Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of filling patterns and ratios on the mechanical performance of PLA materials in fused deposition modeling

Yıl 2024, Cilt: 13 Sayı: 3
https://doi.org/10.28948/ngumuh.1442158

Öz

In this study, the effect of Polylactic Acid (PLA) filament material and different filling ratios and filling patterns on its mechanical properties on tensile, compression and bending deformation behavior was investigated using the three-dimensional melt fused deposition modeling (FDM) method. In the research, parts were produced using triangular and triple-hexagonal patterns at 25%, 50%, 75% and 100% infilling ratios. The mechanical properties of the produced parts were evaluated by tensile, compression and three-point bending tests. The results show that mechanical properties increase in all test types with increasing infilling ratio. Optimum processes were determined by considering the mechanical properties of the selected production patterns and filling ratios. The results of mechanical tests were used to determine the best filling patterns and ratios. Samples produced with a triangular pattern and a 50% infilling ratio are predicted to exhibit optimal specific tensile strength; samples produced with a triple hexagonal pattern and a 50% infilling ratio are predicted to exhibit ideal specific compressive strength; and samples produced with a triple hexagonal pattern and a 75% infilling ratio are predicted to exhibit optimal specific bending strength.

Kaynakça

  • Y. Mohseni, M. Mohseni, S. Suresh, M. Riotto, A. Jaggessar, J. Little, M. Wille and P. Yarlagadda, Investigating impacts of FDM printing parameters and geometrical features on void formation in 3D printed automotive components, Materials Today: Proceedings, 2214-7853, 2023. https://doi.org/10.1016/j.matpr.2023.06.078
  • A. Yadav, B. Prakash, K. Dileep, S. Rao and G. Kumar, An experimental examination on surface finish of FDM 3D printed parts, Materials Today: Proceedings, 2214, 2023. https://doi.org/10.1016/j.matpr.2023.07.088
  • L. Marșavina, C. Vălean, M. Mărghitaș, E. Linul, S. Razavi, F. Berto and R. Brighenti, Effect of the manufacturing parameters on the tensile and fracture properties of FDM 3D-printed PLA specimens, Engineering Fracture Mechanics, 274, 108766, 2022. https://doi.org/10.1016/j.engfracmech.2022.108766
  • Y. Zhao, Y. Chen and Y. Zhou, Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: Experimental and theoretical analyses, Materials & Design, 181, 108089, 2019. https://doi.org/10.1016/j.matdes.2019.108089
  • O. Mohamed, S. Masood and J. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Advances in Manufacturing, 3, 42-53, 2015. https://doi.org/10.1007/s40436-014-0097-7
  • M. Singh, B. Singh, M. Singla and R. Kumar, Investigation of melt flow index of dual metal reinforced ABS polymer for FDM filament fabrication, Materials Today: Proceedings, 2214-7783, 2023. https://doi.org/10.1016/j.matpr.2023.02.188
  • P. Singhal, R. Sujithra and D. Saritha, Effect of alternate fill pattern on mechanical properties of FDM printed PC-PBT alloy, Materials Today: Proceedings, 62, 3791-3799, 2022. https://doi.org/10.1016/j.matpr.2022.04.470
  • L. Feroz, R. Raghul, M. Yogesh, V. Harshavardhan Reddy and N. Shakil, Evaluation of the polyamide’s mechanical properties for varying infill percentage in FDM process, Materials Today: Proceedings, 68, 2509-2514, 2022. https://doi.org/10.1016/j.matpr.2022.09.227
  • P. Romero, J. Arribas-Barrios, O. Rodriguez-Alabanda, R. González-Merino and G. Guerrero-Vaca, Manufacture of polyurethane foam parts for automotive industry using FDM 3D printed molds, CIRP Journal of Manufacturing Science and Technology, 32, 396-404, 2021. https://doi.org/10.1016/j.cirpj.2021.01.019
  • G. Atakok, M. Kam and H. Koc, Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation, Journal of Materials Research and Technology, 18, 1542-1554, 2022. https://doi.org/10.1016/j.jmrt.2022.03.013
  • M. Venkateswar, B. Hemasunder, P. Mahadevapa Chavan, N. Dish and A. Savio, Study on the significance of process parameters in improvising the tensile strength of FDM printed carbon fibre reinforced PLA, Materials Today: Proceedings, 2214-7853, 2023. https://doi.org/10.1016/j.matpr.2023.06.330
  • E. Urquizo, E. Barocio, V. Ortigoza, R. Pipes, C. Rodriguez and A. Flores, Characterization of the Mechanical Properties of FFF Structures and Materials: A Review on the Experimental, Computational and Theoretical Approaches. Materials, 12, 895, 2019. https://doi.org/10.3390/ma12060895
  • M. Tanveer, G. Mishra, S. Mishra and R. Sharma, Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts- a current review, Materials Today: Proceedings, 62, 100-108, 2022. https://doi.org/10.1016/j.matpr.2022.02.310
  • G. Dakhil, R. Salih and A. Hameed, Hameed, Influence of Infill Pattern, Infill Ratio on Compressive Strength and Hardness of 3D Printed Polylactic Acid (PLA) Based Polymer, Journal of Applied Sciences and Nanotechnology, 3, 1-7, 2023. https://doi.org/10.53293/jasn.2022.4745.1141
  • M. Mani, A. Karthikeyan, K. Kalaiselvan, P. Muthusamy and P. Muruganandhan, Optimization of FDM 3-D printer process parameters for surface roughness and mechanical properties using PLA material, Materials Today: Proceedings, 66, 1926-1931, 2022. https://doi.org/10.1016/j.matpr.2022.05.422
  • K. Kumar, V. Mohanavel and K. Kiran, Mechanical Properties and Characterization of Polylactic Acid/Carbon Fiber Composite Fabricated by Fused Deposition Modeling, Journal of Materials Engineering and Performance, 31, 4877-4886, 2022. https://doi.org/10.1007/s11665-021-06566-7
  • A. Mishra, V. Srivastava and N. Gupta, Additive manufacturing for fused deposition modeling of carbon fiber–polylactic acid composites: the effects of process parameters on tensile and flexural properties, Functional Composites and Structures, 3, 045007, 2021. https://doi.org/10.1088/2631-6331/ac3732
  • Y. Zhao, Y. Chen and Y. Zhou, Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: experimental and theoretical analyses, Materials & Design, 181, p 108089, 2019. https://doi.org/10.1016/j.matdes.2019.108089
  • L. Yang, S. Li, Y. Li, M. Yang and Q. Yuan, Experimental investigations for optimizing the extrusion parameters on FDM PLA printed parts, Journal of Materials Engineering and Performance, 28, p 169–182, 2019. https://doi.org/10.1007/s11665-018-3784-x
  • J. Floor, B. Deursen and E. Tempelman, Tensile strength of 3D printed materials: Review and reassessment of test parameters, Materials Testing, 60, p 679-686, 2018. https://doi.org/10.3139/120.111203

