Araştırma Makalesi
BibTex RIS Kaynak Göster

Genipin ile çapraz bağlı nanokapsüllerin sentezi ve karakterizasyonu

Yıl 2023, Cilt: 12 Sayı: 3, 861 - 871, 15.07.2023
https://doi.org/10.28948/ngumuh.1196886

Öz

Yapılan çalışmada doğal bir çapraz bağlayıcı olan genipin kullanılarak sığla esansiyel yağının jelatin ve Arap zamkı ile nanoenkapsülasyonu amaçlanmıştır. Sentez sürecinde kompleks koaservasyon yöntemi kullanılarak ilk olarak sığla yağı jelatin ve Arap zamkı duvar materyalleri ile kaplanmış ve daha sonrasında farklı miktarlarda (150, 250, 350 ve 450 mg) genipin kullanılarak çapraz bağlanması sağlanmıştır. Elde edilen nanokapsüllerin toplam yağ, yüzey yağı ve enkapsülasyon etkinlik değerleri analiz edilmiştir. Genipin miktarının artışı ile nanokapsüllerin yüzey yağ miktarlarında azalış gözlenirken, toplam yağ ve enkapsülasyon etkinlik değerlerinde artış gözlemlenmiştir. 450 mg genipin kullanımı ile %91.78 enkapsülasyon etkinlik değerine sahip nanokapsüller elde edilmiş olup, bu nanokapsüllerin yapısal, morfolojik ve termal özelliklerinin incelenmesi için sırasıyla FTIR, FESEM, TGA ve DSC analizleri gerçekleştirilmiştir. Elde edilen sonuçlar sığla yağının jelatin ve Arap zamkı ile nano boyutta başarılı bir şekilde kaplandığını göstermektedir.

Destekleyen Kurum

Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

2021FEBE074

Teşekkür

Bu çalışma 2021FEBE074 nolu proje kapsamında Pamukkale Üniversitesi Bilimsel Araştırma Projeleri (PAÜ BAP) tarafından desteklenmiş olup, Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine teşekkür ederiz.

