Araştırma Makalesi
BibTex RIS Kaynak Göster

MR GRL boyasının Fenton ve Foto-Fenton yöntemleri kullanarak giderimi

Yıl 2024, Cilt: 13 Sayı: 3, 1002 - 1008, 15.07.2024
https://doi.org/10.28948/ngumuh.1442065

Öz

Bu çalışmada, MR GRL boyasının giderim verimleri Fenton, foto-Fenton prosesleri gibi farklı Fenton reaksiyonları ile incelenmiştir. Giderimin en uygun koşullarını belirlemek için H2O2 ve Fe+2 miktarı, reaksiyon süresi, pH ve boya konsantrasyonu gibi değişkenler incelendi. UV ışık olarak UV-A, UV-B ve UV-C olmak üzere üç farklı ışık kaynağı kullanıldı. Çalışma için en uygun şartlar, 50 mg/L Fe+2, 150 mg/L H2O2, t 30 dakika, pH 3 ve boya konsantrasyonu 100 mg/L olarak gerçekleşti. Çalışmada elde edilen giderim verimleri Fenton ve foto-Fenton (UV-A, UV-B ve UV-C) prosesleri için sırasıyla %94.2, %95.4, %96.2 ve %97.3 olarak gerçekleşti. Bu çalışma özellikle MR GRL boya gideriminde farklı UV lambaların etkisinin ortaya konulması açısından önemlidir. Çalışma, Fenton proseslerinin MR GRL'nin uzaklaştırılması için yüksek verimde ve güvenilir bir yöntem olarak kullanılabileceğini göstermiştir.