Dolgu desenlerinin ve oranlarının ergiyik biriktirme modellemede PLA malzemesinin mekanik performansına olan etkisi

Yıl 2024, Cilt: 13 Sayı: 3
https://doi.org/10.28948/ngumuh.1442158

Öz

Bu çalışmada üç boyutlu ergiyik biriktirmeli modelleme (EBM) yöntemi kullanılarak Polilaktik Asit (PLA) filament malzemesi ile farklı dolgu oranları ve dolgu desenlerinin çekme, basma ve eğme deformasyon davranışının mekanik özellikler üzerindeki etkisi araştırılmıştır. Araştırmada, %25, %50, %75 ve %100 dolgu oranlarında, üçgen ve üçlü-altıgen desenler kullanılarak standart testlere uygun parçalar üretilmiştir. Üretilen parçaların mekanik özellikleri, çekme, basma ve üç nokta eğme testleri ile değerlendirilmiştir. Sonuçlar, dolgu oranı artışı ile tüm test türlerinde mekanik özelliklerin artığını göstermektedir. Çekme, basma ve eğme mukavemeti davranışları gözetilerek en uygun üretim deseni ve dolgu oranları belirlenmiştir. Ayrıca kasıtlı boşluklandırma kullanılarak özgül mukavemet değerleri kapsamında üretime olan etkisi gözetilmiştir. Çekme yükleri için %25 dolgu oranına sahip üçgen desenli numunelerde daha yüksek özgül mukevemet sağlanmıştır. Basma yükleri için optimum dayanım %50 dolgu oranına sahip üçlü altıgen desenli üretilen numunelerde ve eğme yükleri için ise %75 dolgu oranına sahip üçlü altıgen desenli olarak üretilen numunelerde gözlemlenmiştir.

Etik Beyan

Yayımlanmak üzer sunduğumuz makalede, etik kurul gerektiren bir çalışma yapılmadığını taahhüt ederiz.