Kaynakça

  • W. Weisany, S. Yousefi, N. A. R. Tahir, N. G. Zadeh, D. J. McClements, B. Adhikari and M. Ghasemlou, Targeted delivery and controlled released of essential oils using nanoencapsulation: A review. Advances in Colloid and Interface Science, 303, 102655, 2022. https://doi.org/10.1016/j.cis.2022.102655
  • P. L. Lam and R. Gambari, Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. Journal of Controlled Release, 178, 25-45, 2014. https://doi.org/10.1016/j.jconrel.2013.12.028
  • R. S. Riseh, E. Tamanadar, N. Hajabdollahi, M. Vatankhah, V. K. Thakur and Y. A. Skorik, Chitosan microencapsulation of rhizobacteria for biological control of plant pests and diseases: Recent advances and applications. Rhizosphere, 23, 100565, 2022. https://doi.org/10.1016/j.rhisph.2022.100565
  • S. P. Dhakal and J. He, Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Research International, 137, 109326, 2020. https://doi.org/10.1016/j.foodres.2020 .109326
  • F. Casanova and L. Santos, Encapsulation of cosmetic active ingredients for topical application–a review. Journal of Microencapsulation, 33(1), 1-17, 2016. https://doi.org/10.3109/02652048.2015.1115900
  • V. Suganya and V. Anuradha, Microencapsulation and nanoencapsulation: a review. International Journal of Pharmaceutical and Clinical Research, 9(3), 233-239, 2017. https://doi.org/10.25258/ijpcr.v9i3.8324
  • C. Camelo-Silva, S. Verruck, A. Ambrosi and M. Di Luccio, Innovation and Trends in Probiotic Microencapsulation by Emulsification Techniques. Food Engineering Reviews, 14, 462–490, 2022. https://doi.org/10.1007/s12393-022-09315-1
  • Y. P. Timilsena, T. O. Akanbi, N. Khalid, B. Adhikari, and C. J. Barrow, Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276-1286, 2019. https://doi.org/10.1016/j.ijbio mac.2018.10.144
  • R. D. S. D. Veiga, R. Aparecida Da Silva-Buzanello, M. P. Corso and C. Canan, Essential oils microencapsulated obtained by spray drying: a review. Journal of Essential Oil Research, 31(6), 457-473, 2019. https://doi.org/10.1080/10412905.2019.1612788
  • J. de Abreu Figueiredo, C. R. de Paula Silva, M. F. S. Oliveira, L. B. Norcino, P. H. Campelo, D. A. Botrel and S. V. Borges, Microencapsulation by spray chilling in the food industry: Opportunities, challenges, and innovations. Trends in Food Science & Technology, 120, 274-287, 2021. https://doi.org/10.1016/j.tifs.2021 .12.026
  • K. Heinzelmann, K. Franke, B. Jensen and A. M. Haahr, Protection of fish oil from oxidation by microencapsulation using freeze‐drying techniques. European Journal of Lipid Science and Technology, 102(2), 114-121, 2000. https://doi.org/10.1002/ (SICI)1438-9312(200002)102:2<114::AID-EJLT114>3.0.CO;2-0
  • Y. H. How, K. W. Lai, L. P. Pui and L. L. A. In, Co‐extrusion and extrusion microencapsulation: Effect on microencapsulation efficiency, survivability through gastrointestinal digestion and storage. Journal of Food Process Engineering, 45(3), e13985, 2022. https://doi.org/10.1111/jfpe.13985
  • H. C. Liang, W. H. Chang, K. J. Lin and H. W. Sung, Genipin‐crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 65(2), 271-282, 2003. https://doi.org/10.1002/jbm.a.10476
  • J. M. Budincic, L. Petrovic, L. Dekic, J. Fraj, S. Bucko, J. Katona and L. Spasojevic, Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydrate Polymers, 251, 116988, 2021. https://doi.org/10.1016/j.carbpol.2020.116988
  • J. D. Ogilvie-Battersby, R. Nagarajan, R. Mosurkal and N. Orbey, Microencapsulation and controlled release of insect repellent geraniol in gelatin/gum arabic microcapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 640, 128494, 2022. https://doi.org/10.1016/j.colsurfa.2022 .128494
  • B. N. Estevinho, F. Rocha, L. Santos and A. Alves, Microencapsulation with chitosan by spray drying for industry applications–A review. Trends in Food Science & Technology, 31(2), 138-155, 2013. https://doi.org/10.1016/j.tifs.2013.04.001
  • G. Hamdi, G. Ponchel and D. Duchêne, Formulation of epichlorohydrin cross-linked starch microspheres. Journal of Microencapsulation, 18(3), 373-383, 2001. https://doi.org/10.1080/02652040010019505
  • C. Butstraen and F. Salaün, Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate Polymers, 99, 608-616, 2014. https://doi.org/10.1016/j.carbpol.2013.09.006
  • H. C. Liang, W. H. Chang, K. J. Lin and H. W. Sung, Genipin‐crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. Journal of Biomedical Materials Research Part A, 65(2), 271-282, 2003. https://doi.org/10.1002 /jbm.a.10476
  • Z. Wang, H. Liu, W. Luo, T. Cai, Z. Li, Y. Liu, W. Gao, Q. Wan, X. Wang, J. Wang, Y. Wang and X. Yang, Regeneration of skeletal system with genipin crosslinked biomaterials. Journal of Tissue Engineering, 11, 2020. https://doi.org/10.1177/204173 1420974861
  • H. Ji, Z. Qiu, Y. Wang, L. Dong, J. Cao, B. Lian and M. Wang, The effect of crosslinking concentration, time, temperature and pH on the characteristic of genipin-crosslinked small intestinal submucosa. Materials Today Communications, 33, 104482, 2022. https://doi.org/10.1016/j.mtcomm.2022.104482
  • M. Nair, R. K. Johal, S. W. Hamaia, S. M. Best and R. E. Cameron, Tunable bioactivity and mechanics of collagen-based tissue engineering constructs: A comparison of EDC-NHS, genipin and TG2 crosslinkers. Biomaterials, 254, 120109, 2020. https://doi.org/10.1016/j.biomaterials.2020.120109
  • J. R. Du, L. H. Hsu, E. S. Xiao, X. Guo, Y. Zhang and X. Feng, Using genipin as a “green” crosslinker to fabricate chitosan membranes for pervaporative dehydration of isopropanol. Separation and Purification Technology, 244, 116843, 2020. https://doi.org/10. 1016/j.seppur.2020.116843
  • W. Samprasit, P. Akkaramongkolporn, S. Jaewjira and P. Opanasopit, Design of alpha mangostin-loaded chitosan/alginate controlled-release nanoparticles using genipin as crosslinker. Journal of Drug Delivery Science and Technology, 46, 312-321, 2018. https://doi.org/10.1016/j.jddst.2018.05.029
