel with the effect of dimethyl carbonate (DMC) fumigation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 2986-2998, 2022. https://doi.org/10.1080/15567036.2019.1654565.
  • M. Anwar, M. G. Rasul and N. Ashwath, The synergistic effects of oxygenated additives on papaya biodiesel binary and ternary blends. Fuel, 256, 115980, 2019. https://doi.org/10.1016/j.fuel.2019.115980.
  • Y. Di, C. S. Cheung and Z. Huang, Experimental investigation of particulate emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with diglyme. Atmospheric Environment, 44(1), 55-63, 2010. https://doi.org/10.1016/j.atmosenv.2009.09.039.
  • R. Ennetta, H. S. Soyhan, C. Koyunoğlu and V. G. Demir, Current technologies and future trends for biodiesel production: a review. Arabian Journal for Science and Engineering, 47, 15133-15151, 2022. https://doi.org/10.1007/s13369-022-07121-9.
  • A. Srivastava and R. Prasad, Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, 4(2), 111-133, 2000. https://doi.org/10.1016/S1364-0321(99)00013-1.
  • Official Journal of the European Union, Directive 2003/30/EC of the European Parliament and of the council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003L0030&from=en, Accesssed 10 November 2022.
  • Official Journal of the European Union, Regulation (EU) 2018/1999 of the European Parliament and of the Council and Directive 98/70/EC of the European Parliament and of the Council as regards the promotion of energy from renewable sources. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0557, Accesssed 10 November 2022.
  • H. Bayraktar, An experimental study on the performance parameters of an experimental CI engine fueled with diesel–methanol–dodecanol blends. Fuel, 87(2), 158-164, 2008. https://doi.org/10.1016/j.fuel.2007.04.021.
  • A. Çakmak, Yakıt olarak biyodizel-dizel yakıtı karışımlarının kullanıldığı tek silindirli bir dizel motoruna ekserji analizinin uygulanması. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2014.
  • A. Çakmak, Üretilen farklı yakıt katkılarıyla bir dizel motorunun yanma, performans ve emisyon karakteristiklerinin iyileştirilmesinin deneysel incelenmesi. Doktora Tezi, Ondokuz Mayıs Üniversitesi Lisansüstü Eğitim Enstitüsü, Türkiye, 2021.
  • J.B. Heywood, Internal Combustion Engine Fundamentals. McGraw-Hill Series in Mechanical Engineering, Singapur, 1988.
  • M. K. Yeşilyurt, Dizel yakıtına farklı ağır alkoller (1-bütanol, 1-pentanol ve 1-hekzanol) ilave edilmesinin tek silindirli bir dizel motorunun performans, yanma ve egzoz emisyon karakteristiklerine etkileri. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 12(2), 397-426, 2020. https://doi.org/10.29137/umagd.704961.
  • J.P. Holman, Experimental Methods for Engineers 7th edition. McGraw-Hill Series in Mechanical Engineering, New York, 2001.
  • İ. Karagöz, Sayısal Analiz ve Mühendislik Uygulamaları. Nobel Yayınevi, Ankara, 2014.
  • M. Bakioğlu, Sayısal Analiz. Birsen Yayınevi, İstanbul, 2011.
  • M. Fogiel, The Numerical Analysis Problem Solver. Research and Education Association, New Jersey, 1993.
  • P. Nautiyal, K. A. Subramanian, M. G. Dastidar and A. Kumar, Experimental assessment of performance, combustion and emissions of a compression ignition engine fuelled with Spirulina platensis biodiesel. Energy, 193, 116861, 2020. https://doi.org/10.1016/j.energy.2019.116861.
  • R. S. Gavhane, A. M. Kate, A. Pawar, M. R. Safaei, M. E. M. Soudagar, M. M. Abbas, H. M. Ali, N. R. Banapurmath, M. Goodarzi, I. A. Badruddin, W. Ahmed and K. Shahapurkar, Effect of zinc oxide nano-additives and soybean biodiesel at varying loads and compression ratios on VCR diesel engine characteristics. Symmetry, 12(6), 1042, 2020. https://doi.org/10.3390/sym12061042.
  • W. Mitianiec, Combustion process of direct injected water-coal mixture in diesel engine. Combustion Engines, 164(1), 37-43, 2016. https://doi.org/10.19206/CE-116487.
  • H. Chen, J. He, Y. Chen and H. Hua, Performance of a common rail diesel engine using biodiesel of waste cooking oil and gasoline blend. Journal of the Energy Institute, 91, 856-866, 2018. https://doi.org/10.1016/j.joei.2017.10.003.
  • M. Nour, A. M. A. Attia and S. A. Nada, Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends. Energy Conversion and Management, 185, 313-329, 2019. https://doi.org/10.1016/j.enconman.2019.01.105.
  • M. Anwar, M. G. Rasul and N. Ashwath, Investigation on the impact of papaya biodiesel-diesel blends on combustion of an agricultural CI engine. IOP Conference Series: Earth and Environmental Science, 463, 1-8, 2020. https://doi.org/10.1088/1755-1315/463/1/012001.
  • M. N. Nabi, M. G. Rasul, S. M. A. Rahman, A. Dowell and Z. D. Ristovski, Study of performance, combustion and emission characteristics of a common rail diesel engine with tea tree oil-diglyme blends. Energy, 180, 216-228, 2019. https://doi.org/10.1016/j.energy.2019.05.070.
  • E. G. Varuvel, A. Sonthalia, T. Subramanian and F. Aloui, NOx-smoke trade-off characteristics of minor vegetable oil blends synergy with oxygenate in a commercial CI engine. Environmental Science and Pollution Research, 25, 35715-35724, 2018. https://doi.org/10.1007/s11356-018-3484-y.

