Araştırma Makalesi
BibTex RIS Kaynak Göster

KNT ilaveli PET/Cam elyaf takviyeli termoplastik kompozitlerin eğilme özelliklerinin araştırılması

Yıl 2024, Cilt: 13 Sayı: 3
https://doi.org/10.28948/ngumuh.1443069

Öz

Bu çalışma kapsamında, kıvrımsız kumaş (NCF) ile takviyeli hibrit kompozitler üretmek ve saf kompozitlerin mekanik özelliklerini iyileştirmek amacıyla çok duvarlı karbon nanotüpler (ÇDKNT'ler) (ağırlıkça yüzdeleri %0 ve %0.9) ve modifiye edilmiş ÇDKNT'ler (ÇDKNT-karboksilik asit (COOH)) (ağırlıkça yüzdeleri %0 ve %0.9) polietilen tereftalat (PET) termoplastik polimerine ve cam elyaf (GF) takviye elyaflarına ilave edilmiştir. NCF yapısına sahip takviye kumaşlarda 0° ve 90° yönlerinde yönlenmiş elyaflar bulunmaktadır. Üretilen kompozit numunelerinin mekanik özelliklerini belirlemek için 0° ve -45° yönlerinde hazırlanmış test numunelerine üç nokta eğme testleri yapılmıştır. Kompozitlerin mikro yapısı ve morfolojisi taramalı elektron mikroskobu (SEM) ve optik mikroskop (OM) kullanılarak incelenmiştir. ÇDKNT-COOH içeren numuneler, 0° yönünde ÇDKNT-COOH içermeyen numunelerle karşılaştırıldığında %58.6 eğilme modülü ve %14.4 eğilme mukavemeti artışıyla en yüksek eğilme özellikleri değerini sergilemiştir.

Etik Beyan

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim.

Destekleyen Kurum

Bu araştırma Ondokuz Mayıs Üniversitesi araştırma fonu tarafından desteklenmiştir (PYO.MUH.1901.16.001 ve PYO.MUH.1901.18.008).

Proje Numarası

Bu araştırma Ondokuz Mayıs Üniversitesi araştırma fonu tarafından desteklenmiştir (PYO.MUH.1901.16.001 ve PYO.MUH.1901.18.008).

Teşekkür

Bu araştırma Ondokuz Mayıs Üniversitesi araştırma fonu tarafından desteklenmiştir (PYO.MUH.1901.16.001 ve PYO.MUH.1901.18.008).