Kaynakça

  • M.P. da Silva, A.C.A. de Souza, L.E. de Lima Ferreira, L.M.P. Neto, B.F. Nascimento, C.M.B. de Araújo,... & M.G. Ghisland., Photodegradation of Reactive Black 5 and raw textile wastewater by heterogeneous photo-Fenton reaction using amino-Fe3O4-functionalized raphene oxide as nanocatalyst. Enviromental Advances, 4, 100064, 2021. doi: 10.1016/j.envadv.20 21.100064.
  • K. P. Singh, D. Mohan, S. Sinha, G. S. Tondon, and D. Gosh, Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Industrial & Engineering Chemistry Research, 42(9), 1965–1976, 2003. doi: 10.1021/ie0 20800d.
  • I. M. Banat, P. Nigam, D. Singh, and R. Marchant, Microbial decolorization of textile-dye-containing effluents: A review. Bioresource Technology, 58 (3), 217–227, 1996. doi: 10.1016/S0960-8524(96)00113-7.
  • İ. Şentürk and M. R. Yıldız, Removal of Maxilon Red GRL dye in continuous system adsorption column using waste pine sawdust. International Advanced Researches and Engineering Journal,4(2), 154–160, 2020. doi: 10.35860/iarej.689639.
  • K.O. Iwuozor, I.P. Oyekunle, E.C. Emenike, S.M. Okoye-Anigbogu, E.M. Ibitogbe, O. Elemile,... & A.G. Adeniy, An overview of equilibrium, kinetic and thermodynamic studies for the sequestration of Maxilon dyes. Cleaner Materials, 6, 100148, 2022. doi: 10.1016/j.clema.2022.100148.
  • O. Ogunlalu, I. P. Oyekunle, K. O. Iwuozor, A. D. Aderibigbe, and E. C. Emenike, Trends in the mitigation of heavy metal ions from aqueous solutions using unmodified and chemically-modified agricultural waste adsorbents. Current Research in Green and Sustainable Chemistry, 4,100188, 2021. doi: 10.1016/j.crgsc.2021.100188.
  • E. C. Emenike, A. G. Adeniyi, P. E. Omuku, K. C. Okwu, and K. O. Iwuozor, Recent advances in nano-adsorbents for the sequestration of copper from water. Journal of Water Process Engineering, 47, 2022. doi: 10.1016/j.jwpe.2022.102715.
  • J. M. Chacó, M. T. Leal, M. Sánchez, and E. R. Bandala, Solar photocatalytic degradation of azo-dyes by photo-Fenton process. Dyes and Pigments, 69(3), 144–150, 2006. doi: 10.1016/j.dyepig.2005.01.020.
  • S. Contreras, M. Rodríguez, E. Chamarro, and S. Esplugas, UV- and UV/Fe(III)-enhanced ozonation of nitrobenzene in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 142(1),79–83, 2001. doi: 10.1016/S1010-6030(01)004 60-9.
  • G. Goutailler, J. C. Valette, C. Guillard, O. Païssé, and R. Faure, Photocatalysed degradation of cyromazine in aqueous titanium dioxide suspensions: Comparison with photolysis. Journal of Photochemistry and Photobiology A: Chemistry, 141(1), 79–84, 2001. doi: 10.1016/S1010-6030(01)00425-7.
  • I. Arslan, I. Akmehmet Balcioǧlu, and T. Tuhkanen, Oxidative treatment of simulated dyehouse effluent by UV and near-UV light assisted Fenton’s reagent. Chemosphere, 9(15), 2767–2783, 1999. doi: 10.1016/S0045-6535(99)00211-8.
  • S. Malato, J. Blanco, A. Vidal, and C. Richter, Photocatalysis with solar energy at a pilot-plant scale: An overview. Applied Catalysis B: Environmental, 37(1), 1–15, 2002. doi: 10.1016/S0926-3373(01)003 15-0.
  • C. C. Amorim, M. M. D. Leão, R. F. P. M. Moreira, J. D. Fabris, and A. B. Henriques, Performance of blast furnace waste for azo dye degradation through photo-fenton-like processes. Chemical Engineering. Journal, 224(1), 59–66, 2013. doi: 10.1016/j.cej.2013.01.053.
  • S. Yildiz, S. Kaya, G. Topal Canbaz, and M. M. Maslov, Elucidating the mechanisms of AV17 and BB41 dye degradation through combined computational and applied analyses. Journal of Molecular Structure,1308, 138054, 2024. doi: 10.1016/ j.molstruc.2024.138054.