Dizel yakıtı-bitkisel yağ-dietilen glikol dimetil eter karışım yakıtlarının bir dizel motorun performans, yanma ve emisyon karakteristiklerine etkilerinin incelenmesi

Yıl 2023, Cilt: 12 Sayı: 2, 551 - 565, 15.04.2023
https://doi.org/10.28948/ngumuh.1223930

Öz

Dizel yakıtı-bitkisel yağ-dietilen glikol dimetil eter karışım yakıtlarının tek silindirli bir dizel motorda tam gaz ve farklı devirlerde (1000-2200 devir/dakika) kullanılmasının performans, yanma ve emisyonlara etkileri incelenmiştir. Maksimum silindir sıcaklığı değerleri ile maksimum silindir sıcaklığının elde edildiği krank mili açısı değerleri interpolasyon ve ekstrapolasyon yöntemleriyle tahmin edilmiştir. Silindir sıcaklığının devir sayısı ve krank mili açısına göre değişimi için en küçük kareler regresyonu yardımıyla 3-boyutlu bir denklem elde edilmiştir. Dizel yakıtı kullanımına göre, karışım yakıtları kullanıldığında ortalama olarak tutuşma gecikmesi, maksimum silindir sıcaklığı, egzoz gazı sıcaklığı ve emisyonlar azalmış, fakat özgül yakıt tüketimi artmıştır. Hacimsel olarak %4 oranında dietilen glikol dimetil eter içeren karışım için efektif verim (%1.49), efektif güç (%2.56), maksimum silindir basıncı (%2.04) ve maksimum ısı yayılımı oranı (%7.68) artmıştır. Elde edilen 3-boyutlu denklem yardımıyla yakıt karışımları için hesaplanan silindir sıcaklığı değerlerinin hata oranları %5’in altında kalmıştır.

