Araştırma Makalesi
BibTex RIS Kaynak Göster

Bir insansız hava aracının eşzamanlı uçuş kontrol sistemi ve burularak-başkalaşabilen kanat tasarımı

Yıl 2024, Cilt: 13 Sayı: 4, 1 - 1
https://doi.org/10.28948/ngumuh.1501418

Öz

Son yıllarda malzeme teknolojilerindeki gelişmelerle birlikte hava aracı tasarımı alanında başkalaşım teknolojilerinin de uygulamaları yaygınlaşmıştır. Bu bağlamda, bu çalışmada, sabit kanatlı bir insansız hava aracı (İHA) üzerinde, perdövites davranışında (yani perdövites yayılımı) ve otonom uçuş performansında iyileşme elde etmeyi amaçlayan yenilikçi bir burularak-başkalaşabilen kanat tasarımı tartışılmaktadır. Burularak-başkalaşabilen kanat tasarımı, 0-derece ile 6-derece arasında burulabilecek şekilde tasarlanmıştır. Böylesi bir multidisipliner iyileştirme için eşzamanlı tasarım yaklaşımı sürece entegre edilmiş ve SPSA optimizasyon algoritması kullanılmıştır. Burulma açısı ile boylamsal ve yanal PID kontrolcü katsayıları, birim basamak tepkisi parametreleri olan yükselme zamanı, yerleşme zamanı ve maksimum aşım ile ifade edilerek otonom uçuş performansında iyileştirme sağlamak için optimize edilmiştir. Sonuç olarak, boylamsal, yanal ve toplam otonom uçuş performanslarının sırasıyla %33.92, %33.81 ve %65.14 oranında iyileştirildiği görülmüştür.