  • A. Maroudas, P. K. Pandis, A. Chatzopoulou, L. R. Davellas, G. Sourkouni, and C. Argirusis, Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-fenton reaction. Ultrasonics Sonochemistry, 71, 2021. doi: 10.1016/j.ultsonch.2020 .105367.
  • S. Yildiz, G. T. Canbaz, S. Kaya, and M. M. Maslov, Experimental and density functional theoretical analyses on degradation of acid orange 7 via UV irradiation and ultrasound enhanced by fenton process. Journal of Molecular Structure, 1277, 2023. doi: 10.10 16/j.molstruc.2022.134833.
  • H. Zhang, D. Zhang, and J. Zhou, Removal of COD from landfill leachate by electro-Fenton method. Journal of Hazardous Materials,135(1-3),106–111, 2006. doi: 10.1016/j.jhazmat.2005.11.025.
  • K. C. Namkung, A. E. Burgess, D. H. Bremner, and H. Staines, Advanced Fenton processing of aqueous phenol solutions: A continuous system study including sonication effects. Ultrasonics Sonochemistry, 15(3), 171–176, 2008. doi: 10.1016/j.ultsonch.2007.02.009.
  • S. Yildiz, G. T. Canbaz, S. Kaya, and M. M. Maslov, Density Functional Theory Computations and Experimental Analyses to Highlight the Degradation of Reactive Black 5 Dye. Chemical Engineering& Technology, 46(10), 2133–2140, 2023. doi: 10.1002/ ceat.202300120.
  • F. Çiner, Application of Fenton reagent and adsorption as advanced treatment processes for removal of Maxilon Red GRL. Global Nest Journal, 20(1), 1–6, 2018. doi: 10.30955/gnj.002332.
  • C. C. Su, M. Pukdee-Asa, C. Ratanatamskul, and M. C. Lu, Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton’s reagent using fluidized-bed reactor. Desalination, 278(1-3), 211–218, 2011. doi: 10.1016/j.desal.2011.05 .022.
  • M. Dehghani, B. Ahmadi, Y. Zonnoon, E. Nourozi, and N. Shamsedini, Decolorization of Direct Red 81 in aqueous solutions by Fenton oxidation process: Effect of system parameters. Iranian Journal of Health, Safety & Environment, 6(3), 1297–1302, 2018.
  • A. Belayachi-Haddad, N. Benderdouche, H. Belayachi, B. Bestani, and C. Haddad, Removal of N-2RBL Nylosan red dye from aqueous solution by Fenton using response surface methodology. Desalination and Water Treatment, 256, 273–281, 2022. doi: 10.5004/dwt.2022.28382.
  • S. Yildiz and A. Olabi, Effect of Fe2+ and Fe0 Applied Photo-Fenton Processes on Sludge Disintegration. Chemical Engineering & Technology, 44(1), 95–103, 2021. doi: 10.1002/ceat.202000269.
  • N. M. Mahmoodi, M. Arami, N. Y. Limaee, and N. S. Tabrizi, Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. Chemical Engineering Journal, 112(1-3), 191–196, 2005. doi: 10.1016/j.cej.2005.07.008.
  • H. Tian and Y. Liu, Study on the treatment of dye wasterwater using fenton reagent. Advanced Materials Research, 3204–3207 2012. doi:10.4028/www.scien tific.net/AMR.518-523.3204.
  • F. Audıno, J. Sanz, E. Parrellada, M. Graells, and M. Pérez-Moya, Influence of Fenton Reagent Ratios and of Hydrogen Peroxide Dosage on the Photo-Fenton Process Efficiency. 15th International Conference on Environmental Science and Technology Rhodes, Greece, 31 August to 2 September 2017.
  • H. Xu, T. Yu, J. Wang, and M. Li, Effect of H2O2/Fe2+ concentration ratios on fenton oxidation of reactive red 6B with on-line detective technology. Nature Environment Pollution Technology, 14(1), 71–76, 2015.
  • M. Elhadj, D. Nadjib, A. Samira, N. Djamel, and T. Mohamed, Removal of Maxilon red dye by adsorption and photocatalysis: Optimum conditions, equilibrium, and kinetic studies. Iranian Journal of Chemistry and Chemical Engineering, 40(1), 93–110, 2021. doi: 10.30492/ijcce.2019.37245.