  • G. Kaufmann, M. P. Klein, M. I. Goettert and T. A. S. Aguirre, Development and cytotoxicity evaluation of a cylindrical pH-responsive chitosan-genipin hydrogel for the oral delivery of diclofenac sodium. European Polymer Journal, 181, 111649, 2022. https://doi.org/10.1016/j.eurpolymj.2022.111649
  • Z. Xiao, L. H. Liu, T. Liu, D. Yang, X. Jia, Y. K. Du, S. Q. Li, W. J. Yang, Y. M. Xi and R. C. Zeng, Degradation and biocompatibility of genipin crosslinked polyelectrolyte films on biomedical magnesium alloy via layer-by-layer assembly. Progress in Organic Coatings, 175, 107372, 2023. https://doi.org/10.1016/j.porgcoat.2022.107372
  • M. P. Klein, C. R. Hackenhaar, A. S. Lorenzoni, R. C. Rodrigues, T. M. Costa, J. L. Ninow and P. F. Hertz, Chitosan crosslinked with genipin as support matrix for application in food process: Support characterization and β-d-galactosidase immobilization. Carbohydrate Polymers, 137, 184-190, 2016. https://doi.org/10.10 16/j.carbpol.2015.10.069
  • M. Kahoush, N. Behary, J. Guan, A. Cayla, B. Mutel and V. Nierstrasz, Genipin-mediated immobilization of glucose oxidase enzyme on carbon felt for use as heterogeneous catalyst in sustainable wastewater treatment. Journal of Environmental Chemical Engineering, 9(4), 105633, 2021. https://doi.org/10.1 016/j.jece.2021.105633
  • M. Aydıngöz ve S. Bulut, 2014. Egenin Gizli Kalmış Şifa İksiri: Sığla. Afyon Kocatepe University Journal of Science & Engineering, 14(1), 1-6, 2014. https://doi.org/10.5578/fmbd.7084
  • I. Gurbuz, E. Yesilada, B. Demirci, E. Sezik, F. Demirci and K. H. Baser, Characterization of volatiles and anti-ulcerogenic effect of Turkish sweetgum balsam (Styrax liquidus). Journal of Ethnopharmacology, 148(1), 332-336, 2013. https://doi.org/10.1016/j.jep.2013.03.071
  • D. Demir, S. Özdemir, S. Ceylan, M. S. Yalcin, B. Sakım and N. Bölgen, Electrospun composite nanofibers based on poly (ε-caprolactone) and styrax liquidus (Liquidambar orientalis Miller) as a wound dressing: preparation, characterization, biological and cytocompatibility results. Journal of Polymers and the Environment, 30(6), 2462-2473, 2022. https://doi.org/10.1007/s10924-022-02376-7
  • H. Atmaca, C. Camli Pulat and M. Cittan, Liquidambar orientalis Mill. gum extract induces autophagy via PI3K/Akt/mTOR signaling pathway in prostate cancer cells. International Journal of Environmental Health Research, 32(5), 1011-1019, 2022. https://doi.org/10 .1080/09603123.2020.1818187
  • S. Çetinkaya, İ. Çınar Ayan, İ. Süntar, H. G. Dursun, The phytochemical profile and biological activity of Liquidambar orientalis Mill. var. orientalis via NF-κB and apoptotic pathways in human colorectal cancer. Nutrition and Cancer, 74(4), 1457-1473, 2022. https://doi.org/10.1080/01635581.2021.1952455
  • C. Goebel, P. Aeby, N. Ade, N. Alépée, A. Aptula, D. Araki, E. Dufour, N. Gilmour, J. Hibatallah, D. Keller, P. Kern, A. Kirst, M. Marrec-Fairley, G. Maxwell, J. Rowland, B. Safford, F. Schellauf, A. Schepky, C. Seaman, T. Teichert, N. Tessier, S. Teissier, H. U. Weltzien, P. Winkler and J. Scheel, Guiding principles for the implementation of non-animal safety assessment approaches for cosmetics: skin sensitisation. Regulatory Toxicology and Pharmacology, 63(1), 40-52, 2012. https://doi.org/ 10.1016/j.yrtph.2012.02.007
  • I. C. L. Licá, A. M. dos Santos Soares, L. S. S. de Mesquita and S. Malik, Biological properties and pharmacological potential of plant exudates. Food Research International, 105, 1039-1053, 2018. https://doi.org/10.1016/j.foodres.2017.11.051
  • J. Bajac, B. Nikolovski, I. Lončarević, J. Petrović, B. Bajac, S. Đurović and L. Petrović, Microencapsulation of juniper berry essential oil (Juniperus communis L.) by spray drying: microcapsule characterization and release kinetics of the oil. Food Hydrocolloids, 125, 107430, 2022. https://doi.org/10.1016/j.foodhyd.2021 .107430
  • W. Yang, L. Wang, Z. Ban, J. Yan, H. Lu, X. Zhang, Q. Wu, M. S. Aghdam, Z. Luo and L. Li, Efficient microencapsulation of Syringa essential oil; the valuable potential on quality maintenance and storage behavior of peach. Food Hydrocolloids, 95, 177-185, 2019. https://doi.org/10.1016/j.foodhyd.2019.04.033
  • L. Qiu, M. Zhang, B. Adhikari and L. Chang, Microencapsulation of rose essential oil in mung bean protein isolate-apricot peel pectin complex coacervates and characterization of microcapsules. Food Hydrocolloids, 124, 107366, 2022. https://doi.org/10.1016/j.foodhyd.2021.107366
  • J. S. F. de Araújo, E. L. de Souza, J. R. Oliveira, A. C. A. Gomes, L. R. V. Kotzebue, D. L. da Silva Agostini, D. L. V. De Oliveira, S. E. Mazzetto, A. L. da Silva and M. T. Cavalcanti, Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. International Journal of Biological Macromolecules, 143, 991-999, 2020. https://doi.org /10.1016/j.ijbiomac.2019.09.160
  • Y. Yuan, X. Geng, H. Wu, R. Kumar, J. Wang, J. Xiao, and H. Tian, Chemical composition, antimicrobial activities, and microencapsulation by complex coacervation of tea tree essential oils. Journal of Food Processing and Preservation, 46(7), e16585, 2022. https://doi.org/10.1111/jfpp.16585
  • Maulidna, W. Basuki, Tamrin, L. Marpaung, Microencapsulation of ginger-based essential oil (Zingiber cassumunar roxb) with chitosan and oil palm trunk waste fiber prepared by spray-drying method. Case Studies in Thermal Engineering, 18, 100606, 2020. https://doi.org/10.1016/j.csite.2020.100606
  • R. V. de Barros Fernandes, D. A. Botrel, E. K. Silva, S. V. Borges, C. R. de Oliveira, M. I. Yoshida, J. P. De Andrade Feitosa and R. C. M. de Paula, Cashew gum and inulin: New alternative for ginger essential oil microencapsulation. Carbohydrate Polymers, 153, 133-142, 2016. https://doi.org/10.1016/j.carbpol.2016.07 .096
  • C. Peng, S. Q. Zhao, J. Zhang, G. Y. Huang, L. Y. Chen and F. Y. Zhao, Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chemistry, 165, 560-568, 2014. https://doi.org/10.1016 /j.foodchem.2014.05.126