Kaynakça

  • S. Ameduri and A. Concilio, Morphing wings review: Aims, challenges, and current open issues of a technology. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(18), 4112-4130, 2023. https://doi.org/10.1177/0954406220944423
  • K. Sharma and G. Srinivas, Flying smart: Smart materials used in aviation industry, Materials Today: Proceedings, 27, 244-250, 2020. https://doi.org/10.1016/j.matpr.2019.10.115
  • R. M. Ajaj, M. S. Parancheerivilakkathil, M. Amoozgar, M. I. Friswell ansd W. J. Cantwell, Recent developments in the aeroelasticity of morphing aircraft, Progress in Aerospace Sciences, 120, 100682, 2021. https://doi.org/10.1016/j.paerosci.2020.100682
  • A. Dharmdas, A.Y. Patil, A. Baig, O.Z. Hosmani, S.N. Mathad, M.B. Patil, R. Kumar, B.B. Kotturshettar and I.M.R. Fattah, An Experimental and simulation study of the active camber morphing concept on airfoils using bio-inspired structures. Biomimetics, 8(2), 251, 2023. https://doi.org/10.3390/biomimetics8020251
  • B.W. Jo and T. Majid, Enhanced range and endurance evaluation of a camber morphing wing aircraft. Biomimetics, 8(1), 34, 2023. https://doi.org/10.3390/biomimetics8010034
  • T. Oktay and Y. Eraslan, Impacts of tapered wingtip on lateral-directional stability coefficients of a morphing fixed-wing UAV. The Black Sea Journal of Sciences, 13(4), 1540-1551, 2023. https://doi.org/10.31466/kfbd.1309152
  • L. Gao, Y. Zhu, X. Zang, J. Zhang, B. Chen, L. Li and J. Zhao, Dynamic analysis and experiment of multiple variable sweep wings on a tandem-wing MAV. Drones, 7(9), 552, 2023. https://doi.org/10.3390/drones7090552
  • E. Kaygan and C. Ulusoy, Effectiveness of twist morphing wing on aerodynamic performance and control of an aircraft. Journal of Aviation, 2(2), 77-86, 2018. https://doi.org/10.30518/jav.482507
  • N. I. Ismail, M.A. Tasin, H. Sharudin, M.H. Basri, S.C. Mat, H. Yusoff and R.E.M. Nasir, Computational aerodynamic investigations on wash out twist morphing MAV wings. Evergreen, 9(4), 1090-1102, 2022. https://doi.org/10.5109/6625721
  • A. Gatto, Development of a morphing UAV for optimal multi-segment mission performance. The Aeronautical Journal, 127(1314), 1320-1352, 2023. https://doi.org/10.1017/aer.2022.99
  • B. Jenett, S. Calisch, D. Cellucci, N. Cramer, N. Gershenfeld, S. Swei and K.C. Cheung, Digital morphing wing: active wing shaping concept using composite lattice-based cellular structures. Soft robotics, 4(1), 33-48, 2017. https://doi.org/10.1089/soro.2016.0032
  • J. Lobo do Vale, J. Raffaelli and A. Suleman, Experimental validation and evaluation of a coupled twist-camber morphing wing concept. Applied Sciences, 11(22), 10631, 2021. https://doi.org/10.3390/app112210631
  • H. Rodrigue, S. Cho, M.W. Han, B. Bhandari, J.E. Shim and S.H. Ahn, Effect of twist morphing wing segment on aerodynamic performance of UAV. Journal of Mechanical Science and Technology, 30, 229-236, 2016. https://doi.org/10.1007/s12206-015-1226-3
  • T. Oktay, M. Konar, M. Onay, M. Aydin and M.A. Mohamed, Simultaneous small UAV and autopilot system design. Aircraft Engineering and Aerospace Technology, 88(6), 818-834, 2016. https://doi.org/10.1108/AEAT-04-2015-0097
  • Y. Eraslan and T. Oktay, Stability assessment of unmanned aerial vehicle with twist-morphing wing. Avrasya 10th International Conference on Applied Sciences, p. 88-95, Tblisi, Georgia, May 2-5 2024.
  • J. Roskam, Airplane Flight Dynamics and Automatic Flight Controls. DARcorporation, USA, 1998.
  • R.C. Nelson, Flight Stability and Automatic Control. WCB/McGraw Hill, New York, 1998.
  • T. Oktay and Y. Eraslan, Autonomous flight performance optimization of fixed-wing unmanned aerial vehicle with morphing wingtip. Aircraft Engineering and Aerospace Technology, 96(3), 475-482, 2024. https://doi.org/10.1108/AEAT-09-2022-0262
  • Y. Eraslan, and T. Oktay, Multidisciplinary Performance Enhancement on a Fixed-wing Unmanned Aerial Vehicle via Simultaneous Morphing Wing and Control System Design. Information Technology and Control, 52(4), 833-848, 2023. https://doi.org/10.5755/j01.itc.52.4.33527
  • A. Baharuddin and M.A.M. Basri, Trajectory Tracking of a quadcopter UAV using PID controller. Elektrika-Journal of Electrical Engineering, 22(2), 14-21, 2023. https://doi.org/10.11113/elektrika.v22n2.440
  • J.C. Spall, Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transactions on Automatic Control, 37, 1992.
  • I. J. Wang, and J.C. Spall, Stochastic optimisation with inequality constraints using simultaneous perturbations and penalty functions. International Journal of Control, 81(8), 1232-1238, 2008. https://doi.org/10.1080/00207170701611123

Simultaneous flight control system and twist-morphing wing design of an unmanned aerial vehicle

Yıl 2024, Cilt: 13 Sayı: 4, 1 - 1
https://doi.org/10.28948/ngumuh.1501418

Öz

Over the last years, the application of morphing technologies in the aircraft design field has become widespread together with developments in material technologies. In this context, this study discusses the design of an innovative twist-morphing wing on a fixed-wing unmanned aerial vehicle (UAV) aiming to obtain improvement in stall behavior (i.e. stall propagation) and autonomous flight performance. The twist-morphing wing design was designed to be capable of twisting in terms of wash-out angle between 0-degree and 6-degree. In order to have such a multidisciplinary improvement, simultaneous design approach was integrated and SPSA optimization algorithm was used. The washout angle and longitudinal and lateral PID controller coefficients were optimized to have enhancement in autonomous flight performance defined in rise time, settling time and maximum overshoot, which are related with step responses. In result, longitudinal, lateral and total performances were improved by 33.92%, 33.81% and 65.14%, respectively.