Kaynakça

  • S. Hasan, A review on nanoparticles: their synthesis and types. Research Journal of Recent Sciences, 4, 1-3, 2015.
  • P. M. Ajayan, L. S. Schadler and P. V. Braun, Nanocomposite science and technology. Wiley‐VCH Verlag GmbH & Co. KGaA. 2003, https://doi.org/10.1002/3527602127.
  • A. Grujić, N. Talijan, D. B. Stojanović, J. S. Trosic, Z. Burzic, L. Balanovic, R. Aleksić, Mechanical and magnetic properties of composite materials with polymer matrix. Journal of Mining and Metallurgy, Section B: Metallurgy, 46(1), 25–32, 2010. https://doi.org/10.2298/JMMB1001025G.
  • A. M. K. Esawi and M. M. Farag, Carbon nanotube reinforced composites: Potential and current challenges. Materials & Design, 28(9), 2394–2401, 2007. https://doi.org/10.1016/j.matdes.2006.09.022.
  • S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603–605, 1993. https://doi.org/10.1038/363603a0.
  • S. Iijima, Helical microtubules of graphitic carbon. Nature, 354(6348), 56–58, 1991. https://doi.org/10.1038/354056a0.
  • D. Rosato, Plastics Engineered Product Design, 1–568, Elsevier, 2003, https://doi.org/10.1016/B978-1-85617-416-9.X5000-5.
  • J. Shen, W. Huang, L. Wu, Y. Hu and M. Ye, The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Composites Science and Technology, 67, (15–16), 3041–3050, 2007. https://doi.org/10.1016/J.COMPSCITECH.2007.04.025.
  • M. M. Shokrieh and R. Rafiee, Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites. Composite Structures, 92(10), 2415–2420, 2010. https://doi.org/10.1016/J.COMPSTRUCT.2010.02.018.
  • J. A. Kim, D. G. Seong, T. J. Kang and J. R. Youn, Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon, 44(10), 1898–1905, 2006. https://doi.org/10.1016/J.CARBON.2006.02.026.
  • S. U. S. Choi, Nanofluids: from vision to reality through research. Journal of Heat and Mass Transfer 131(3), 1-9, 2009. https://doi.org/10.1115/1.3056479.
  • M. Biron, Thermoplastics and Thermoplastic Composites: Technical Information for Plastics Users, Elsevier, 1–874, 2007. https://doi.org/10.1016/B978-1-85617-478-7.X5001-6.
  • S. Mazumdar, Composites Manufacturing : Materials, Product, and Process Engineering, Composites Manufacturing, CRC Press, Boca Raton, 2001, https://doi.org/10.1201/9781420041989.
  • S. Rana and R. Fangueiro, Advanced composites in aerospace engineering, Advanced Composite Materials for Aerospace Engineering, Woodhead Publishing, 1–15, 2016, https://doi.org/10.1016/B978-0-08-100037-3.00001-8.
  • G. D. Goh, V. Dikshit, A. P. Nagalingam, G. L. Goh, S. Agarwala, S. L. Sing and W. Y. Yeong, Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Materials & Design, 137, 79–89, 2018. https://doi.org/10.1016/J.MATDES.2017.10.021.
  • J. Li-Na, Study on preparation process and properties of polyethylene terephthalate (PET). Applied Mechanics and Materials, 312, 406–410, 2013. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.312.406.
  • N. E. Zander, M. Gillan, and R. H. Lambeth, Recycled polyethylene terephthalate as a new FFF feedstock material. Additive Manufacturing, 21, 174–182, 2018. https://doi.org/10.1016/J.ADDMA.2018.03.007.
  • T. Gómez-del Río, P. Poza, J. Rodríguez, M. C. García-Gutiérrez, J. J. Hernández and T. A. Ezquerra, Influence of single-walled carbon nanotubes on the effective elastic constants of poly(ethylene terephthalate). Composites Science and Technology, 70(2) 284–290, 2010. https://doi.org/10.1016/J.COMPSCITECH.2009.10.019.
  • D.W. Krevelen, K. Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier, 2009.
  • C. Vasile, M. Pascu, and Practical guide to polyethylene, Rapra Technology Limited, 176, 2005.
  • O. Demircan, T. Kosui, S. Ashibe and A. Nakai, Effect of stitch and biaxial yarn types on tensile, bending, and impact properties of biaxial weft-knitted composites. Advanced Composite Materials, 23(3), 239–260, 2014. https://doi.org/10.1080/09243046.2013.851062.
  • K. Bilisik, N. S. Karaduman and N. E. Bilisik, Fiber architectures for composite applications, In book: Fibrous and Textile Materials for Composite Applications, Springer Science+Business Media Singapore, 75–134, 2016, https://doi.org/10.1007/978-981-10-0234-2_3.
  • K. Bilisik, G. Erdogan and E. Sapanci, Flexural behavior of 3D para-aramid/phenolic/nano (MWCNT) composites. RSC Advances, 8(13), 7213–7224, 2018. https://doi.org/10.1039/C7RA13437A.
  • K. Bilisik, N. Karaduman, G. Erdogan, E. Sapanci and S. Gungor, In-plane shear of nanoprepreg/nanostitched three-dimensional carbon/epoxy multiwalled carbon nanotubes composites. Journal of Composite Materials, 53(24), 3413–3431, 2019. https://doi.org/10.1177/0021998319841671.
  • H. Hamada, K. Sugimoto, A. Nakai, N. Takeda, S. Gotoh and T. Ishida, Mechanical properties of knitted fabric composites. Journal of Reinforced Plastics and Composites, 19(5), 364–376, 2000. http://dx.doi.org 10.1177/073168440001900502.
  • J. B. Khan, A. C. Smith, P. M. Tuohy, M. Gresil, C. Soutis and A. Lambourne, Experimental electrical characterisation of carbon fibre composites for use in future aircraft applications. IET Science, Measurement & Technology, 13(8), 1131–1138, 2019. https://doi.org/10.1049/IET-SMT.2018.5601.
  • N. Wiegand and E. Mäder, Commingled yarn spinning for thermoplastic/glass fiber composites. Fibers, 5(3), 26, 2017. https://doi.org/10.3390/FIB5030026.
  • Ö. Demircan, S. Ashibe, T. Kosui and A. Nakai, Effect of various knitting techniques on mechanical properties of biaxial weft-knitted thermoplastic composites. Journal of Thermoplastic Composite Materials, 28(6), 896–910, 2014. https://doi.org/10.1177/0892705713519121.