Kaynakça

  • Y. Mohseni, M. Mohseni, S. Suresh, M. Riotto, A. Jaggessar, J. Little, M. Wille and P. Yarlagadda, Investigating impacts of FDM printing parameters and geometrical features on void formation in 3D printed automotive components, Materials Today: Proceedings, 2214-7853, 2023. https://doi.org/10.1016/j.matpr.2023.06.078
  • A. Yadav, B. Prakash, K. Dileep, S. Rao and G. Kumar, An experimental examination on surface finish of FDM 3D printed parts, Materials Today: Proceedings, 2214, 2023. https://doi.org/10.1016/j.matpr.2023.07.088
  • L. Marșavina, C. Vălean, M. Mărghitaș, E. Linul, S. Razavi, F. Berto and R. Brighenti, Effect of the manufacturing parameters on the tensile and fracture properties of FDM 3D-printed PLA specimens, Engineering Fracture Mechanics, 274, 108766, 2022. https://doi.org/10.1016/j.engfracmech.2022.108766
  • Y. Zhao, Y. Chen and Y. Zhou, Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: Experimental and theoretical analyses, Materials & Design, 181, 108089, 2019. https://doi.org/10.1016/j.matdes.2019.108089
  • O. Mohamed, S. Masood and J. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Advances in Manufacturing, 3, 42-53, 2015. https://doi.org/10.1007/s40436-014-0097-7
  • M. Singh, B. Singh, M. Singla and R. Kumar, Investigation of melt flow index of dual metal reinforced ABS polymer for FDM filament fabrication, Materials Today: Proceedings, 2214-7783, 2023. https://doi.org/10.1016/j.matpr.2023.02.188
  • P. Singhal, R. Sujithra and D. Saritha, Effect of alternate fill pattern on mechanical properties of FDM printed PC-PBT alloy, Materials Today: Proceedings, 62, 3791-3799, 2022. https://doi.org/10.1016/j.matpr.2022.04.470
  • L. Feroz, R. Raghul, M. Yogesh, V. Harshavardhan Reddy and N. Shakil, Evaluation of the polyamide’s mechanical properties for varying infill percentage in FDM process, Materials Today: Proceedings, 68, 2509-2514, 2022. https://doi.org/10.1016/j.matpr.2022.09.227
  • P. Romero, J. Arribas-Barrios, O. Rodriguez-Alabanda, R. González-Merino and G. Guerrero-Vaca, Manufacture of polyurethane foam parts for automotive industry using FDM 3D printed molds, CIRP Journal of Manufacturing Science and Technology, 32, 396-404, 2021. https://doi.org/10.1016/j.cirpj.2021.01.019
  • G. Atakok, M. Kam and H. Koc, Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation, Journal of Materials Research and Technology, 18, 1542-1554, 2022. https://doi.org/10.1016/j.jmrt.2022.03.013
  • M. Venkateswar, B. Hemasunder, P. Mahadevapa Chavan, N. Dish and A. Savio, Study on the significance of process parameters in improvising the tensile strength of FDM printed carbon fibre reinforced PLA, Materials Today: Proceedings, 2214-7853, 2023. https://doi.org/10.1016/j.matpr.2023.06.330
  • E. Urquizo, E. Barocio, V. Ortigoza, R. Pipes, C. Rodriguez and A. Flores, Characterization of the Mechanical Properties of FFF Structures and Materials: A Review on the Experimental, Computational and Theoretical Approaches. Materials, 12, 895, 2019. https://doi.org/10.3390/ma12060895
  • M. Tanveer, G. Mishra, S. Mishra and R. Sharma, Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts- a current review, Materials Today: Proceedings, 62, 100-108, 2022. https://doi.org/10.1016/j.matpr.2022.02.310
  • G. Dakhil, R. Salih and A. Hameed, Hameed, Influence of Infill Pattern, Infill Ratio on Compressive Strength and Hardness of 3D Printed Polylactic Acid (PLA) Based Polymer, Journal of Applied Sciences and Nanotechnology, 3, 1-7, 2023. https://doi.org/10.53293/jasn.2022.4745.1141
  • M. Mani, A. Karthikeyan, K. Kalaiselvan, P. Muthusamy and P. Muruganandhan, Optimization of FDM 3-D printer process parameters for surface roughness and mechanical properties using PLA material, Materials Today: Proceedings, 66, 1926-1931, 2022. https://doi.org/10.1016/j.matpr.2022.05.422
  • K. Kumar, V. Mohanavel and K. Kiran, Mechanical Properties and Characterization of Polylactic Acid/Carbon Fiber Composite Fabricated by Fused Deposition Modeling, Journal of Materials Engineering and Performance, 31, 4877-4886, 2022. https://doi.org/10.1007/s11665-021-06566-7
  • A. Mishra, V. Srivastava and N. Gupta, Additive manufacturing for fused deposition modeling of carbon fiber–polylactic acid composites: the effects of process parameters on tensile and flexural properties, Functional Composites and Structures, 3, 045007, 2021. https://doi.org/10.1088/2631-6331/ac3732
  • Y. Zhao, Y. Chen and Y. Zhou, Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: experimental and theoretical analyses, Materials & Design, 181, p 108089, 2019. https://doi.org/10.1016/j.matdes.2019.108089
  • L. Yang, S. Li, Y. Li, M. Yang and Q. Yuan, Experimental investigations for optimizing the extrusion parameters on FDM PLA printed parts, Journal of Materials Engineering and Performance, 28, p 169–182, 2019. https://doi.org/10.1007/s11665-018-3784-x
  • J. Floor, B. Deursen and E. Tempelman, Tensile strength of 3D printed materials: Review and reassessment of test parameters, Materials Testing, 60, p 679-686, 2018. https://doi.org/10.3139/120.111203
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları, Malzeme Üretim Teknolojileri, Katmanlı Üretim
Bölüm Makaleler
Yazarlar