  • L. Zhang, M. Zhang, R. Ju, B. Bhandari and K. Liu, Antibacterial mechanisms of star anise essential oil microcapsules encapsulated by rice protein-depolymerized pectin electrostatic complexation and its application in crab meatballs. International Journal of Food Microbiology, 384, 109963, 2023. https://doi.org/10.1016/j.ijfoodmicro.2022.109963
  • F. Plati and A. Paraskevopoulou, Hemp protein isolate–gum Arabic complex coacervates as a means for oregano essential oil encapsulation. Comparison with whey protein isolate–gum Arabic system. Food Hydrocolloids, 136, 108284, 2023. https://doi.org/ 10.1016/j.foodhyd.2022.108284
  • M. Benjemaa, M. A. Neves, H. Falleh, H. Isoda, R. Ksouri and M. Nakajima, Nanoencapsulation of Thymus capitatus essential oil: Formulation process, physical stability characterization and antibacterial efficiency monitoring. Industrial Crops and Products, 113, 414-421, 2018. https://doi.org/10.1016/j.indcrop .2018.01.062
  • M. Hadidi, A. Motamedzadegan, A. Z. Jelyani, and S. Khashadeh, Nanoencapsulation of hyssop essential oil in chitosan-pea protein isolate nano-complex. LWT, 144, 111254, 2021. https://doi.org/10.1016/j.lwt.2021 .111254
  • C. O. Sánchez, E. B. Zavaleta, G. U. García, G. L. Solano and M. R. Díaz, Krill oil microencapsulation: Antioxidant activity, astaxanthin retention, encapsulation efficiency, fatty acids profile, in vitro bioaccessibility and storage stability. LWT, 147, 111476, 2021. https://doi.org/10.1016/j.lwt.2021. 111476
  • T. K. Maji, I. Baruah, S. Dube and M. R. Hussain, Microencapsulation of Zanthoxylum limonella oil (ZLO) in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresource Technology, 98(4), 840-844, 2007. https://doi.org/ 10.1016/j.biortech.2006.03.005
  • T. K. Maji and M. R. Hussain, Microencapsulation of Zanthoxylum limonella oil (ZLO) in genipin crosslinked chitosan–gelatin complex for mosquito repellent application. Journal of Applied Polymer Science, 111(2), 779-785, 2009. https://doi.org/ 10.1002/app.29001
  • N. Devi and T. K. Maji, Genipin crosslinked microcapsules of gelatin A and κ-carrageenan polyelectrolyte complex for encapsulation of Neem (Azadirachta Indica A. Juss.) seed oil. Polymer Bulletin, 65(4), 347-362, 2010. https://doi.org/ 10.1007/s00289-010-0246-5
  • A. P. T. Pierucci, L. R. Andrade, E. B. Baptista, N. M. Volpato and M. H. M. Rocha-Leão, New microencapsulation system for ascorbic acid using pea protein concentrate as coat protector. Journal of Microencapsulation, 23(6), 654-662, 2006. https://doi.org/10.1080/02652040600776523
  • C. Zhang, P. Wang, J. Li, H. Zhang and J. Weiss, Characterization of core-shell nanofibers electrospun from bilayer gelatin/gum Arabic O/W emulsions crosslinked by genipin. Food Hydrocolloids, 119, 106854, 2021. https://doi.org/10.1016/j.foodhyd.2021 .106854
  • F. A. Whitehead, S. A. Young and S. Kasapis, Structural relaxation and glass transition in high-solid gelatin systems crosslinked with genipin. International Journal of Biological Macromolecules, 141, 867-875, 2019. https://doi.org/10.1016/j.ijbiomac.2019.09.030
  • P. Sutaphanit and P. Chitprasert, Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology. Food Chemistry, 150, 313-320, 2014. https://doi.org/10.1016/j.food chem.2013.10.159
  • Q. Hu, X. Li, F. Chen, R. Wan, C. W. Yu, J. Li, D. J. McClements and Z. Deng, Microencapsulation of an essential oil (cinnamon oil) by spray drying: Effects of wall materials and storage conditions on microcapsule properties. Journal of Food Processing and Preservation, 44(11), e14805, 2020. https://doi.org /10.1111/jfpp.14805
  • K. Gandhi, R. Sharma, R. Seth and B. Mann, Detection of coconut oil in ghee using ATR-FTIR and chemometrics. Applied Food Research, 2(1), 100035, 2022. https://doi.org/10.1016/j.afres.2021.100035
  • M. Hovaneissian, P. Archier, C. Mathe and C. Vieillescazes, Contribution de la chimie analytique à l'étude des exsudats végétaux styrax, storax et benjoin. Comptes Rendus Chimie, 9(9), 1192-1202, 2006. https://doi.org/10.1016/j.crci.2005.12.010
  • S. D. Frazier and W. V. Srubar III, Evaporation-based method for preparing gelatin foams with aligned tubular pore structures. Materials Science and Engineering: C, 62, 467-473, 2016. https://doi.org/ 10.1016/j.msec.2016.01.074
  • M. J. Zohuriaan and F. J. P. T. Shokrolahi, Thermal studies on natural and modified gums. Polymer Testing, 23(5), 575-579, 2004. https://doi.org/10.1016 /j.polymertesting.2003.11.001
  • F. Amani, A. Rezaei, M. S. Damavandi, A. S. Doost and S. M. Jafari, Colloidal carriers of almond gum/gelatin coacervates for rosemary essential oil: Characterization and in-vitro cytotoxicity. Food Chemistry, 377, 131998, 2022. https://doi.org/10.1016 /j.foodchem.2021.131998
  • M. Mehran, S. Masoum and M. Memarzadeh, Microencapsulation of Mentha spicata essential oil by spray drying: Optimization, characterization, release kinetics of essential oil from microcapsules in food models. Industrial Crops and Products, 154, 112694, 2020. https://doi.org/10.1016/j.indcrop.2020.112694
  • J. S. F. de Araújo, E. L. de Souza, J. R. Oliveira, A. C. A. Gomes, L. R. V. Kotzebue, D. L. da Silva Agostini, D. L. V. Oliveira, S. E. Mazzetto, A. L. Silva and M. T. Cavalcanti, Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. International Journal of Biological Macromolecules, 143, 991-999, 2020. https://doi.org /10.1016/j.ijbiomac.2019.09.160
  • A. M. Shehap, K. H. Mahmoud, M. F. H. Abd El-Kader and T. M. El-Basheer, Preparation and Thermal Properties of Gelatin/TGS Composite Films. Middle East Journal of Applied Sciences, 5 (01), 157-170, 2015.
  • X. Yang, N. Gao, L. Hu, J. Li and Y. Sun, Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation, Journal of Food Engineering, 161, 87-93, 2015. https://doi.org /10.1016/j.jfoodeng.2015.03.027
  • A. Farahmand, B. Emadzadeh, B. Ghorani and D. Poncelet, Droplet-based millifluidic technique for encapsulation of cinnamon essential oil: Optimization of the process and physicochemical characterization. Food Hydrocolloids, 129, 107609, 2022. https://doi.org/10.1016/j.foodhyd.2022.107609

