Araştırma Makalesi
BibTex RIS Kaynak Göster

Çam kozalaklarından elde edilen piroliz ürünlerinin bitümlü bağlayıcı katkı maddesi olarak değerlendirilmesi

Yıl 2024, Cilt: 13 Sayı: 3, 1020 - 1026, 15.07.2024
https://doi.org/10.28948/ngumuh.1440722

Öz

Bu çalışmada, çam kozalaklarının pirolizinden elde edilen biyoçar ve biyo-yağın bitümlü bağlayıcı üzerindeki etkisi incelenmiştir. Bitümlü bağlayıcı, %5, 10 ve 15 oranlarında biyoçar ve %2, 4 ve 6 oranlarında biyoyağ kullanılarak modifiye edilmiştir. Saf ve modifiye bitümlü bağlayıcıların fiziksel ve reolojik özellikleri penetrasyon, yumuşama noktası, dönel viskozimetre (RV) ve dinamik kesme reometresi (DSR) testleri ile incelenmiştir. Deneylerden elde edilen veriler kullanılarak bağlayıcıların sıcaklık hassasiyetleri ve tekerlek izi dirençleri değerlendirilmiştir. Çam kozalaklarından elde edilen biyoçar ve biyoyağ gibi pirolitik ürünlerin bitümlü bağlayıcılarda katkı maddesi olarak kullanımının, bitümlü bağlayıcının sıcaklık hassasiyetini azaltabileceği ve tekerlek izine karşı direncini arttırabileceği belirlenmiştir.