Esad Kaya 0000-0002-7332-6154

İsmail Bayar 0000-0002-4187-3911

Ali Fuat Akpınar 0009-0008-2827-6312

Erken Görünüm Tarihi 31 Mayıs 2024
Yayımlanma Tarihi
Gönderilme Tarihi 23 Şubat 2024
Kabul Tarihi 4 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 3

Kaynak Göster

APA Kaya, E., Bayar, İ., & Akpınar, A. F. (2024). Dolgu desenlerinin ve oranlarının ergiyik biriktirme modellemede PLA malzemesinin mekanik performansına olan etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3). https://doi.org/10.28948/ngumuh.1442158
AMA Kaya E, Bayar İ, Akpınar AF. Dolgu desenlerinin ve oranlarının ergiyik biriktirme modellemede PLA malzemesinin mekanik performansına olan etkisi. NÖHÜ Müh. Bilim. Derg. Mayıs 2024;13(3). doi:10.28948/ngumuh.1442158
Chicago Kaya, Esad, İsmail Bayar, ve Ali Fuat Akpınar. “Dolgu Desenlerinin Ve oranlarının Ergiyik Biriktirme Modellemede PLA Malzemesinin Mekanik performansına Olan Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 3 (Mayıs 2024). https://doi.org/10.28948/ngumuh.1442158.
EndNote Kaya E, Bayar İ, Akpınar AF (01 Mayıs 2024) Dolgu desenlerinin ve oranlarının ergiyik biriktirme modellemede PLA malzemesinin mekanik performansına olan etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 3
IEEE E. Kaya, İ. Bayar, ve A. F. Akpınar, “Dolgu desenlerinin ve oranlarının ergiyik biriktirme modellemede PLA malzemesinin mekanik performansına olan etkisi”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 3, 2024, doi: 10.28948/ngumuh.1442158.
ISNAD Kaya, Esad vd. “Dolgu Desenlerinin Ve oranlarının Ergiyik Biriktirme Modellemede PLA Malzemesinin Mekanik performansına Olan Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/3 (Mayıs 2024). https://doi.org/10.28948/ngumuh.1442158.
JAMA Kaya E, Bayar İ, Akpınar AF. Dolgu desenlerinin ve oranlarının ergiyik biriktirme modellemede PLA malzemesinin mekanik performansına olan etkisi. NÖHÜ Müh. Bilim. Derg. 2024;13. doi:10.28948/ngumuh.1442158.
MLA Kaya, Esad vd. “Dolgu Desenlerinin Ve oranlarının Ergiyik Biriktirme Modellemede PLA Malzemesinin Mekanik performansına Olan Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 3, 2024, doi:10.28948/ngumuh.1442158.
Vancouver Kaya E, Bayar İ, Akpınar AF. Dolgu desenlerinin ve oranlarının ergiyik biriktirme modellemede PLA malzemesinin mekanik performansına olan etkisi. NÖHÜ Müh. Bilim. Derg. 2024;13(3).

download