  • N. Svensson, R. Shishoo and M. Gilchrist, Manufacturing of thermoplastic composites from commingled yarns-A Review. Journal of Thermoplastic Composite Materials, 11(1), 22–56, 1998. https://doi.org/10.1177/089270579801100102.
  • K. Friedrich, Commingled yarns and their use for composites, Polymer Science and Technology Series book series (POLS,volume 2), 81–89, 1999, https://doi.org/10.1007/978-94-011-4421-6_12.
  • S. Fakirov, Nano- and microfibrillar single-polymer composites: A Review. Macromolecular Materials and Engineering, 298(1), 9–32, 2013. https://doi.org/10.1002/MAME.201200226.
  • S. H. Jin, Y. Bin Park and K. H. Yoon, Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composite. Composites Science and Technology, 67(15–16), 3434–3441, 2007. https://doi.org/10.1016/J.COMPSCITECH.2007.03.013.
  • B. W. Ahn, Y. S. Chi and T. J. Kang, Preparation and characterization of multi-walled carbon nanotube/poly(ethylene terephthalate) nanoweb. Journal of Applied Polymer Science, 110(6), 4055–4063, 2008. https://doi.org/10.1002/APP.28968.
  • L. Long, W. Shanyuan and Y. Jianyong, Niscair-Csir, 27(3), 287, 2002.
  • Z. Shen, S. Bateman, D. Y. Wu, P. McMahon, M. Dell’Olio and J. Gotama, The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites. Composites Science and Technology, 69(2), 239–244, 2009. https://doi.org/10.1016/J.COMPSCITECH.2008.10.017.
  • O. Demircan, A. Al-darkazali, Inanç and V. Eskizeybek, Investigation of the effect of CNTs on the mechanical properties of LPET/glass fiber thermoplastic composites. Journal of Thermoplastic Composite Materials, 33(12), 1652–1673, 2019. https://doi.org/10.1177/0892705719833105.
  • N. M. Zulfli, A. A. Bakar and W. S. Chow, Mechanical and water absorption behaviors of carbon nanotube reinforced epoxy/glass fiber laminates. Journal of Reinforced Plastics and Composites, 32(22), 1715–1721, 2013. https://doi.org/10.1177/0731684413501926.
  • E. Mäder, J. Rausch and N. Schmidt, Commingled yarns – Processing aspects and tailored surfaces of polypropylene/glass composites. Composites Part A: Applied Science and Manufacturing, 39(4), 612–623, 2008. https://doi.org/10.1016/J.COMPOSITESA.2007.07.011.
  • L. Zeng, X. Liu, X. Chen and C. Soutis, Surface modification of aramid fibres with graphene oxide for ınterface ımprovement in composites. Applied Composite Materials, 25(4), 843–852, 2018. https://doi.org/10.1007/S10443-018-9718-9.
  • M. A. Tarawneh, S. Hj. Ahmad, S. Y. Yahya, R. Rasid and S. Y. E. Noum, Mechanical properties of thermoplastic natural rubber reinforced with multi-walled carbon nanotubes. Journal of Reinforced Plastics and Composites, 30(4), 363–368, 2011. https://doi.org/10.1177/0731684410397407.
  • X. Zhang, P. Wang, H. Neo, G. Lim, A.A. Malcolm, E. H. Yang and J Yang, Design of glass fiber reinforced plastics modified with CNT and pre-stretching fabric for potential sports instruments. Materials and Design, 92, 621–631, 2016. http://dx.doi.org/10.1016/j.matdes.2015.12.051.
  • A. K. Singh, R. Bedi, Effect of graphene nanoplatelets on fatigue performance of glass fiber reinforced composite materials based on recycled polyethylene terephthalate. Composites Communications, 40, 101595, 2023. https://doi.org/10.1016/j.coco.2023.101595.
  • B. Y. Zhang, L. Xu, Z. X. Guo, J. Yu, S. Nagai, Effects of glass fiber on the properties of polyoxymethylene/thermoplastic polyurethane/multiwalled carbon nanotube composites. Polymer Composites, 1319-1326, 2017. https://doi.org/10.1002/pc.
  • O. Demircan, F. B. Uzunoglu, N. R. Ansaroudi. Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites. Research on Engineering Structures and Materials, 8(4), 659-674, 2022. http://dx.doi.org/10.17515/resm2022.443ma0607.
  • T. Zhang, J. Chen, K. Wang, Y. Zhao. Improved interlaminar crack resistance of glass fiber/poly (phenylene sulfide) thermoplastic composites modified with multiwalled carbon nanotubes. Polymer Composites, 40, 4186–4195, 2019. http://dx.doi.org/10.1002/pc.25279.
  • F. N. A. M. Sabri, M. R. Zakaria, H. M. Akil, M. S. Z. Abidin, A. A. A. Rahman and M. F. Omar. Interlaminar fracture toughness properties of hybrid glass fiber-reinforced composite interlayered with carbon nanotube using electrospray deposition. Nanotechnology Reviews, 10, 1766–1775, 2021. https://doi.org/10.1515/ntrev-2021-0103.
  • S. S. Bedi, V. Mallesha, V. M. V. Mahesh and S. A. Ponnusami, Investigation of low-percentage graphene reinforcement on the mechanical behaviour of additively manufactured polyethylene terephthalate glycol composites. Journal of Thermoplastic Composite Materials, 37(3), 910–930, 2024. https://doi.org/10.1177/08927057231188025.
  • L. Vaisman, H. D. Wagner and G. Marom, The role of surfactants in dispersion of carbon nanotubes. Advances in Colloid and Interface Science, 128-130, 37-46, 2007. https://doi.org/10.1016/j.cis.2006.11.007.
  • J. Hilding, E. A. Grulke, Z. G. Zhang and F. Lockwood, Dispersion of carbon nanotubes in liquids. Journal of Dispersion Science and Technology, 24(1),1-41, 2003. https://doi.org/ 10.1081=DIS-120017941.
  • A. Godara, L. Mezzo, F. Luizi, A. Warrier, S. V. Lomov, A. W. Van Vuure and I. Verpoest, Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon, 47(12), 2914–2923, 2009. https://doi.org/10.1016/J.CARBON.2009.06.039.
  • J. S. M. Zanjani, B. S. Okan, Y. Z. Menceloglu and M. Yildiz, Nano-engineered design and manufacturing of high-performance epoxy matrix composites with carbon fiber/selectively integrated graphene as multi-scale reinforcements. RSC Advances, 6(12), 9495–9506, 2016. https://doi.org/10.1039/C5RA23665G.