Synthesis and characterization of genipin-crosslinked nanocapsules

Yıl 2023, Cilt: 12 Sayı: 3, 861 - 871, 15.07.2023
https://doi.org/10.28948/ngumuh.1196886

Öz

In this study, it was aimed to nanoencapsulate sweetgum essential oil with gelatin and gum arabic using genipin, a natural cross-linker. In the synthesis process, firstly, sweetgum oil was coated with gelatin and gum Arabic wall materials using the complex coacervation method, and then cross-linked using different amounts of genipin (150, 250, 350 and 450 mg). Total oil, surface oil, and encapsulation efficiency of the obtained nanocapsules were analyzed. With the increase in the amount of genipin, a decrease was observed in the surface oil content of the nanocapsules, while an increase was observed in the total oil and encapsulation efficiency values. Nanocapsules with an encapsulation efficiency value of 91.78% were obtained by using 450 mg genipin, and FTIR, FESEM, TGA, and DSC analyzes were performed to examine the structural, morphological and thermal properties of these nanocapsules, respectively. The results show that sweetgum oil is successfully coated with gelatin and gum Arabic at nanoscale.

Proje Numarası

2021FEBE074

Kaynakça

  • W. Weisany, S. Yousefi, N. A. R. Tahir, N. G. Zadeh, D. J. McClements, B. Adhikari and M. Ghasemlou, Targeted delivery and controlled released of essential oils using nanoencapsulation: A review. Advances in Colloid and Interface Science, 303, 102655, 2022. https://doi.org/10.1016/j.cis.2022.102655
  • P. L. Lam and R. Gambari, Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. Journal of Controlled Release, 178, 25-45, 2014. https://doi.org/10.1016/j.jconrel.2013.12.028
  • R. S. Riseh, E. Tamanadar, N. Hajabdollahi, M. Vatankhah, V. K. Thakur and Y. A. Skorik, Chitosan microencapsulation of rhizobacteria for biological control of plant pests and diseases: Recent advances and applications. Rhizosphere, 23, 100565, 2022. https://doi.org/10.1016/j.rhisph.2022.100565
  • S. P. Dhakal and J. He, Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Research International, 137, 109326, 2020. https://doi.org/10.1016/j.foodres.2020 .109326
  • F. Casanova and L. Santos, Encapsulation of cosmetic active ingredients for topical application–a review. Journal of Microencapsulation, 33(1), 1-17, 2016. https://doi.org/10.3109/02652048.2015.1115900
  • V. Suganya and V. Anuradha, Microencapsulation and nanoencapsulation: a review. International Journal of Pharmaceutical and Clinical Research, 9(3), 233-239, 2017. https://doi.org/10.25258/ijpcr.v9i3.8324
  • C. Camelo-Silva, S. Verruck, A. Ambrosi and M. Di Luccio, Innovation and Trends in Probiotic Microencapsulation by Emulsification Techniques. Food Engineering Reviews, 14, 462–490, 2022. https://doi.org/10.1007/s12393-022-09315-1
  • Y. P. Timilsena, T. O. Akanbi, N. Khalid, B. Adhikari, and C. J. Barrow, Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276-1286, 2019. https://doi.org/10.1016/j.ijbio mac.2018.10.144
  • R. D. S. D. Veiga, R. Aparecida Da Silva-Buzanello, M. P. Corso and C. Canan, Essential oils microencapsulated obtained by spray drying: a review. Journal of Essential Oil Research, 31(6), 457-473, 2019. https://doi.org/10.1080/10412905.2019.1612788
  • J. de Abreu Figueiredo, C. R. de Paula Silva, M. F. S. Oliveira, L. B. Norcino, P. H. Campelo, D. A. Botrel and S. V. Borges, Microencapsulation by spray chilling in the food industry: Opportunities, challenges, and innovations. Trends in Food Science & Technology, 120, 274-287, 2021. https://doi.org/10.1016/j.tifs.2021 .12.026
  • K. Heinzelmann, K. Franke, B. Jensen and A. M. Haahr, Protection of fish oil from oxidation by microencapsulation using freeze‐drying techniques. European Journal of Lipid Science and Technology, 102(2), 114-121, 2000. https://doi.org/10.1002/ (SICI)1438-9312(200002)102:2<114::AID-EJLT114>3.0.CO;2-0
  • Y. H. How, K. W. Lai, L. P. Pui and L. L. A. In, Co‐extrusion and extrusion microencapsulation: Effect on microencapsulation efficiency, survivability through gastrointestinal digestion and storage. Journal of Food Process Engineering, 45(3), e13985, 2022. https://doi.org/10.1111/jfpe.13985
  • H. C. Liang, W. H. Chang, K. J. Lin and H. W. Sung, Genipin‐crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 65(2), 271-282, 2003. https://doi.org/10.1002/jbm.a.10476
  • J. M. Budincic, L. Petrovic, L. Dekic, J. Fraj, S. Bucko, J. Katona and L. Spasojevic, Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydrate Polymers, 251, 116988, 2021. https://doi.org/10.1016/j.carbpol.2020.116988
  • J. D. Ogilvie-Battersby, R. Nagarajan, R. Mosurkal and N. Orbey, Microencapsulation and controlled release of insect repellent geraniol in gelatin/gum arabic microcapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 640, 128494, 2022. https://doi.org/10.1016/j.colsurfa.2022 .128494
  • B. N. Estevinho, F. Rocha, L. Santos and A. Alves, Microencapsulation with chitosan by spray drying for industry applications–A review. Trends in Food Science & Technology, 31(2), 138-155, 2013. https://doi.org/10.1016/j.tifs.2013.04.001
  • G. Hamdi, G. Ponchel and D. Duchêne, Formulation of epichlorohydrin cross-linked starch microspheres. Journal of Microencapsulation, 18(3), 373-383, 2001. https://doi.org/10.1080/02652040010019505
  • C. Butstraen and F. Salaün, Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate Polymers, 99, 608-616, 2014. https://doi.org/10.1016/j.carbpol.2013.09.006
  • H. C. Liang, W. H. Chang, K. J. Lin and H. W. Sung, Genipin‐crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. Journal of Biomedical Materials Research Part A, 65(2), 271-282, 2003. https://doi.org/10.1002 /jbm.a.10476
  • Z. Wang, H. Liu, W. Luo, T. Cai, Z. Li, Y. Liu, W. Gao, Q. Wan, X. Wang, J. Wang, Y. Wang and X. Yang, Regeneration of skeletal system with genipin crosslinked biomaterials. Journal of Tissue Engineering, 11, 2020. https://doi.org/10.1177/204173 1420974861
  • H. Ji, Z. Qiu, Y. Wang, L. Dong, J. Cao, B. Lian and M. Wang, The effect of crosslinking concentration, time, temperature and pH on the characteristic of genipin-crosslinked small intestinal submucosa. Materials Today Communications, 33, 104482, 2022. https://doi.org/10.1016/j.mtcomm.2022.104482
  • M. Nair, R. K. Johal, S. W. Hamaia, S. M. Best and R. E. Cameron, Tunable bioactivity and mechanics of collagen-based tissue engineering constructs: A comparison of EDC-NHS, genipin and TG2 crosslinkers. Biomaterials, 254, 120109, 2020. https://doi.org/10.1016/j.biomaterials.2020.120109