Kaynakça

  • B. V. Kök, E. Yalçın, M. Yılmaz, B. Büyük, Selenizza doğal asfaltı ile modifiye edilen bitümün geleneksel ve reolojik özelliklerinin incelenmesi. Journal of the Faculty of Engineering & Architecture of Gazi University/Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi,39(2), 2024.
  • H. Görgöze, Karbon lif ilaveli bitümlü sıcak karışımların elektriksel özelliklerinin araştırılması. Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi, Afyon, 2017.
  • N.F. Rohayzi, H.Y.B. Katman, M.R. Ibrahim, S. Norhisham, N.A. Rahman, Potential Additives in Natural Rubber-Modified Bitumen: A Review. Polymers, 15(8), 1951, 2023. https://doi.org/ 10.3390/polym15081951.
  • Y. Erkuş, B. Kök, M. Yılmaz, Doğal asfalt ve SBS modifiyeli bitümlü bağlayıcıların karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33(1), 81-90, 2021.
  • G. Polacco, S. Berlincioni, D. Biondi, J. Stastna, L. Zanzotto, Asphalt modification with different polyethylene-based polymers. European Polymer Journal, 41(12), 2831-2844, 2005.
  • N.S.A. Yaro, M.H. Sutanto, N.Z. Habib, A. Usman, J.M. Kaura, A.A. Murana, A.H. Jagaba, A Comprehensive Review of Biochar Utilization for Low-Carbon Flexible Asphalt Pavements. Sustainability, 15(8), 6729, 2023.
  • Biomass Energy. U.S. Energy Information Administration,https://www.eia.gov/energyexplained/biomass/, accessed 15 February 2024.
  • Pyrolysis. Bioenergy Knowledge Discovery Framework, U.S. Department of Energy, https://bioenergykdf.net/bioenergy-101/biomass conversion-technologies/pyrolysis, accessed 15 February 2024.
  • K. Nobaharan, S. Bagheri Novair, B. Asgari Lajayer, E.D. van Hullebusch, Phosphorus removal from wastewater: The potential use of biochar and the key controlling factors. Water, 13(4), 517, 2021.
  • N. Özbay, E. Apaydın-Varol, B.B. Uzun, A.E. Pütün, Characterization of bio-oil obtained from fruit pulp pyrolysis. Energy, 33(8), 1233-1240, 2008.
  • J. Piskorz, P. Majerski, D. Radlein, A. Vladars-Usas, D.S. Scott, Flash pyrolysis of cellulose for production of anhydro-oligomers. J. Anal. Appl. Pyrol., 56,145-66, 2000.
  • H. Lin, Q. Chen, X. Luo, Y. Zhang, K. Miao, T. Li, K. Wang, Characterization of rheological properties and aging performance of bitumen modified by bio-oil from bamboo charcoal production. Journal of Cleaner Production, 338, 130678, 2022. https://doi.org/10.1061/ (asce)mt.1943-5533.0000237.
  • E.H. Fini, E.W. Kalberer, A. Shahbazi, M. Basti, Z. You, H. Ozer, Q. Aurangzeb, Chemical characterization of bio binder from swine manure: sustainable modifier for asphalt binder. J. Mater. Civ. Eng., 23(11), 1506–1513, 2011.
  • C.A. Mullen, A.A. Boateng, Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy Fuels, 22(3), 2104–2109, 2008. https://doi.org/ 10.1021/ef700776w.
  • X. Yang, Z. You, Q. Dai, J. Mills-Beale, Mechanical performance of asphalt mixtures modified by bio-oils derived from waste wood resources. Construction and Building Materials, 51, 424-431, 2014.
  • X. Zhou, T.B. Moghaddam, M. Chen, S. Wu, Y. Zhang, X. Zhang, Effects of pyrolysis parameters on physicochemical properties of biochar and bio-oil and application in asphalt. Science of The Total Environment, 780, 146448, 2021.
  • N. Ayrılmış, U. Büyüksarı, E. Avcı, E. Koç, For. Ecol. Manage., 259, 6570, 2009.
  • J.A. Micales, J.S. Han, J.L. Davis, R.A. Young, Mycotoxins, Wood Decay, Plant Stress, Biocorrosion, and General Biodeterioration. Springer, 317–332, 1994.
  • A. Bello, N. Manyala, F. Barzegar, A.A. Khaleed, D.Y. Momodu, J.K. Dangbegnon, Renewable pine cone biomass derived carbon materials for supercapacitor application. Rsc Advances, 6(3), 1800-1809, 2016.
  • A. Özhan, Ö. Şahin, M.M. Küçük, C. Saka, Preparation and characterization of activated carbon from pine cone by microwave-induced ZnCl2 activation and its effects on the adsorption of methylene blue. Cellulose, 21, 2457-2467, 2014.
  • E. Ünay, Kolza küspesinin pirolizi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, 1999.
  • J. M. Encinar, J. F. Gonzalez, J. Gonzalez. Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions. Fuel Processing Technology, 68(3), 209-222, 2000.
  • H. A Rondón-Quintana, F. A. Reyes-Lizcano, S. B. Chaves-Pabón, J. G. Bastidas-Martínez, C. A. Zafra-Mejía, Use of biochar in asphalts. Sustainability, 14(8), 4745, 2022.
  • S. Terzi, M Saltan, K. Armagan, A. K. Kurtman, S. Karahancer, E. Eriskin, V. E. Uz, Bitumen expanding using bio-oil product of rose pulp’s pyrolysis process. Construction and Building Materials, 249, 118721, 2020.
  • M. Karacasu, Yol Üstyapı Deney Tasarımları ve SUPERPAVE. Nobel, 2021.
  • N. McLeod, Asphalt cements: pen-vis number and its application to moduli of stiffness Journal of Testing and Evaluation 4(4) 275-282, 1976.
  • R. Meltzer, Y. Fiorini, R. Horstman, I. Moore, A. Batik, N. McLeod, Asphalt cements: pen-vis number and its application to moduli of stiffness. J. Test. Eval., 4, 275, 1976. https://doi.org/10.1520/JTE10215J.
  • B. Yilmaz, A.M. Özdemir, H.E. Gürbüz, Assessment of thermal properties of nanoclay-modified bitumen. Arabian Journal for Science and Engineering, 48(4), 4595-4607, 2023.
  • M. Holý, E. Remišová, Characterization of Bitumen Binders on the Basis of Their Thermo-Viscous Properties. Slovak Journal of Civil Engineering, 27(1), 25-31, 2019.
  • R.O. Rasmussen, R.L. Lytton, G.K. Chang, Method to predict temperature susceptibility of an asphalt binder. Journal of Materials in Civil Engineering, 14(3), 246-252, 2002.
  • J.F. Hills, Predicting the fracture of asphalt mixes by thermal stresses, No. IP 74-014 R&D Rept., 1974.
  • Y. Taşdemir, Bitümlü kaplamaların termal davranışlarının performans testleri ile incelenmesi. Doktora Tezi, İstanbul Teknik Üniversitesi, Türkiye, 2003.
  • W. D. Robertson, Selection of paving asphalt cements for low temperature service. In Proc. Paving in Cold Areas, Mini-Workshop, 4, 41-84, 1987.
  • R. B. Mallick, T. El-Korchi, (Eds.), Pavement engineering: principles and practice. CRC Press, 2022.
  • N. Atasağun, Atık çınar yaprakları ve plastik bardakların birlikte pirolizinden üretilen piroliz çarının bitümün viskozitesi ve yüksek sıcaklık performans sınıfı üzerine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(3), 1703-1714, 2021.