Investigation of the effect of CNTs on the flexural properties of PET/Glass fiber integrated thermoplastic composites

Yıl 2024, Cilt: 13 Sayı: 3
https://doi.org/10.28948/ngumuh.1443069

Öz

Within this study, multi-walled carbon nanotubes (MWCNTs) (weight percentages were 0 and 0.9 wt %) and modified MWCNTs (MWCNTs-Carboxylic acid (COOH)) (weight percentages were 0 and 0.9 wt %) were incorporated into the thermoplastic polymer of polyethylene terephthalate (PET) and reinforcement fibers of the glass fiber (GF) to fabricate hybrid composites with non-crimp fabrics (NCFs) with higher mechanical properties compared to the pristine. NCF reinforcements had fibers which were laid in 0° and 90° directions. The three-point bending tests were performed to understand the mechanical properties of the fabricated composite samples in 0° and -45° directions. The micro-structure and morphology of the composites were studied by using a scanning electron microscope (SEM) and optical microscopy (OM). The specimens with MWCNTs-COOH exhibited highest value of flexural properties with an improvement of 58.6% flexural modulus and 14.4% flexural strength compared to the specimens without MWCNTs-COOH in 0° direction.

Proje Numarası

Bu araştırma Ondokuz Mayıs Üniversitesi araştırma fonu tarafından desteklenmiştir (PYO.MUH.1901.16.001 ve PYO.MUH.1901.18.008).