  • M. Koyuncu, Removal of maxilon red GRL from aqueous solutions by adsorption onto silica. Oriental Journal of Chemistry, 25(1), 35–40, 2009.
  • O. S. G. P. Soares, J. J. M. Órfão, D. Portela, A. Vieira, and M. F. R. Pereira, Ozonation of textile effluents and dye solutions under continuous operation: Influence of operating parameters. Journal of Hazardous Materials, 137(3), 1664–1673, 2006. doi: 10.1016/j.jhazmat.20 06.05.006.
  • B. K. Nandi and S. Patel, Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation. Arabian Journal of Chemistry, 10, 2961–2968, 2017. doi: 10. 1016/j.arabjc.2013.11.032.
  • Z. M. Shen, D. Wu, J. Yang, T. Yuan, W. H. Wang, and J. P. Jia, Methods to improve electrochemical treatment effect of dye wastewater. Journal of Hazardous Materials, 131(1-3), 90–97, 2006. doi: 10.1016/j.jhaz mat.2005.09.010.
  • A. M. Talarposhti, T. Donnelly, and G. K. Anderson, Colour removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor. Water Research, 35(2), 425–432, 2001. doi: 10.1016/S0043-1354(00)00280-3.
  • C. Bouasla, M. E. H. Samar, and F. Ismail, Degradation of methyl violet 6B dye by the Fenton process. Desalination, 254(1-3), 35–41, 2010. doi: 10.1016 /j.desal.2009.12.017.
  • S. F. Kang, C. H. Liao, and S. T. Po, Decolorization of textile wastewater by photo-fenton oxidation technology. Chemosphere, 41(8), 1287–1294, 2000. doi: 10.1016/S0045-6535(99)00524-X.
  • A. Aleboyeh, Y. Moussa, and H. Aleboyeh, The effect of operational parameters on UV/H2O2 decolourisation of Acid Blue 74. Dyes and Pigmens, 66(2), 129–134, 2005. doi: 10.1016/j.dyepig.2004.09 .008.
  • C. Özdemir, M. K. Öden, S. Şahinkaya, and E. Kalipçi, Color Removal from Synthetic Textile Wastewater by Sono-Fenton Process. Clean - Soil, Air, Water, 39(1), 60–67, 2011. doi: 10.1002/clen.201000263.
  • P. Kumar, T. T. Teng, S. Chand, and K. L. Wasewar, Fenton oxidation of carpet dyeing wastewater for removal of cod and color. Desalination and Water Treatment, 28(1-3), 260–264, 2011. doi: 10.5004/dwt. 2011.2234.
  • C. L. Hsueh, Y. H. Huang, C. C. Wang, and C. Y. Chen, Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere, 58(10), 1409–1414, 2005. doi: 10.1016/j.chemosphere .2004.09.091.
  • S. Yildiz, G. Topal Canbaz, S. Kaya, and M. M. Maslov, A Combined Study on Degradation Mechanism of Reactive Orange 16 through Fenton-like Process: Experimental Studies and Density Functional Theoretical Findings. ChemistrySelect, 7(48), e202202292, 2022. doi: 10.1002/slct.202202292.
  • S. Yildiz, H. Mihçiokur, and A. Olabi, Experimental study of oxytetracycline degradation using Fenton-like processes. International Journal of Environmental Science and Technology, vol. 20(10), 11049–11060, 2023. doi: 10.1007/s13762-023-05099-x.
  • R. Ananthashankar and A. Ghaly, Effectiveness of photocatalytic decolourization of reactive red 120 dye in textile effluent using UV/H2O2. American Journal of Environmental Sciences, 9(4), 322–333, 2013. doi: 10.3844/ajessp.2013.322.333.
  • A. R. Tehrani-Bagha and F. L. Amini, Decolorization of a Reactive Dye by UV-Enhanced Ozonation. Progres ın Color, Colorants and Coatings, 3(1),1–8, 2010.
  • E. Bahadori, M. Rapf, A. Di Michele, and I. Rossetti, Photochemical vs. photocatalytic azo-dye removal in a pilot free-surface reactor: Is the catalyst effective?. Separation and Purification Technology, 237, 2020. doi: 10.1016/j.seppur.2019.116320.