Kaynakça

  • S. Ameduri and A. Concilio, Morphing wings review: Aims, challenges, and current open issues of a technology. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(18), 4112-4130, 2023. https://doi.org/10.1177/0954406220944423
  • K. Sharma and G. Srinivas, Flying smart: Smart materials used in aviation industry, Materials Today: Proceedings, 27, 244-250, 2020. https://doi.org/10.1016/j.matpr.2019.10.115
  • R. M. Ajaj, M. S. Parancheerivilakkathil, M. Amoozgar, M. I. Friswell ansd W. J. Cantwell, Recent developments in the aeroelasticity of morphing aircraft, Progress in Aerospace Sciences, 120, 100682, 2021. https://doi.org/10.1016/j.paerosci.2020.100682
  • A. Dharmdas, A.Y. Patil, A. Baig, O.Z. Hosmani, S.N. Mathad, M.B. Patil, R. Kumar, B.B. Kotturshettar and I.M.R. Fattah, An Experimental and simulation study of the active camber morphing concept on airfoils using bio-inspired structures. Biomimetics, 8(2), 251, 2023. https://doi.org/10.3390/biomimetics8020251
  • B.W. Jo and T. Majid, Enhanced range and endurance evaluation of a camber morphing wing aircraft. Biomimetics, 8(1), 34, 2023. https://doi.org/10.3390/biomimetics8010034
  • T. Oktay and Y. Eraslan, Impacts of tapered wingtip on lateral-directional stability coefficients of a morphing fixed-wing UAV. The Black Sea Journal of Sciences, 13(4), 1540-1551, 2023. https://doi.org/10.31466/kfbd.1309152
  • L. Gao, Y. Zhu, X. Zang, J. Zhang, B. Chen, L. Li and J. Zhao, Dynamic analysis and experiment of multiple variable sweep wings on a tandem-wing MAV. Drones, 7(9), 552, 2023. https://doi.org/10.3390/drones7090552
  • E. Kaygan and C. Ulusoy, Effectiveness of twist morphing wing on aerodynamic performance and control of an aircraft. Journal of Aviation, 2(2), 77-86, 2018. https://doi.org/10.30518/jav.482507
  • N. I. Ismail, M.A. Tasin, H. Sharudin, M.H. Basri, S.C. Mat, H. Yusoff and R.E.M. Nasir, Computational aerodynamic investigations on wash out twist morphing MAV wings. Evergreen, 9(4), 1090-1102, 2022. https://doi.org/10.5109/6625721
  • A. Gatto, Development of a morphing UAV for optimal multi-segment mission performance. The Aeronautical Journal, 127(1314), 1320-1352, 2023. https://doi.org/10.1017/aer.2022.99
  • B. Jenett, S. Calisch, D. Cellucci, N. Cramer, N. Gershenfeld, S. Swei and K.C. Cheung, Digital morphing wing: active wing shaping concept using composite lattice-based cellular structures. Soft robotics, 4(1), 33-48, 2017. https://doi.org/10.1089/soro.2016.0032
  • J. Lobo do Vale, J. Raffaelli and A. Suleman, Experimental validation and evaluation of a coupled twist-camber morphing wing concept. Applied Sciences, 11(22), 10631, 2021. https://doi.org/10.3390/app112210631
  • H. Rodrigue, S. Cho, M.W. Han, B. Bhandari, J.E. Shim and S.H. Ahn, Effect of twist morphing wing segment on aerodynamic performance of UAV. Journal of Mechanical Science and Technology, 30, 229-236, 2016. https://doi.org/10.1007/s12206-015-1226-3
  • T. Oktay, M. Konar, M. Onay, M. Aydin and M.A. Mohamed, Simultaneous small UAV and autopilot system design. Aircraft Engineering and Aerospace Technology, 88(6), 818-834, 2016. https://doi.org/10.1108/AEAT-04-2015-0097
  • Y. Eraslan and T. Oktay, Stability assessment of unmanned aerial vehicle with twist-morphing wing. Avrasya 10th International Conference on Applied Sciences, p. 88-95, Tblisi, Georgia, May 2-5 2024.
  • J. Roskam, Airplane Flight Dynamics and Automatic Flight Controls. DARcorporation, USA, 1998.
  • R.C. Nelson, Flight Stability and Automatic Control. WCB/McGraw Hill, New York, 1998.
  • T. Oktay and Y. Eraslan, Autonomous flight performance optimization of fixed-wing unmanned aerial vehicle with morphing wingtip. Aircraft Engineering and Aerospace Technology, 96(3), 475-482, 2024. https://doi.org/10.1108/AEAT-09-2022-0262
  • Y. Eraslan, and T. Oktay, Multidisciplinary Performance Enhancement on a Fixed-wing Unmanned Aerial Vehicle via Simultaneous Morphing Wing and Control System Design. Information Technology and Control, 52(4), 833-848, 2023. https://doi.org/10.5755/j01.itc.52.4.33527
  • A. Baharuddin and M.A.M. Basri, Trajectory Tracking of a quadcopter UAV using PID controller. Elektrika-Journal of Electrical Engineering, 22(2), 14-21, 2023. https://doi.org/10.11113/elektrika.v22n2.440
  • J.C. Spall, Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transactions on Automatic Control, 37, 1992.
  • I. J. Wang, and J.C. Spall, Stochastic optimisation with inequality constraints using simultaneous perturbations and penalty functions. International Journal of Control, 81(8), 1232-1238, 2008. https://doi.org/10.1080/00207170701611123
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uçak Performansı ve Uçuş Kontrol Sistemleri, Uçuş Dinamiği
Bölüm Makaleler
Yazarlar