  • J. R. Du, L. H. Hsu, E. S. Xiao, X. Guo, Y. Zhang and X. Feng, Using genipin as a “green” crosslinker to fabricate chitosan membranes for pervaporative dehydration of isopropanol. Separation and Purification Technology, 244, 116843, 2020. https://doi.org/10. 1016/j.seppur.2020.116843
  • W. Samprasit, P. Akkaramongkolporn, S. Jaewjira and P. Opanasopit, Design of alpha mangostin-loaded chitosan/alginate controlled-release nanoparticles using genipin as crosslinker. Journal of Drug Delivery Science and Technology, 46, 312-321, 2018. https://doi.org/10.1016/j.jddst.2018.05.029
  • G. Kaufmann, M. P. Klein, M. I. Goettert and T. A. S. Aguirre, Development and cytotoxicity evaluation of a cylindrical pH-responsive chitosan-genipin hydrogel for the oral delivery of diclofenac sodium. European Polymer Journal, 181, 111649, 2022. https://doi.org/10.1016/j.eurpolymj.2022.111649
  • Z. Xiao, L. H. Liu, T. Liu, D. Yang, X. Jia, Y. K. Du, S. Q. Li, W. J. Yang, Y. M. Xi and R. C. Zeng, Degradation and biocompatibility of genipin crosslinked polyelectrolyte films on biomedical magnesium alloy via layer-by-layer assembly. Progress in Organic Coatings, 175, 107372, 2023. https://doi.org/10.1016/j.porgcoat.2022.107372
  • M. P. Klein, C. R. Hackenhaar, A. S. Lorenzoni, R. C. Rodrigues, T. M. Costa, J. L. Ninow and P. F. Hertz, Chitosan crosslinked with genipin as support matrix for application in food process: Support characterization and β-d-galactosidase immobilization. Carbohydrate Polymers, 137, 184-190, 2016. https://doi.org/10.10 16/j.carbpol.2015.10.069
  • M. Kahoush, N. Behary, J. Guan, A. Cayla, B. Mutel and V. Nierstrasz, Genipin-mediated immobilization of glucose oxidase enzyme on carbon felt for use as heterogeneous catalyst in sustainable wastewater treatment. Journal of Environmental Chemical Engineering, 9(4), 105633, 2021. https://doi.org/10.1 016/j.jece.2021.105633
  • M. Aydıngöz ve S. Bulut, 2014. Egenin Gizli Kalmış Şifa İksiri: Sığla. Afyon Kocatepe University Journal of Science & Engineering, 14(1), 1-6, 2014. https://doi.org/10.5578/fmbd.7084
  • I. Gurbuz, E. Yesilada, B. Demirci, E. Sezik, F. Demirci and K. H. Baser, Characterization of volatiles and anti-ulcerogenic effect of Turkish sweetgum balsam (Styrax liquidus). Journal of Ethnopharmacology, 148(1), 332-336, 2013. https://doi.org/10.1016/j.jep.2013.03.071
  • D. Demir, S. Özdemir, S. Ceylan, M. S. Yalcin, B. Sakım and N. Bölgen, Electrospun composite nanofibers based on poly (ε-caprolactone) and styrax liquidus (Liquidambar orientalis Miller) as a wound dressing: preparation, characterization, biological and cytocompatibility results. Journal of Polymers and the Environment, 30(6), 2462-2473, 2022. https://doi.org/10.1007/s10924-022-02376-7
  • H. Atmaca, C. Camli Pulat and M. Cittan, Liquidambar orientalis Mill. gum extract induces autophagy via PI3K/Akt/mTOR signaling pathway in prostate cancer cells. International Journal of Environmental Health Research, 32(5), 1011-1019, 2022. https://doi.org/10 .1080/09603123.2020.1818187
  • S. Çetinkaya, İ. Çınar Ayan, İ. Süntar, H. G. Dursun, The phytochemical profile and biological activity of Liquidambar orientalis Mill. var. orientalis via NF-κB and apoptotic pathways in human colorectal cancer. Nutrition and Cancer, 74(4), 1457-1473, 2022. https://doi.org/10.1080/01635581.2021.1952455
  • C. Goebel, P. Aeby, N. Ade, N. Alépée, A. Aptula, D. Araki, E. Dufour, N. Gilmour, J. Hibatallah, D. Keller, P. Kern, A. Kirst, M. Marrec-Fairley, G. Maxwell, J. Rowland, B. Safford, F. Schellauf, A. Schepky, C. Seaman, T. Teichert, N. Tessier, S. Teissier, H. U. Weltzien, P. Winkler and J. Scheel, Guiding principles for the implementation of non-animal safety assessment approaches for cosmetics: skin sensitisation. Regulatory Toxicology and Pharmacology, 63(1), 40-52, 2012. https://doi.org/ 10.1016/j.yrtph.2012.02.007
  • I. C. L. Licá, A. M. dos Santos Soares, L. S. S. de Mesquita and S. Malik, Biological properties and pharmacological potential of plant exudates. Food Research International, 105, 1039-1053, 2018. https://doi.org/10.1016/j.foodres.2017.11.051
  • J. Bajac, B. Nikolovski, I. Lončarević, J. Petrović, B. Bajac, S. Đurović and L. Petrović, Microencapsulation of juniper berry essential oil (Juniperus communis L.) by spray drying: microcapsule characterization and release kinetics of the oil. Food Hydrocolloids, 125, 107430, 2022. https://doi.org/10.1016/j.foodhyd.2021 .107430
  • W. Yang, L. Wang, Z. Ban, J. Yan, H. Lu, X. Zhang, Q. Wu, M. S. Aghdam, Z. Luo and L. Li, Efficient microencapsulation of Syringa essential oil; the valuable potential on quality maintenance and storage behavior of peach. Food Hydrocolloids, 95, 177-185, 2019. https://doi.org/10.1016/j.foodhyd.2019.04.033
  • L. Qiu, M. Zhang, B. Adhikari and L. Chang, Microencapsulation of rose essential oil in mung bean protein isolate-apricot peel pectin complex coacervates and characterization of microcapsules. Food Hydrocolloids, 124, 107366, 2022. https://doi.org/10.1016/j.foodhyd.2021.107366
  • J. S. F. de Araújo, E. L. de Souza, J. R. Oliveira, A. C. A. Gomes, L. R. V. Kotzebue, D. L. da Silva Agostini, D. L. V. De Oliveira, S. E. Mazzetto, A. L. da Silva and M. T. Cavalcanti, Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. International Journal of Biological Macromolecules, 143, 991-999, 2020. https://doi.org /10.1016/j.ijbiomac.2019.09.160
  • Y. Yuan, X. Geng, H. Wu, R. Kumar, J. Wang, J. Xiao, and H. Tian, Chemical composition, antimicrobial activities, and microencapsulation by complex coacervation of tea tree essential oils. Journal of Food Processing and Preservation, 46(7), e16585, 2022. https://doi.org/10.1111/jfpp.16585
  • Maulidna, W. Basuki, Tamrin, L. Marpaung, Microencapsulation of ginger-based essential oil (Zingiber cassumunar roxb) with chitosan and oil palm trunk waste fiber prepared by spray-drying method. Case Studies in Thermal Engineering, 18, 100606, 2020. https://doi.org/10.1016/j.csite.2020.100606
  • R. V. de Barros Fernandes, D. A. Botrel, E. K. Silva, S. V. Borges, C. R. de Oliveira, M. I. Yoshida, J. P. De Andrade Feitosa and R. C. M. de Paula, Cashew gum and inulin: New alternative for ginger essential oil microencapsulation. Carbohydrate Polymers, 153, 133-142, 2016. https://doi.org/10.1016/j.carbpol.2016.07 .096