Kaynakça

  • G. Knothe, J.V. Gerpen, and J. Krahl, The Biodiesel Handbook. AOCS Press, Illinois (USA), 2005.
  • E. Aytav and G. Kocar, Biodiesel from the perspective of Turkey: past, present and future. Renewable and Sustainable Energy Reviews, 25, 335-350, 2013. https://doi.org/10.1016/j.rser.2013.04.018.
  • A. E. Özçelik, M. Acaroğlu and H. Köse, Determination of combustion characteristics of olive pomace biodiesel-Eurodiesel fuel mixtures. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42, 1476-1489, 2020. https://doi.org/10.1080/15567036.2019.1604862.
  • H. M. Mahmudul, F. Y. Hagos, R. Mamat, A. Abdul Adam, W. F. W. Ishak and R. Alenezi, Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review. Renewable and Sustainable Energy Reviews, 72, 497-509, 2017. https://doi.org/10.1016/j.rser.2017.01.001.
  • V. Mittal, K. N. Talapatra and U. K. Ghosh, A comprehensive review on biodiesel production from microalgae through nanocatalytic transesterification process: lifecycle assessment and methodologies. International Nano Letters, 12, 351–378, 2022. https://doi.org/10.1007/s40089-022-00372-2.
  • H. A. R. Allami and H. Nayebzadeh, The assessment of the engine performance and emissions of a diesel engine fueled by biodiesel produced using different types of catalyst. Fuel, 305, 121525, 2021. https://doi.org/10.1016/j.fuel.2021.121525.
  • W.W. Pulkrabek, İçten Yanmalı Motorlar Mühendislik Temelleri (Çeviri Editörü: Doç. Dr. Halit Yaşar). Güven Kitabevi, İzmir, 2016.
  • A. Yakın, R. Behcet, H. Solmaz and S. Halis, Testing sodium borohydride as a fuel additive in internal combustion gasoline engine. Energy, 254, 124300, 2022. https://doi.org/10.1016/j.energy.2022.124300.
  • A. Yakın and R. Behçet, Effect of different types of fuels tested in a gasoline engine on engine performance and emissions. International Journal of Hydrogen Energy, 46, 33325-33338, 2021. https://doi.org/10.1016/j.ijhydene.2021.07.133.
  • H. Bayraktar, Experimental and theoretical investigation of using gasoline–ethanol blends in spark-ignition engines. Renewable Energy, 30, 1733-1747, 2005. https://doi.org/10.1016/j.renene.2005.01.006.
  • C.E. Mortimer, Modern Üniversite Kimyası, Cilt 2 (Çeviri Editörü: Prof. Dr. Turhan Altınata). Çağlayan Basımevi, İstanbul, 1999.
  • S. Sivanathan and H. P. Chandran, Investigation on the performance and emission characteristics of biodiesel and its blends with oxygenated additives in a diesel engine. SAE Techical Paper, 2014-01-1261, 1-11, 2014. https://doi.org/10.4271/2014-01-1261.
  • D. Yage, Z. Junjie, C. C. Shun, M. Xuelong, Z. Jinbao, P. Haiyong and W. Tao, Comparative study on combustion and particulate emissions for diesel-biodiesel and diesel-diglyme blends. Fuel, 313, 122710, 2022. https://doi.org/10.1016/j.fuel.2021.122710.
  • S.C. Gad, Bis (2-Methoxyethyl) Ether. In: Wexler, P. (ed.), Encyclopedia of Toxicology (Third Edition), Elsevier (Academic Press), pp. 509-511, 2014.
  • E. G. Varuvel, T. Subramanian and P. Khatri, Effect of diglyme addition on performance and emission characteristics of hybrid minor vegetable oil blends (rubber seed and babassu oil) in a tractor engine – an experimental study. Biofuels, 11, 829-837, 2020. https://doi.org/10.1080/17597269.2017.1418568.
  • B. Ashok, K. Nanthagopal, V. Anand, K. M. Aravind, A. K. Jeevanantham and S. Balusamy, Effects of n-octanol as a fuel blend with biodiesel on diesel engine characteristics. Fuel, 235, 363-373, 2019. https://doi.org/10.1016/j.fuel.2018.07.126.
  • Y. Devarajan, Experimental evaluation of combustion, emission and performance of research diesel engine fuelled di-methyl-carbonate and biodiesel blends. Atmospheric Pollution Research, 10, 795-801, 2019. https://doi.org/10.1016/j.apr.2018.12.007.
  • M. N. Nabi, M. G. Rasul and R. J. Brown, Influence of diglyme addition to diesel-biodiesel blends on notable reductions of particulate matter and number emissions. Fuel, 253, 811-822, 2019. https://doi.org/10.1016/j.fuel.2019.05.072.
  • S. S. Ali and M. R. Swaminathan, Effective utilization of waste cooking oil in a diesel engine equipped with CRDi system using C8 oxygenates as additives for cleaner emission. Fuel, 275, 118003, 2020. https://doi.org/10.1016/j.fuel.2020.118003.
  • S. Simsek and S. Uslu, The effect of using amyl alcohol in a diesel engine on performance and emission parameters. International Journal of Automotive Science and Technology, 5(1), 19-26, 2021. http://doi.org/10.30939/ijastech..816698.
  • M. Anwar, M. G. Rasul, N. Ashwath and M. M. K. Bhuiya, Ternary or binary blend? A case study using papaya seed oil biodiesel. AIP Conference Proceedings, 2324(050010), 1-7, 2021. https://doi.org/10.1063/5.0039519.
  • A. N. Bhatt and N. Shrivastava, Experimental investigation and neural network modelling of diesel engine using hexanol blended ternary waste cooking oil biodiesel with moderate preheating. Sustainable Energy Technologies and Assessments, 52, 102285, 2022. https://doi.org/10.1016/j.seta.2022.102285.
  • S. Simsek, Effects of biodiesel obtained from canola, sefflower oils and waste oils on the engine performance and exhaust emissions. Fuel, 265, 117026, 2020. https://doi.org/10.1016/j.fuel.2020.117026.
  • Q. Wang, J. Ni and R. Huang, The potential of oxygenated fuels (n-octanol, methylal, and dimethyl carbonate) as an alternative fuel for compression ignition engines with different load conditions. Fuel, 309, 122129, 2022. https://doi.org/10.1016/j.fuel.2021.122129.