Removal of MR GRL dye using Fenton and Photo-Fenton methods

Yıl 2024, Cilt: 13 Sayı: 3, 1002 - 1008, 15.07.2024
https://doi.org/10.28948/ngumuh.1442065

Öz

In this study, the removal efficiencies of MR GRL dye were investigated using different Fenton reactions such as Fenton and photo-Fenton processes. Various variables such as the amount of H2O2 and Fe+2, reaction time, pH, and dye concentration were examined to determine the most suitable conditions for removal. Three different light sources, namely UV-A, UV-B, and UV-C, were used as UV radiation. The optimum conditions for the study were determined to be 50 mg/L Fe+2, 150 mg/L H2O2, t 30 minutes, pH 3, and dye concentration of 100 mg/L. The removal efficiencies obtained in the study for Fenton and photo-Fenton (UV-A, UV-B, and UV-C) processes were 94.2%, 95.4%, 96.2%, and 97.3%, respectively. This study is particularly important for demonstrating the effect of different UV lamps on the removal of MR GRL dye. The study has shown that Fenton processes can be used as a highly efficient and reliable method for the removal of MR GRL.

Kaynakça

  • M.P. da Silva, A.C.A. de Souza, L.E. de Lima Ferreira, L.M.P. Neto, B.F. Nascimento, C.M.B. de Araújo,... & M.G. Ghisland., Photodegradation of Reactive Black 5 and raw textile wastewater by heterogeneous photo-Fenton reaction using amino-Fe3O4-functionalized raphene oxide as nanocatalyst. Enviromental Advances, 4, 100064, 2021. doi: 10.1016/j.envadv.20 21.100064.
  • K. P. Singh, D. Mohan, S. Sinha, G. S. Tondon, and D. Gosh, Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Industrial & Engineering Chemistry Research, 42(9), 1965–1976, 2003. doi: 10.1021/ie0 20800d.
  • I. M. Banat, P. Nigam, D. Singh, and R. Marchant, Microbial decolorization of textile-dye-containing effluents: A review. Bioresource Technology, 58 (3), 217–227, 1996. doi: 10.1016/S0960-8524(96)00113-7.
  • İ. Şentürk and M. R. Yıldız, Removal of Maxilon Red GRL dye in continuous system adsorption column using waste pine sawdust. International Advanced Researches and Engineering Journal,4(2), 154–160, 2020. doi: 10.35860/iarej.689639.
  • K.O. Iwuozor, I.P. Oyekunle, E.C. Emenike, S.M. Okoye-Anigbogu, E.M. Ibitogbe, O. Elemile,... & A.G. Adeniy, An overview of equilibrium, kinetic and thermodynamic studies for the sequestration of Maxilon dyes. Cleaner Materials, 6, 100148, 2022. doi: 10.1016/j.clema.2022.100148.
  • O. Ogunlalu, I. P. Oyekunle, K. O. Iwuozor, A. D. Aderibigbe, and E. C. Emenike, Trends in the mitigation of heavy metal ions from aqueous solutions using unmodified and chemically-modified agricultural waste adsorbents. Current Research in Green and Sustainable Chemistry, 4,100188, 2021. doi: 10.1016/j.crgsc.2021.100188.
  • E. C. Emenike, A. G. Adeniyi, P. E. Omuku, K. C. Okwu, and K. O. Iwuozor, Recent advances in nano-adsorbents for the sequestration of copper from water. Journal of Water Process Engineering, 47, 2022. doi: 10.1016/j.jwpe.2022.102715.
  • J. M. Chacó, M. T. Leal, M. Sánchez, and E. R. Bandala, Solar photocatalytic degradation of azo-dyes by photo-Fenton process. Dyes and Pigments, 69(3), 144–150, 2006. doi: 10.1016/j.dyepig.2005.01.020.
  • S. Contreras, M. Rodríguez, E. Chamarro, and S. Esplugas, UV- and UV/Fe(III)-enhanced ozonation of nitrobenzene in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 142(1),79–83, 2001. doi: 10.1016/S1010-6030(01)004 60-9.
  • G. Goutailler, J. C. Valette, C. Guillard, O. Païssé, and R. Faure, Photocatalysed degradation of cyromazine in aqueous titanium dioxide suspensions: Comparison with photolysis. Journal of Photochemistry and Photobiology A: Chemistry, 141(1), 79–84, 2001. doi: 10.1016/S1010-6030(01)00425-7.
  • I. Arslan, I. Akmehmet Balcioǧlu, and T. Tuhkanen, Oxidative treatment of simulated dyehouse effluent by UV and near-UV light assisted Fenton’s reagent. Chemosphere, 9(15), 2767–2783, 1999. doi: 10.1016/S0045-6535(99)00211-8.