  • C. Peng, S. Q. Zhao, J. Zhang, G. Y. Huang, L. Y. Chen and F. Y. Zhao, Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chemistry, 165, 560-568, 2014. https://doi.org/10.1016 /j.foodchem.2014.05.126
  • L. Zhang, M. Zhang, R. Ju, B. Bhandari and K. Liu, Antibacterial mechanisms of star anise essential oil microcapsules encapsulated by rice protein-depolymerized pectin electrostatic complexation and its application in crab meatballs. International Journal of Food Microbiology, 384, 109963, 2023. https://doi.org/10.1016/j.ijfoodmicro.2022.109963
  • F. Plati and A. Paraskevopoulou, Hemp protein isolate–gum Arabic complex coacervates as a means for oregano essential oil encapsulation. Comparison with whey protein isolate–gum Arabic system. Food Hydrocolloids, 136, 108284, 2023. https://doi.org/ 10.1016/j.foodhyd.2022.108284
  • M. Benjemaa, M. A. Neves, H. Falleh, H. Isoda, R. Ksouri and M. Nakajima, Nanoencapsulation of Thymus capitatus essential oil: Formulation process, physical stability characterization and antibacterial efficiency monitoring. Industrial Crops and Products, 113, 414-421, 2018. https://doi.org/10.1016/j.indcrop .2018.01.062
  • M. Hadidi, A. Motamedzadegan, A. Z. Jelyani, and S. Khashadeh, Nanoencapsulation of hyssop essential oil in chitosan-pea protein isolate nano-complex. LWT, 144, 111254, 2021. https://doi.org/10.1016/j.lwt.2021 .111254
  • C. O. Sánchez, E. B. Zavaleta, G. U. García, G. L. Solano and M. R. Díaz, Krill oil microencapsulation: Antioxidant activity, astaxanthin retention, encapsulation efficiency, fatty acids profile, in vitro bioaccessibility and storage stability. LWT, 147, 111476, 2021. https://doi.org/10.1016/j.lwt.2021. 111476
  • T. K. Maji, I. Baruah, S. Dube and M. R. Hussain, Microencapsulation of Zanthoxylum limonella oil (ZLO) in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresource Technology, 98(4), 840-844, 2007. https://doi.org/ 10.1016/j.biortech.2006.03.005
  • T. K. Maji and M. R. Hussain, Microencapsulation of Zanthoxylum limonella oil (ZLO) in genipin crosslinked chitosan–gelatin complex for mosquito repellent application. Journal of Applied Polymer Science, 111(2), 779-785, 2009. https://doi.org/ 10.1002/app.29001
  • N. Devi and T. K. Maji, Genipin crosslinked microcapsules of gelatin A and κ-carrageenan polyelectrolyte complex for encapsulation of Neem (Azadirachta Indica A. Juss.) seed oil. Polymer Bulletin, 65(4), 347-362, 2010. https://doi.org/ 10.1007/s00289-010-0246-5
  • A. P. T. Pierucci, L. R. Andrade, E. B. Baptista, N. M. Volpato and M. H. M. Rocha-Leão, New microencapsulation system for ascorbic acid using pea protein concentrate as coat protector. Journal of Microencapsulation, 23(6), 654-662, 2006. https://doi.org/10.1080/02652040600776523
  • C. Zhang, P. Wang, J. Li, H. Zhang and J. Weiss, Characterization of core-shell nanofibers electrospun from bilayer gelatin/gum Arabic O/W emulsions crosslinked by genipin. Food Hydrocolloids, 119, 106854, 2021. https://doi.org/10.1016/j.foodhyd.2021 .106854
  • F. A. Whitehead, S. A. Young and S. Kasapis, Structural relaxation and glass transition in high-solid gelatin systems crosslinked with genipin. International Journal of Biological Macromolecules, 141, 867-875, 2019. https://doi.org/10.1016/j.ijbiomac.2019.09.030
  • P. Sutaphanit and P. Chitprasert, Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology. Food Chemistry, 150, 313-320, 2014. https://doi.org/10.1016/j.food chem.2013.10.159
  • Q. Hu, X. Li, F. Chen, R. Wan, C. W. Yu, J. Li, D. J. McClements and Z. Deng, Microencapsulation of an essential oil (cinnamon oil) by spray drying: Effects of wall materials and storage conditions on microcapsule properties. Journal of Food Processing and Preservation, 44(11), e14805, 2020. https://doi.org /10.1111/jfpp.14805
  • K. Gandhi, R. Sharma, R. Seth and B. Mann, Detection of coconut oil in ghee using ATR-FTIR and chemometrics. Applied Food Research, 2(1), 100035, 2022. https://doi.org/10.1016/j.afres.2021.100035
  • M. Hovaneissian, P. Archier, C. Mathe and C. Vieillescazes, Contribution de la chimie analytique à l'étude des exsudats végétaux styrax, storax et benjoin. Comptes Rendus Chimie, 9(9), 1192-1202, 2006. https://doi.org/10.1016/j.crci.2005.12.010
  • S. D. Frazier and W. V. Srubar III, Evaporation-based method for preparing gelatin foams with aligned tubular pore structures. Materials Science and Engineering: C, 62, 467-473, 2016. https://doi.org/ 10.1016/j.msec.2016.01.074
  • M. J. Zohuriaan and F. J. P. T. Shokrolahi, Thermal studies on natural and modified gums. Polymer Testing, 23(5), 575-579, 2004. https://doi.org/10.1016 /j.polymertesting.2003.11.001
  • F. Amani, A. Rezaei, M. S. Damavandi, A. S. Doost and S. M. Jafari, Colloidal carriers of almond gum/gelatin coacervates for rosemary essential oil: Characterization and in-vitro cytotoxicity. Food Chemistry, 377, 131998, 2022. https://doi.org/10.1016 /j.foodchem.2021.131998
  • M. Mehran, S. Masoum and M. Memarzadeh, Microencapsulation of Mentha spicata essential oil by spray drying: Optimization, characterization, release kinetics of essential oil from microcapsules in food models. Industrial Crops and Products, 154, 112694, 2020. https://doi.org/10.1016/j.indcrop.2020.112694
  • J. S. F. de Araújo, E. L. de Souza, J. R. Oliveira, A. C. A. Gomes, L. R. V. Kotzebue, D. L. da Silva Agostini, D. L. V. Oliveira, S. E. Mazzetto, A. L. Silva and M. T. Cavalcanti, Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. International Journal of Biological Macromolecules, 143, 991-999, 2020. https://doi.org /10.1016/j.ijbiomac.2019.09.160
  • A. M. Shehap, K. H. Mahmoud, M. F. H. Abd El-Kader and T. M. El-Basheer, Preparation and Thermal Properties of Gelatin/TGS Composite Films. Middle East Journal of Applied Sciences, 5 (01), 157-170, 2015.
  • X. Yang, N. Gao, L. Hu, J. Li and Y. Sun, Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation, Journal of Food Engineering, 161, 87-93, 2015. https://doi.org /10.1016/j.jfoodeng.2015.03.027
  • A. Farahmand, B. Emadzadeh, B. Ghorani and D. Poncelet, Droplet-based millifluidic technique for encapsulation of cinnamon essential oil: Optimization of the process and physicochemical characterization. Food Hydrocolloids, 129, 107609, 2022. https://doi.org/10.1016/j.foodhyd.2022.107609
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Kimya Mühendisliği
Yazarlar