Kaynakça

  • S. Hasan, A review on nanoparticles: their synthesis and types. Research Journal of Recent Sciences, 4, 1-3, 2015.
  • P. M. Ajayan, L. S. Schadler and P. V. Braun, Nanocomposite science and technology. Wiley‐VCH Verlag GmbH & Co. KGaA. 2003, https://doi.org/10.1002/3527602127.
  • A. Grujić, N. Talijan, D. B. Stojanović, J. S. Trosic, Z. Burzic, L. Balanovic, R. Aleksić, Mechanical and magnetic properties of composite materials with polymer matrix. Journal of Mining and Metallurgy, Section B: Metallurgy, 46(1), 25–32, 2010. https://doi.org/10.2298/JMMB1001025G.
  • A. M. K. Esawi and M. M. Farag, Carbon nanotube reinforced composites: Potential and current challenges. Materials & Design, 28(9), 2394–2401, 2007. https://doi.org/10.1016/j.matdes.2006.09.022.
  • S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603–605, 1993. https://doi.org/10.1038/363603a0.
  • S. Iijima, Helical microtubules of graphitic carbon. Nature, 354(6348), 56–58, 1991. https://doi.org/10.1038/354056a0.
  • D. Rosato, Plastics Engineered Product Design, 1–568, Elsevier, 2003, https://doi.org/10.1016/B978-1-85617-416-9.X5000-5.
  • J. Shen, W. Huang, L. Wu, Y. Hu and M. Ye, The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Composites Science and Technology, 67, (15–16), 3041–3050, 2007. https://doi.org/10.1016/J.COMPSCITECH.2007.04.025.
  • M. M. Shokrieh and R. Rafiee, Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites. Composite Structures, 92(10), 2415–2420, 2010. https://doi.org/10.1016/J.COMPSTRUCT.2010.02.018.
  • J. A. Kim, D. G. Seong, T. J. Kang and J. R. Youn, Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon, 44(10), 1898–1905, 2006. https://doi.org/10.1016/J.CARBON.2006.02.026.
  • S. U. S. Choi, Nanofluids: from vision to reality through research. Journal of Heat and Mass Transfer 131(3), 1-9, 2009. https://doi.org/10.1115/1.3056479.
  • M. Biron, Thermoplastics and Thermoplastic Composites: Technical Information for Plastics Users, Elsevier, 1–874, 2007. https://doi.org/10.1016/B978-1-85617-478-7.X5001-6.
  • S. Mazumdar, Composites Manufacturing : Materials, Product, and Process Engineering, Composites Manufacturing, CRC Press, Boca Raton, 2001, https://doi.org/10.1201/9781420041989.
  • S. Rana and R. Fangueiro, Advanced composites in aerospace engineering, Advanced Composite Materials for Aerospace Engineering, Woodhead Publishing, 1–15, 2016, https://doi.org/10.1016/B978-0-08-100037-3.00001-8.
  • G. D. Goh, V. Dikshit, A. P. Nagalingam, G. L. Goh, S. Agarwala, S. L. Sing and W. Y. Yeong, Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Materials & Design, 137, 79–89, 2018. https://doi.org/10.1016/J.MATDES.2017.10.021.
  • J. Li-Na, Study on preparation process and properties of polyethylene terephthalate (PET). Applied Mechanics and Materials, 312, 406–410, 2013. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.312.406.
  • N. E. Zander, M. Gillan, and R. H. Lambeth, Recycled polyethylene terephthalate as a new FFF feedstock material. Additive Manufacturing, 21, 174–182, 2018. https://doi.org/10.1016/J.ADDMA.2018.03.007.
  • T. Gómez-del Río, P. Poza, J. Rodríguez, M. C. García-Gutiérrez, J. J. Hernández and T. A. Ezquerra, Influence of single-walled carbon nanotubes on the effective elastic constants of poly(ethylene terephthalate). Composites Science and Technology, 70(2) 284–290, 2010. https://doi.org/10.1016/J.COMPSCITECH.2009.10.019.
  • D.W. Krevelen, K. Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier, 2009.
  • C. Vasile, M. Pascu, and Practical guide to polyethylene, Rapra Technology Limited, 176, 2005.
  • O. Demircan, T. Kosui, S. Ashibe and A. Nakai, Effect of stitch and biaxial yarn types on tensile, bending, and impact properties of biaxial weft-knitted composites. Advanced Composite Materials, 23(3), 239–260, 2014. https://doi.org/10.1080/09243046.2013.851062.