Yüksel Eraslan 0000-0002-5158-5171

Tuğrul Oktay 0000-0003-4860-2230

Erken Görünüm Tarihi 2 Eylül 2024
Yayımlanma Tarihi
Gönderilme Tarihi 14 Haziran 2024
Kabul Tarihi 24 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 4

Kaynak Göster

APA Eraslan, Y., & Oktay, T. (2024). Simultaneous flight control system and twist-morphing wing design of an unmanned aerial vehicle. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1-1. https://doi.org/10.28948/ngumuh.1501418
AMA Eraslan Y, Oktay T. Simultaneous flight control system and twist-morphing wing design of an unmanned aerial vehicle. NÖHÜ Müh. Bilim. Derg. Eylül 2024;13(4):1-1. doi:10.28948/ngumuh.1501418
Chicago Eraslan, Yüksel, ve Tuğrul Oktay. “Simultaneous Flight Control System and Twist-Morphing Wing Design of an Unmanned Aerial Vehicle”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 4 (Eylül 2024): 1-1. https://doi.org/10.28948/ngumuh.1501418.
EndNote Eraslan Y, Oktay T (01 Eylül 2024) Simultaneous flight control system and twist-morphing wing design of an unmanned aerial vehicle. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1–1.
IEEE Y. Eraslan ve T. Oktay, “Simultaneous flight control system and twist-morphing wing design of an unmanned aerial vehicle”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 4, ss. 1–1, 2024, doi: 10.28948/ngumuh.1501418.
ISNAD Eraslan, Yüksel - Oktay, Tuğrul. “Simultaneous Flight Control System and Twist-Morphing Wing Design of an Unmanned Aerial Vehicle”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (Eylül 2024), 1-1. https://doi.org/10.28948/ngumuh.1501418.
JAMA Eraslan Y, Oktay T. Simultaneous flight control system and twist-morphing wing design of an unmanned aerial vehicle. NÖHÜ Müh. Bilim. Derg. 2024;13:1–1.
MLA Eraslan, Yüksel ve Tuğrul Oktay. “Simultaneous Flight Control System and Twist-Morphing Wing Design of an Unmanned Aerial Vehicle”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 4, 2024, ss. 1-1, doi:10.28948/ngumuh.1501418.
Vancouver Eraslan Y, Oktay T. Simultaneous flight control system and twist-morphing wing design of an unmanned aerial vehicle. NÖHÜ Müh. Bilim. Derg. 2024;13(4):1-.

download