Evaluation of pyrolysis products from pine cones as additives for bituminous binders

Yıl 2024, Cilt: 13 Sayı: 3, 1020 - 1026, 15.07.2024
https://doi.org/10.28948/ngumuh.1440722

Öz

This research examined the impact of biochar and bio-oil, derived from the pyrolysis process of pine cones, on a bituminous binder. The bituminous binder underwent modification by including biochar at concentrations of 5%, 10%, and 15%, as well as bio-oil at concentrations of 2%, 4%, and 6%. The penetration, softening point, rotational viscometer (RV), and dynamic shear rheometer (DSR) tests were conducted to examine the physical and rheological characteristics of both natural and modified bituminous binders. The binders' temperature sensitivity and rutting resistance were assessed based on the data acquired from the testing. The study concluded that including pyrolytic materials, namely biochar and bio-oil derived from pine cones, as additives in bituminous binders may effectively reduce the temperature sensitivity of the binder and enhance its resistance to rutting.

Kaynakça

  • B. V. Kök, E. Yalçın, M. Yılmaz, B. Büyük, Selenizza doğal asfaltı ile modifiye edilen bitümün geleneksel ve reolojik özelliklerinin incelenmesi. Journal of the Faculty of Engineering & Architecture of Gazi University/Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi,39(2), 2024.
  • H. Görgöze, Karbon lif ilaveli bitümlü sıcak karışımların elektriksel özelliklerinin araştırılması. Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi, Afyon, 2017.
  • N.F. Rohayzi, H.Y.B. Katman, M.R. Ibrahim, S. Norhisham, N.A. Rahman, Potential Additives in Natural Rubber-Modified Bitumen: A Review. Polymers, 15(8), 1951, 2023. https://doi.org/ 10.3390/polym15081951.
  • Y. Erkuş, B. Kök, M. Yılmaz, Doğal asfalt ve SBS modifiyeli bitümlü bağlayıcıların karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33(1), 81-90, 2021.
  • G. Polacco, S. Berlincioni, D. Biondi, J. Stastna, L. Zanzotto, Asphalt modification with different polyethylene-based polymers. European Polymer Journal, 41(12), 2831-2844, 2005.
  • N.S.A. Yaro, M.H. Sutanto, N.Z. Habib, A. Usman, J.M. Kaura, A.A. Murana, A.H. Jagaba, A Comprehensive Review of Biochar Utilization for Low-Carbon Flexible Asphalt Pavements. Sustainability, 15(8), 6729, 2023.
  • Biomass Energy. U.S. Energy Information Administration,https://www.eia.gov/energyexplained/biomass/, accessed 15 February 2024.
  • Pyrolysis. Bioenergy Knowledge Discovery Framework, U.S. Department of Energy, https://bioenergykdf.net/bioenergy-101/biomass conversion-technologies/pyrolysis, accessed 15 February 2024.
  • K. Nobaharan, S. Bagheri Novair, B. Asgari Lajayer, E.D. van Hullebusch, Phosphorus removal from wastewater: The potential use of biochar and the key controlling factors. Water, 13(4), 517, 2021.
  • N. Özbay, E. Apaydın-Varol, B.B. Uzun, A.E. Pütün, Characterization of bio-oil obtained from fruit pulp pyrolysis. Energy, 33(8), 1233-1240, 2008.
  • J. Piskorz, P. Majerski, D. Radlein, A. Vladars-Usas, D.S. Scott, Flash pyrolysis of cellulose for production of anhydro-oligomers. J. Anal. Appl. Pyrol., 56,145-66, 2000.
  • H. Lin, Q. Chen, X. Luo, Y. Zhang, K. Miao, T. Li, K. Wang, Characterization of rheological properties and aging performance of bitumen modified by bio-oil from bamboo charcoal production. Journal of Cleaner Production, 338, 130678, 2022. https://doi.org/10.1061/ (asce)mt.1943-5533.0000237.
  • E.H. Fini, E.W. Kalberer, A. Shahbazi, M. Basti, Z. You, H. Ozer, Q. Aurangzeb, Chemical characterization of bio binder from swine manure: sustainable modifier for asphalt binder. J. Mater. Civ. Eng., 23(11), 1506–1513, 2011.