Şeyma Çağlar 0000-0001-5523-0581

Deniz Akın Şahbaz 0000-0002-8667-2451

Proje Numarası 2021FEBE074
Erken Görünüm Tarihi 22 Mayıs 2023
Yayımlanma Tarihi 15 Temmuz 2023
Gönderilme Tarihi 31 Ekim 2022
Kabul Tarihi 4 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 3

Kaynak Göster

APA Çağlar, Ş., & Akın Şahbaz, D. (2023). Genipin ile çapraz bağlı nanokapsüllerin sentezi ve karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 861-871. https://doi.org/10.28948/ngumuh.1196886
AMA Çağlar Ş, Akın Şahbaz D. Genipin ile çapraz bağlı nanokapsüllerin sentezi ve karakterizasyonu. NÖHÜ Müh. Bilim. Derg. Temmuz 2023;12(3):861-871. doi:10.28948/ngumuh.1196886
Chicago Çağlar, Şeyma, ve Deniz Akın Şahbaz. “Genipin Ile çapraz bağlı nanokapsüllerin Sentezi Ve Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 3 (Temmuz 2023): 861-71. https://doi.org/10.28948/ngumuh.1196886.
EndNote Çağlar Ş, Akın Şahbaz D (01 Temmuz 2023) Genipin ile çapraz bağlı nanokapsüllerin sentezi ve karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 861–871.
IEEE Ş. Çağlar ve D. Akın Şahbaz, “Genipin ile çapraz bağlı nanokapsüllerin sentezi ve karakterizasyonu”, NÖHÜ Müh. Bilim. Derg., c. 12, sy. 3, ss. 861–871, 2023, doi: 10.28948/ngumuh.1196886.
ISNAD Çağlar, Şeyma - Akın Şahbaz, Deniz. “Genipin Ile çapraz bağlı nanokapsüllerin Sentezi Ve Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (Temmuz 2023), 861-871. https://doi.org/10.28948/ngumuh.1196886.
JAMA Çağlar Ş, Akın Şahbaz D. Genipin ile çapraz bağlı nanokapsüllerin sentezi ve karakterizasyonu. NÖHÜ Müh. Bilim. Derg. 2023;12:861–871.
MLA Çağlar, Şeyma ve Deniz Akın Şahbaz. “Genipin Ile çapraz bağlı nanokapsüllerin Sentezi Ve Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 3, 2023, ss. 861-7, doi:10.28948/ngumuh.1196886.
Vancouver Çağlar Ş, Akın Şahbaz D. Genipin ile çapraz bağlı nanokapsüllerin sentezi ve karakterizasyonu. NÖHÜ Müh. Bilim. Derg. 2023;12(3):861-7.

download