  • S. SenthilKumar and K. Rajan, Performance and emission characteristics of diesel engine using biodiesel with the effect of dimethyl carbonate (DMC) fumigation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 2986-2998, 2022. https://doi.org/10.1080/15567036.2019.1654565.
  • M. Anwar, M. G. Rasul and N. Ashwath, The synergistic effects of oxygenated additives on papaya biodiesel binary and ternary blends. Fuel, 256, 115980, 2019. https://doi.org/10.1016/j.fuel.2019.115980.
  • Y. Di, C. S. Cheung and Z. Huang, Experimental investigation of particulate emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with diglyme. Atmospheric Environment, 44(1), 55-63, 2010. https://doi.org/10.1016/j.atmosenv.2009.09.039.
  • R. Ennetta, H. S. Soyhan, C. Koyunoğlu and V. G. Demir, Current technologies and future trends for biodiesel production: a review. Arabian Journal for Science and Engineering, 47, 15133-15151, 2022. https://doi.org/10.1007/s13369-022-07121-9.
  • A. Srivastava and R. Prasad, Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, 4(2), 111-133, 2000. https://doi.org/10.1016/S1364-0321(99)00013-1.
  • Official Journal of the European Union, Directive 2003/30/EC of the European Parliament and of the council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003L0030&from=en, Accesssed 10 November 2022.
  • Official Journal of the European Union, Regulation (EU) 2018/1999 of the European Parliament and of the Council and Directive 98/70/EC of the European Parliament and of the Council as regards the promotion of energy from renewable sources. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0557, Accesssed 10 November 2022.
  • H. Bayraktar, An experimental study on the performance parameters of an experimental CI engine fueled with diesel–methanol–dodecanol blends. Fuel, 87(2), 158-164, 2008. https://doi.org/10.1016/j.fuel.2007.04.021.
  • A. Çakmak, Yakıt olarak biyodizel-dizel yakıtı karışımlarının kullanıldığı tek silindirli bir dizel motoruna ekserji analizinin uygulanması. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2014.
  • A. Çakmak, Üretilen farklı yakıt katkılarıyla bir dizel motorunun yanma, performans ve emisyon karakteristiklerinin iyileştirilmesinin deneysel incelenmesi. Doktora Tezi, Ondokuz Mayıs Üniversitesi Lisansüstü Eğitim Enstitüsü, Türkiye, 2021.
  • J.B. Heywood, Internal Combustion Engine Fundamentals. McGraw-Hill Series in Mechanical Engineering, Singapur, 1988.
  • M. K. Yeşilyurt, Dizel yakıtına farklı ağır alkoller (1-bütanol, 1-pentanol ve 1-hekzanol) ilave edilmesinin tek silindirli bir dizel motorunun performans, yanma ve egzoz emisyon karakteristiklerine etkileri. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 12(2), 397-426, 2020. https://doi.org/10.29137/umagd.704961.
  • J.P. Holman, Experimental Methods for Engineers 7th edition. McGraw-Hill Series in Mechanical Engineering, New York, 2001.
  • İ. Karagöz, Sayısal Analiz ve Mühendislik Uygulamaları. Nobel Yayınevi, Ankara, 2014.
  • M. Bakioğlu, Sayısal Analiz. Birsen Yayınevi, İstanbul, 2011.
  • M. Fogiel, The Numerical Analysis Problem Solver. Research and Education Association, New Jersey, 1993.
  • P. Nautiyal, K. A. Subramanian, M. G. Dastidar and A. Kumar, Experimental assessment of performance, combustion and emissions of a compression ignition engine fuelled with Spirulina platensis biodiesel. Energy, 193, 116861, 2020. https://doi.org/10.1016/j.energy.2019.116861.
  • R. S. Gavhane, A. M. Kate, A. Pawar, M. R. Safaei, M. E. M. Soudagar, M. M. Abbas, H. M. Ali, N. R. Banapurmath, M. Goodarzi, I. A. Badruddin, W. Ahmed and K. Shahapurkar, Effect of zinc oxide nano-additives and soybean biodiesel at varying loads and compression ratios on VCR diesel engine characteristics. Symmetry, 12(6), 1042, 2020. https://doi.org/10.3390/sym12061042.
  • W. Mitianiec, Combustion process of direct injected water-coal mixture in diesel engine. Combustion Engines, 164(1), 37-43, 2016. https://doi.org/10.19206/CE-116487.
  • H. Chen, J. He, Y. Chen and H. Hua, Performance of a common rail diesel engine using biodiesel of waste cooking oil and gasoline blend. Journal of the Energy Institute, 91, 856-866, 2018. https://doi.org/10.1016/j.joei.2017.10.003.
  • M. Nour, A. M. A. Attia and S. A. Nada, Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends. Energy Conversion and Management, 185, 313-329, 2019. https://doi.org/10.1016/j.enconman.2019.01.105.
  • M. Anwar, M. G. Rasul and N. Ashwath, Investigation on the impact of papaya biodiesel-diesel blends on combustion of an agricultural CI engine. IOP Conference Series: Earth and Environmental Science, 463, 1-8, 2020. https://doi.org/10.1088/1755-1315/463/1/012001.
  • M. N. Nabi, M. G. Rasul, S. M. A. Rahman, A. Dowell and Z. D. Ristovski, Study of performance, combustion and emission characteristics of a common rail diesel engine with tea tree oil-diglyme blends. Energy, 180, 216-228, 2019. https://doi.org/10.1016/j.energy.2019.05.070.
  • E. G. Varuvel, A. Sonthalia, T. Subramanian and F. Aloui, NOx-smoke trade-off characteristics of minor vegetable oil blends synergy with oxygenate in a commercial CI engine. Environmental Science and Pollution Research, 25, 35715-35724, 2018. https://doi.org/10.1007/s11356-018-3484-y.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makine Mühendisliği
Yazarlar