  • C.A. Mullen, A.A. Boateng, Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy Fuels, 22(3), 2104–2109, 2008. https://doi.org/ 10.1021/ef700776w.
  • X. Yang, Z. You, Q. Dai, J. Mills-Beale, Mechanical performance of asphalt mixtures modified by bio-oils derived from waste wood resources. Construction and Building Materials, 51, 424-431, 2014.
  • X. Zhou, T.B. Moghaddam, M. Chen, S. Wu, Y. Zhang, X. Zhang, Effects of pyrolysis parameters on physicochemical properties of biochar and bio-oil and application in asphalt. Science of The Total Environment, 780, 146448, 2021.
  • N. Ayrılmış, U. Büyüksarı, E. Avcı, E. Koç, For. Ecol. Manage., 259, 6570, 2009.
  • J.A. Micales, J.S. Han, J.L. Davis, R.A. Young, Mycotoxins, Wood Decay, Plant Stress, Biocorrosion, and General Biodeterioration. Springer, 317–332, 1994.
  • A. Bello, N. Manyala, F. Barzegar, A.A. Khaleed, D.Y. Momodu, J.K. Dangbegnon, Renewable pine cone biomass derived carbon materials for supercapacitor application. Rsc Advances, 6(3), 1800-1809, 2016.
  • A. Özhan, Ö. Şahin, M.M. Küçük, C. Saka, Preparation and characterization of activated carbon from pine cone by microwave-induced ZnCl2 activation and its effects on the adsorption of methylene blue. Cellulose, 21, 2457-2467, 2014.
  • E. Ünay, Kolza küspesinin pirolizi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, 1999.
  • J. M. Encinar, J. F. Gonzalez, J. Gonzalez. Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions. Fuel Processing Technology, 68(3), 209-222, 2000.
  • H. A Rondón-Quintana, F. A. Reyes-Lizcano, S. B. Chaves-Pabón, J. G. Bastidas-Martínez, C. A. Zafra-Mejía, Use of biochar in asphalts. Sustainability, 14(8), 4745, 2022.
  • S. Terzi, M Saltan, K. Armagan, A. K. Kurtman, S. Karahancer, E. Eriskin, V. E. Uz, Bitumen expanding using bio-oil product of rose pulp’s pyrolysis process. Construction and Building Materials, 249, 118721, 2020.
  • M. Karacasu, Yol Üstyapı Deney Tasarımları ve SUPERPAVE. Nobel, 2021.
  • N. McLeod, Asphalt cements: pen-vis number and its application to moduli of stiffness Journal of Testing and Evaluation 4(4) 275-282, 1976.
  • R. Meltzer, Y. Fiorini, R. Horstman, I. Moore, A. Batik, N. McLeod, Asphalt cements: pen-vis number and its application to moduli of stiffness. J. Test. Eval., 4, 275, 1976. https://doi.org/10.1520/JTE10215J.
  • B. Yilmaz, A.M. Özdemir, H.E. Gürbüz, Assessment of thermal properties of nanoclay-modified bitumen. Arabian Journal for Science and Engineering, 48(4), 4595-4607, 2023.
  • M. Holý, E. Remišová, Characterization of Bitumen Binders on the Basis of Their Thermo-Viscous Properties. Slovak Journal of Civil Engineering, 27(1), 25-31, 2019.
  • R.O. Rasmussen, R.L. Lytton, G.K. Chang, Method to predict temperature susceptibility of an asphalt binder. Journal of Materials in Civil Engineering, 14(3), 246-252, 2002.
  • J.F. Hills, Predicting the fracture of asphalt mixes by thermal stresses, No. IP 74-014 R&D Rept., 1974.
  • Y. Taşdemir, Bitümlü kaplamaların termal davranışlarının performans testleri ile incelenmesi. Doktora Tezi, İstanbul Teknik Üniversitesi, Türkiye, 2003.
  • W. D. Robertson, Selection of paving asphalt cements for low temperature service. In Proc. Paving in Cold Areas, Mini-Workshop, 4, 41-84, 1987.
  • R. B. Mallick, T. El-Korchi, (Eds.), Pavement engineering: principles and practice. CRC Press, 2022.
  • N. Atasağun, Atık çınar yaprakları ve plastik bardakların birlikte pirolizinden üretilen piroliz çarının bitümün viskozitesi ve yüksek sıcaklık performans sınıfı üzerine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(3), 1703-1714, 2021.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ulaştırma Mühendisliği, Yapı Malzemeleri
Bölüm Araştırma Makaleleri
Yazarlar