  • S. Malato, J. Blanco, A. Vidal, and C. Richter, Photocatalysis with solar energy at a pilot-plant scale: An overview. Applied Catalysis B: Environmental, 37(1), 1–15, 2002. doi: 10.1016/S0926-3373(01)003 15-0.
  • C. C. Amorim, M. M. D. Leão, R. F. P. M. Moreira, J. D. Fabris, and A. B. Henriques, Performance of blast furnace waste for azo dye degradation through photo-fenton-like processes. Chemical Engineering. Journal, 224(1), 59–66, 2013. doi: 10.1016/j.cej.2013.01.053.
  • S. Yildiz, S. Kaya, G. Topal Canbaz, and M. M. Maslov, Elucidating the mechanisms of AV17 and BB41 dye degradation through combined computational and applied analyses. Journal of Molecular Structure,1308, 138054, 2024. doi: 10.1016/ j.molstruc.2024.138054.
  • A. Maroudas, P. K. Pandis, A. Chatzopoulou, L. R. Davellas, G. Sourkouni, and C. Argirusis, Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-fenton reaction. Ultrasonics Sonochemistry, 71, 2021. doi: 10.1016/j.ultsonch.2020 .105367.
  • S. Yildiz, G. T. Canbaz, S. Kaya, and M. M. Maslov, Experimental and density functional theoretical analyses on degradation of acid orange 7 via UV irradiation and ultrasound enhanced by fenton process. Journal of Molecular Structure, 1277, 2023. doi: 10.10 16/j.molstruc.2022.134833.
  • H. Zhang, D. Zhang, and J. Zhou, Removal of COD from landfill leachate by electro-Fenton method. Journal of Hazardous Materials,135(1-3),106–111, 2006. doi: 10.1016/j.jhazmat.2005.11.025.
  • K. C. Namkung, A. E. Burgess, D. H. Bremner, and H. Staines, Advanced Fenton processing of aqueous phenol solutions: A continuous system study including sonication effects. Ultrasonics Sonochemistry, 15(3), 171–176, 2008. doi: 10.1016/j.ultsonch.2007.02.009.
  • S. Yildiz, G. T. Canbaz, S. Kaya, and M. M. Maslov, Density Functional Theory Computations and Experimental Analyses to Highlight the Degradation of Reactive Black 5 Dye. Chemical Engineering& Technology, 46(10), 2133–2140, 2023. doi: 10.1002/ ceat.202300120.
  • F. Çiner, Application of Fenton reagent and adsorption as advanced treatment processes for removal of Maxilon Red GRL. Global Nest Journal, 20(1), 1–6, 2018. doi: 10.30955/gnj.002332.
  • C. C. Su, M. Pukdee-Asa, C. Ratanatamskul, and M. C. Lu, Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton’s reagent using fluidized-bed reactor. Desalination, 278(1-3), 211–218, 2011. doi: 10.1016/j.desal.2011.05 .022.
  • M. Dehghani, B. Ahmadi, Y. Zonnoon, E. Nourozi, and N. Shamsedini, Decolorization of Direct Red 81 in aqueous solutions by Fenton oxidation process: Effect of system parameters. Iranian Journal of Health, Safety & Environment, 6(3), 1297–1302, 2018.
  • A. Belayachi-Haddad, N. Benderdouche, H. Belayachi, B. Bestani, and C. Haddad, Removal of N-2RBL Nylosan red dye from aqueous solution by Fenton using response surface methodology. Desalination and Water Treatment, 256, 273–281, 2022. doi: 10.5004/dwt.2022.28382.
  • S. Yildiz and A. Olabi, Effect of Fe2+ and Fe0 Applied Photo-Fenton Processes on Sludge Disintegration. Chemical Engineering & Technology, 44(1), 95–103, 2021. doi: 10.1002/ceat.202000269.
  • N. M. Mahmoodi, M. Arami, N. Y. Limaee, and N. S. Tabrizi, Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. Chemical Engineering Journal, 112(1-3), 191–196, 2005. doi: 10.1016/j.cej.2005.07.008.
  • H. Tian and Y. Liu, Study on the treatment of dye wasterwater using fenton reagent. Advanced Materials Research, 3204–3207 2012. doi:10.4028/www.scien tific.net/AMR.518-523.3204.
  • F. Audıno, J. Sanz, E. Parrellada, M. Graells, and M. Pérez-Moya, Influence of Fenton Reagent Ratios and of Hydrogen Peroxide Dosage on the Photo-Fenton Process Efficiency. 15th International Conference on Environmental Science and Technology Rhodes, Greece, 31 August to 2 September 2017.