Mert Gülüm 0000-0002-1792-3499

Yayımlanma Tarihi 15 Nisan 2023
Gönderilme Tarihi 24 Aralık 2022
Kabul Tarihi 14 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 2

Kaynak Göster

APA Gülüm, M. (2023). Dizel yakıtı-bitkisel yağ-dietilen glikol dimetil eter karışım yakıtlarının bir dizel motorun performans, yanma ve emisyon karakteristiklerine etkilerinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 551-565. https://doi.org/10.28948/ngumuh.1223930
AMA Gülüm M. Dizel yakıtı-bitkisel yağ-dietilen glikol dimetil eter karışım yakıtlarının bir dizel motorun performans, yanma ve emisyon karakteristiklerine etkilerinin incelenmesi. NÖHÜ Müh. Bilim. Derg. Nisan 2023;12(2):551-565. doi:10.28948/ngumuh.1223930
Chicago Gülüm, Mert. “Dizel yakıtı-Bitkisel Yağ-Dietilen Glikol Dimetil Eter karışım yakıtlarının Bir Dizel Motorun Performans, Yanma Ve Emisyon Karakteristiklerine Etkilerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 2 (Nisan 2023): 551-65. https://doi.org/10.28948/ngumuh.1223930.
EndNote Gülüm M (01 Nisan 2023) Dizel yakıtı-bitkisel yağ-dietilen glikol dimetil eter karışım yakıtlarının bir dizel motorun performans, yanma ve emisyon karakteristiklerine etkilerinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 2 551–565.
IEEE M. Gülüm, “Dizel yakıtı-bitkisel yağ-dietilen glikol dimetil eter karışım yakıtlarının bir dizel motorun performans, yanma ve emisyon karakteristiklerine etkilerinin incelenmesi”, NÖHÜ Müh. Bilim. Derg., c. 12, sy. 2, ss. 551–565, 2023, doi: 10.28948/ngumuh.1223930.
ISNAD Gülüm, Mert. “Dizel yakıtı-Bitkisel Yağ-Dietilen Glikol Dimetil Eter karışım yakıtlarının Bir Dizel Motorun Performans, Yanma Ve Emisyon Karakteristiklerine Etkilerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/2 (Nisan 2023), 551-565. https://doi.org/10.28948/ngumuh.1223930.
JAMA Gülüm M. Dizel yakıtı-bitkisel yağ-dietilen glikol dimetil eter karışım yakıtlarının bir dizel motorun performans, yanma ve emisyon karakteristiklerine etkilerinin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2023;12:551–565.
MLA Gülüm, Mert. “Dizel yakıtı-Bitkisel Yağ-Dietilen Glikol Dimetil Eter karışım yakıtlarının Bir Dizel Motorun Performans, Yanma Ve Emisyon Karakteristiklerine Etkilerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 2, 2023, ss. 551-65, doi:10.28948/ngumuh.1223930.
Vancouver Gülüm M. Dizel yakıtı-bitkisel yağ-dietilen glikol dimetil eter karışım yakıtlarının bir dizel motorun performans, yanma ve emisyon karakteristiklerine etkilerinin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2023;12(2):551-65.

 23135