İbrahim Aslan 0000-0003-0076-9971

Yüksel Tasdemir 0000-0002-6192-8609

Erken Görünüm Tarihi 1 Temmuz 2024
Yayımlanma Tarihi 15 Temmuz 2024
Gönderilme Tarihi 21 Şubat 2024
Kabul Tarihi 12 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 3

Kaynak Göster

APA Aslan, İ., & Tasdemir, Y. (2024). Evaluation of pyrolysis products from pine cones as additives for bituminous binders. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3), 1020-1026. https://doi.org/10.28948/ngumuh.1440722
AMA Aslan İ, Tasdemir Y. Evaluation of pyrolysis products from pine cones as additives for bituminous binders. NÖHÜ Müh. Bilim. Derg. Temmuz 2024;13(3):1020-1026. doi:10.28948/ngumuh.1440722
Chicago Aslan, İbrahim, ve Yüksel Tasdemir. “Evaluation of Pyrolysis Products from Pine Cones As Additives for Bituminous Binders”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 3 (Temmuz 2024): 1020-26. https://doi.org/10.28948/ngumuh.1440722.
EndNote Aslan İ, Tasdemir Y (01 Temmuz 2024) Evaluation of pyrolysis products from pine cones as additives for bituminous binders. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 3 1020–1026.
IEEE İ. Aslan ve Y. Tasdemir, “Evaluation of pyrolysis products from pine cones as additives for bituminous binders”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 3, ss. 1020–1026, 2024, doi: 10.28948/ngumuh.1440722.
ISNAD Aslan, İbrahim - Tasdemir, Yüksel. “Evaluation of Pyrolysis Products from Pine Cones As Additives for Bituminous Binders”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/3 (Temmuz 2024), 1020-1026. https://doi.org/10.28948/ngumuh.1440722.
JAMA Aslan İ, Tasdemir Y. Evaluation of pyrolysis products from pine cones as additives for bituminous binders. NÖHÜ Müh. Bilim. Derg. 2024;13:1020–1026.
MLA Aslan, İbrahim ve Yüksel Tasdemir. “Evaluation of Pyrolysis Products from Pine Cones As Additives for Bituminous Binders”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 3, 2024, ss. 1020-6, doi:10.28948/ngumuh.1440722.
Vancouver Aslan İ, Tasdemir Y. Evaluation of pyrolysis products from pine cones as additives for bituminous binders. NÖHÜ Müh. Bilim. Derg. 2024;13(3):1020-6.

download