  • H. Xu, T. Yu, J. Wang, and M. Li, Effect of H2O2/Fe2+ concentration ratios on fenton oxidation of reactive red 6B with on-line detective technology. Nature Environment Pollution Technology, 14(1), 71–76, 2015.
  • M. Elhadj, D. Nadjib, A. Samira, N. Djamel, and T. Mohamed, Removal of Maxilon red dye by adsorption and photocatalysis: Optimum conditions, equilibrium, and kinetic studies. Iranian Journal of Chemistry and Chemical Engineering, 40(1), 93–110, 2021. doi: 10.30492/ijcce.2019.37245.
  • M. Koyuncu, Removal of maxilon red GRL from aqueous solutions by adsorption onto silica. Oriental Journal of Chemistry, 25(1), 35–40, 2009.
  • O. S. G. P. Soares, J. J. M. Órfão, D. Portela, A. Vieira, and M. F. R. Pereira, Ozonation of textile effluents and dye solutions under continuous operation: Influence of operating parameters. Journal of Hazardous Materials, 137(3), 1664–1673, 2006. doi: 10.1016/j.jhazmat.20 06.05.006.
  • B. K. Nandi and S. Patel, Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation. Arabian Journal of Chemistry, 10, 2961–2968, 2017. doi: 10. 1016/j.arabjc.2013.11.032.
  • Z. M. Shen, D. Wu, J. Yang, T. Yuan, W. H. Wang, and J. P. Jia, Methods to improve electrochemical treatment effect of dye wastewater. Journal of Hazardous Materials, 131(1-3), 90–97, 2006. doi: 10.1016/j.jhaz mat.2005.09.010.
  • A. M. Talarposhti, T. Donnelly, and G. K. Anderson, Colour removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor. Water Research, 35(2), 425–432, 2001. doi: 10.1016/S0043-1354(00)00280-3.
  • C. Bouasla, M. E. H. Samar, and F. Ismail, Degradation of methyl violet 6B dye by the Fenton process. Desalination, 254(1-3), 35–41, 2010. doi: 10.1016 /j.desal.2009.12.017.
  • S. F. Kang, C. H. Liao, and S. T. Po, Decolorization of textile wastewater by photo-fenton oxidation technology. Chemosphere, 41(8), 1287–1294, 2000. doi: 10.1016/S0045-6535(99)00524-X.
  • A. Aleboyeh, Y. Moussa, and H. Aleboyeh, The effect of operational parameters on UV/H2O2 decolourisation of Acid Blue 74. Dyes and Pigmens, 66(2), 129–134, 2005. doi: 10.1016/j.dyepig.2004.09 .008.
  • C. Özdemir, M. K. Öden, S. Şahinkaya, and E. Kalipçi, Color Removal from Synthetic Textile Wastewater by Sono-Fenton Process. Clean - Soil, Air, Water, 39(1), 60–67, 2011. doi: 10.1002/clen.201000263.
  • P. Kumar, T. T. Teng, S. Chand, and K. L. Wasewar, Fenton oxidation of carpet dyeing wastewater for removal of cod and color. Desalination and Water Treatment, 28(1-3), 260–264, 2011. doi: 10.5004/dwt. 2011.2234.
  • C. L. Hsueh, Y. H. Huang, C. C. Wang, and C. Y. Chen, Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere, 58(10), 1409–1414, 2005. doi: 10.1016/j.chemosphere .2004.09.091.
  • S. Yildiz, G. Topal Canbaz, S. Kaya, and M. M. Maslov, A Combined Study on Degradation Mechanism of Reactive Orange 16 through Fenton-like Process: Experimental Studies and Density Functional Theoretical Findings. ChemistrySelect, 7(48), e202202292, 2022. doi: 10.1002/slct.202202292.
  • S. Yildiz, H. Mihçiokur, and A. Olabi, Experimental study of oxytetracycline degradation using Fenton-like processes. International Journal of Environmental Science and Technology, vol. 20(10), 11049–11060, 2023. doi: 10.1007/s13762-023-05099-x.
  • R. Ananthashankar and A. Ghaly, Effectiveness of photocatalytic decolourization of reactive red 120 dye in textile effluent using UV/H2O2. American Journal of Environmental Sciences, 9(4), 322–333, 2013. doi: 10.3844/ajessp.2013.322.333.
  • A. R. Tehrani-Bagha and F. L. Amini, Decolorization of a Reactive Dye by UV-Enhanced Ozonation. Progres ın Color, Colorants and Coatings, 3(1),1–8, 2010.
  • E. Bahadori, M. Rapf, A. Di Michele, and I. Rossetti, Photochemical vs. photocatalytic azo-dye removal in a pilot free-surface reactor: Is the catalyst effective?. Separation and Purification Technology, 237, 2020. doi: 10.1016/j.seppur.2019.116320.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Kirliliği ve Önlenmesi
Bölüm Araştırma Makaleleri
Yazarlar