  • K. Bilisik, N. S. Karaduman and N. E. Bilisik, Fiber architectures for composite applications, In book: Fibrous and Textile Materials for Composite Applications, Springer Science+Business Media Singapore, 75–134, 2016, https://doi.org/10.1007/978-981-10-0234-2_3.
  • K. Bilisik, G. Erdogan and E. Sapanci, Flexural behavior of 3D para-aramid/phenolic/nano (MWCNT) composites. RSC Advances, 8(13), 7213–7224, 2018. https://doi.org/10.1039/C7RA13437A.
  • K. Bilisik, N. Karaduman, G. Erdogan, E. Sapanci and S. Gungor, In-plane shear of nanoprepreg/nanostitched three-dimensional carbon/epoxy multiwalled carbon nanotubes composites. Journal of Composite Materials, 53(24), 3413–3431, 2019. https://doi.org/10.1177/0021998319841671.
  • H. Hamada, K. Sugimoto, A. Nakai, N. Takeda, S. Gotoh and T. Ishida, Mechanical properties of knitted fabric composites. Journal of Reinforced Plastics and Composites, 19(5), 364–376, 2000. http://dx.doi.org 10.1177/073168440001900502.
  • J. B. Khan, A. C. Smith, P. M. Tuohy, M. Gresil, C. Soutis and A. Lambourne, Experimental electrical characterisation of carbon fibre composites for use in future aircraft applications. IET Science, Measurement & Technology, 13(8), 1131–1138, 2019. https://doi.org/10.1049/IET-SMT.2018.5601.
  • N. Wiegand and E. Mäder, Commingled yarn spinning for thermoplastic/glass fiber composites. Fibers, 5(3), 26, 2017. https://doi.org/10.3390/FIB5030026.
  • Ö. Demircan, S. Ashibe, T. Kosui and A. Nakai, Effect of various knitting techniques on mechanical properties of biaxial weft-knitted thermoplastic composites. Journal of Thermoplastic Composite Materials, 28(6), 896–910, 2014. https://doi.org/10.1177/0892705713519121.
  • N. Svensson, R. Shishoo and M. Gilchrist, Manufacturing of thermoplastic composites from commingled yarns-A Review. Journal of Thermoplastic Composite Materials, 11(1), 22–56, 1998. https://doi.org/10.1177/089270579801100102.
  • K. Friedrich, Commingled yarns and their use for composites, Polymer Science and Technology Series book series (POLS,volume 2), 81–89, 1999, https://doi.org/10.1007/978-94-011-4421-6_12.
  • S. Fakirov, Nano- and microfibrillar single-polymer composites: A Review. Macromolecular Materials and Engineering, 298(1), 9–32, 2013. https://doi.org/10.1002/MAME.201200226.
  • S. H. Jin, Y. Bin Park and K. H. Yoon, Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composite. Composites Science and Technology, 67(15–16), 3434–3441, 2007. https://doi.org/10.1016/J.COMPSCITECH.2007.03.013.
  • B. W. Ahn, Y. S. Chi and T. J. Kang, Preparation and characterization of multi-walled carbon nanotube/poly(ethylene terephthalate) nanoweb. Journal of Applied Polymer Science, 110(6), 4055–4063, 2008. https://doi.org/10.1002/APP.28968.
  • L. Long, W. Shanyuan and Y. Jianyong, Niscair-Csir, 27(3), 287, 2002.
  • Z. Shen, S. Bateman, D. Y. Wu, P. McMahon, M. Dell’Olio and J. Gotama, The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites. Composites Science and Technology, 69(2), 239–244, 2009. https://doi.org/10.1016/J.COMPSCITECH.2008.10.017.
  • O. Demircan, A. Al-darkazali, Inanç and V. Eskizeybek, Investigation of the effect of CNTs on the mechanical properties of LPET/glass fiber thermoplastic composites. Journal of Thermoplastic Composite Materials, 33(12), 1652–1673, 2019. https://doi.org/10.1177/0892705719833105.
  • N. M. Zulfli, A. A. Bakar and W. S. Chow, Mechanical and water absorption behaviors of carbon nanotube reinforced epoxy/glass fiber laminates. Journal of Reinforced Plastics and Composites, 32(22), 1715–1721, 2013. https://doi.org/10.1177/0731684413501926.