Sayiter Yıldız 0000-0002-3382-2487

Gamze Topal Canbaz 0000-0001-7615-7627

Erken Görünüm Tarihi 26 Haziran 2024
Yayımlanma Tarihi 15 Temmuz 2024
Gönderilme Tarihi 23 Şubat 2024
Kabul Tarihi 11 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 3

Kaynak Göster

APA Yıldız, S., & Topal Canbaz, G. (2024). MR GRL boyasının Fenton ve Foto-Fenton yöntemleri kullanarak giderimi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3), 1002-1008. https://doi.org/10.28948/ngumuh.1442065
AMA Yıldız S, Topal Canbaz G. MR GRL boyasının Fenton ve Foto-Fenton yöntemleri kullanarak giderimi. NÖHÜ Müh. Bilim. Derg. Temmuz 2024;13(3):1002-1008. doi:10.28948/ngumuh.1442065
Chicago Yıldız, Sayiter, ve Gamze Topal Canbaz. “MR GRL boyasının Fenton Ve Foto-Fenton yöntemleri Kullanarak Giderimi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 3 (Temmuz 2024): 1002-8. https://doi.org/10.28948/ngumuh.1442065.
EndNote Yıldız S, Topal Canbaz G (01 Temmuz 2024) MR GRL boyasının Fenton ve Foto-Fenton yöntemleri kullanarak giderimi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 3 1002–1008.
IEEE S. Yıldız ve G. Topal Canbaz, “MR GRL boyasının Fenton ve Foto-Fenton yöntemleri kullanarak giderimi”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 3, ss. 1002–1008, 2024, doi: 10.28948/ngumuh.1442065.
ISNAD Yıldız, Sayiter - Topal Canbaz, Gamze. “MR GRL boyasının Fenton Ve Foto-Fenton yöntemleri Kullanarak Giderimi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/3 (Temmuz 2024), 1002-1008. https://doi.org/10.28948/ngumuh.1442065.
JAMA Yıldız S, Topal Canbaz G. MR GRL boyasının Fenton ve Foto-Fenton yöntemleri kullanarak giderimi. NÖHÜ Müh. Bilim. Derg. 2024;13:1002–1008.
MLA Yıldız, Sayiter ve Gamze Topal Canbaz. “MR GRL boyasının Fenton Ve Foto-Fenton yöntemleri Kullanarak Giderimi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 3, 2024, ss. 1002-8, doi:10.28948/ngumuh.1442065.
Vancouver Yıldız S, Topal Canbaz G. MR GRL boyasının Fenton ve Foto-Fenton yöntemleri kullanarak giderimi. NÖHÜ Müh. Bilim. Derg. 2024;13(3):1002-8.

download