  • E. Mäder, J. Rausch and N. Schmidt, Commingled yarns – Processing aspects and tailored surfaces of polypropylene/glass composites. Composites Part A: Applied Science and Manufacturing, 39(4), 612–623, 2008. https://doi.org/10.1016/J.COMPOSITESA.2007.07.011.
  • L. Zeng, X. Liu, X. Chen and C. Soutis, Surface modification of aramid fibres with graphene oxide for ınterface ımprovement in composites. Applied Composite Materials, 25(4), 843–852, 2018. https://doi.org/10.1007/S10443-018-9718-9.
  • M. A. Tarawneh, S. Hj. Ahmad, S. Y. Yahya, R. Rasid and S. Y. E. Noum, Mechanical properties of thermoplastic natural rubber reinforced with multi-walled carbon nanotubes. Journal of Reinforced Plastics and Composites, 30(4), 363–368, 2011. https://doi.org/10.1177/0731684410397407.
  • X. Zhang, P. Wang, H. Neo, G. Lim, A.A. Malcolm, E. H. Yang and J Yang, Design of glass fiber reinforced plastics modified with CNT and pre-stretching fabric for potential sports instruments. Materials and Design, 92, 621–631, 2016. http://dx.doi.org/10.1016/j.matdes.2015.12.051.
  • A. K. Singh, R. Bedi, Effect of graphene nanoplatelets on fatigue performance of glass fiber reinforced composite materials based on recycled polyethylene terephthalate. Composites Communications, 40, 101595, 2023. https://doi.org/10.1016/j.coco.2023.101595.
  • B. Y. Zhang, L. Xu, Z. X. Guo, J. Yu, S. Nagai, Effects of glass fiber on the properties of polyoxymethylene/thermoplastic polyurethane/multiwalled carbon nanotube composites. Polymer Composites, 1319-1326, 2017. https://doi.org/10.1002/pc.
  • O. Demircan, F. B. Uzunoglu, N. R. Ansaroudi. Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites. Research on Engineering Structures and Materials, 8(4), 659-674, 2022. http://dx.doi.org/10.17515/resm2022.443ma0607.
  • T. Zhang, J. Chen, K. Wang, Y. Zhao. Improved interlaminar crack resistance of glass fiber/poly (phenylene sulfide) thermoplastic composites modified with multiwalled carbon nanotubes. Polymer Composites, 40, 4186–4195, 2019. http://dx.doi.org/10.1002/pc.25279.
  • F. N. A. M. Sabri, M. R. Zakaria, H. M. Akil, M. S. Z. Abidin, A. A. A. Rahman and M. F. Omar. Interlaminar fracture toughness properties of hybrid glass fiber-reinforced composite interlayered with carbon nanotube using electrospray deposition. Nanotechnology Reviews, 10, 1766–1775, 2021. https://doi.org/10.1515/ntrev-2021-0103.
  • S. S. Bedi, V. Mallesha, V. M. V. Mahesh and S. A. Ponnusami, Investigation of low-percentage graphene reinforcement on the mechanical behaviour of additively manufactured polyethylene terephthalate glycol composites. Journal of Thermoplastic Composite Materials, 37(3), 910–930, 2024. https://doi.org/10.1177/08927057231188025.
  • L. Vaisman, H. D. Wagner and G. Marom, The role of surfactants in dispersion of carbon nanotubes. Advances in Colloid and Interface Science, 128-130, 37-46, 2007. https://doi.org/10.1016/j.cis.2006.11.007.
  • J. Hilding, E. A. Grulke, Z. G. Zhang and F. Lockwood, Dispersion of carbon nanotubes in liquids. Journal of Dispersion Science and Technology, 24(1),1-41, 2003. https://doi.org/ 10.1081=DIS-120017941.
  • A. Godara, L. Mezzo, F. Luizi, A. Warrier, S. V. Lomov, A. W. Van Vuure and I. Verpoest, Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon, 47(12), 2914–2923, 2009. https://doi.org/10.1016/J.CARBON.2009.06.039.
  • J. S. M. Zanjani, B. S. Okan, Y. Z. Menceloglu and M. Yildiz, Nano-engineered design and manufacturing of high-performance epoxy matrix composites with carbon fiber/selectively integrated graphene as multi-scale reinforcements. RSC Advances, 6(12), 9495–9506, 2016. https://doi.org/10.1039/C5RA23665G.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler, Malzeme Karekterizasyonu
Bölüm Makaleler
Yazarlar

Özgür Demircan 0000-0001-8235-3966

Sara Sufyan 0000-0001-7469-1949

Ahmed Mohamed Basem 0000-0002-1491-3308

Proje Numarası Bu araştırma Ondokuz Mayıs Üniversitesi araştırma fonu tarafından desteklenmiştir (PYO.MUH.1901.16.001 ve PYO.MUH.1901.18.008).
Erken Görünüm Tarihi 31 Mayıs 2024
Yayımlanma Tarihi
Gönderilme Tarihi 26 Şubat 2024
Kabul Tarihi 13 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 3

Kaynak Göster

APA Demircan, Ö., Sufyan, S., & Mohamed Basem, A. (2024). KNT ilaveli PET/Cam elyaf takviyeli termoplastik kompozitlerin eğilme özelliklerinin araştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3). https://doi.org/10.28948/ngumuh.1443069
AMA Demircan Ö, Sufyan S, Mohamed Basem A. KNT ilaveli PET/Cam elyaf takviyeli termoplastik kompozitlerin eğilme özelliklerinin araştırılması. NÖHÜ Müh. Bilim. Derg. Mayıs 2024;13(3). doi:10.28948/ngumuh.1443069
Chicago Demircan, Özgür, Sara Sufyan, ve Ahmed Mohamed Basem. “KNT Ilaveli PET/Cam Elyaf Takviyeli Termoplastik Kompozitlerin eğilme özelliklerinin araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 3 (Mayıs 2024). https://doi.org/10.28948/ngumuh.1443069.
EndNote Demircan Ö, Sufyan S, Mohamed Basem A (01 Mayıs 2024) KNT ilaveli PET/Cam elyaf takviyeli termoplastik kompozitlerin eğilme özelliklerinin araştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 3
IEEE Ö. Demircan, S. Sufyan, ve A. Mohamed Basem, “KNT ilaveli PET/Cam elyaf takviyeli termoplastik kompozitlerin eğilme özelliklerinin araştırılması”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 3, 2024, doi: 10.28948/ngumuh.1443069.
ISNAD Demircan, Özgür vd. “KNT Ilaveli PET/Cam Elyaf Takviyeli Termoplastik Kompozitlerin eğilme özelliklerinin araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/3 (Mayıs 2024). https://doi.org/10.28948/ngumuh.1443069.
JAMA Demircan Ö, Sufyan S, Mohamed Basem A. KNT ilaveli PET/Cam elyaf takviyeli termoplastik kompozitlerin eğilme özelliklerinin araştırılması. NÖHÜ Müh. Bilim. Derg. 2024;13. doi:10.28948/ngumuh.1443069.
MLA Demircan, Özgür vd. “KNT Ilaveli PET/Cam Elyaf Takviyeli Termoplastik Kompozitlerin eğilme özelliklerinin araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 3, 2024, doi:10.28948/ngumuh.1443069.
Vancouver Demircan Ö, Sufyan S, Mohamed Basem A. KNT ilaveli PET/Cam elyaf takviyeli termoplastik kompozitlerin eğilme özelliklerinin araştırılması. NÖHÜ Müh. Bilim. Derg. 2024;13(3).

download