Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of rock components on Leeb hardness

Yıl 2024, Cilt: 13 Sayı: 4, 1 - 1
https://doi.org/10.28948/ngumuh.1523160

Öz

The scope of this study is to investigate the effect of different components in the sample on Leeb hardness (HL), which has recently been widely used to predict the uniaxial compressive strength of rocks in an indirect, non-destructive, cost-effective, and practical way. For this purpose, cube-shaped samples were prepared from pyroclastic rocks consisting for the most part of volcanic glass (VG) and volcanic rock fragments (VRF). The percentage of volcanic rock fragments (VRFP) on each surface of the cube samples was determined using an image processing program (Image Pro Plus 6.0). Moreover, the HL value of each surface of the cube samples was determined. The correlation between the change in VRPF and HL value was investigated by simple regression analysis and strong coefficients of determination were found between these values. According to these correlations, it was determined that the HL value is affected by the VRF in the rock composition. As consequence, the HL test was found to be unsuitable for these types of rock.

Kaynakça

  • İ. İnce and A. Bozdağ, An investigation on sample size in Leeb hardness test and prediction of some index properties of magmatic rocks. Arabian Journal of Geosciences, 14, 1-13, 2021. https://doi.org/10.1007/s12517-021-06478-9.
  • S. Kawasaki, C. Tanimoto, K. Koizumi and M. Ishikawa, An attempt to estimate mechanical properties of rocks using the Equotip hardness tester. Journal of the Japan Society of Engineering Geology, 43(4), 244–248, 2002. https://doi.org/10.5110/jjseg.43.244.
  • S. Wakasa, H. Matsuzaki, Y. Tanaka and Y. Matsukura, Estimation of episodic exfoliation rates of rock sheets on a granite dome in Korea from cosmogenic nuclide analysis. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 31(10), 1246–1256, 2006. https://doi.org/10.1002/esp.1328.
  • L. Mol and H. A. Viles, The role of rock surface hardness and internal moisture in tafoni development in sandstone. Earth Surf Processes Landforms, 37/3), 301–314, 2012. https://doi.org/10.1002/esp.2252.
  • K. Wilhelm, H. Viles, O. Burke and J. Mayaud, Surface hardness as a proxy for weathering behaviour of limestone heritage: a case study on dated headstones on the Isle of Portland, UK. Environmental Earth Sciences, 75, 931, 2016. https://doi.org/10.1007/s12665-016-5661-y.
  • Y. Wang, Q. Pei, S. Yang, Q. Guo and H. Viles. Evaluating the condition of sandstone rock-hewn cave-temple façade using in situ non-invasive techniques. Rock Mechanics and Rock Engineering, 53, 2915-2920, 2020. https://doi.org/10.1007/s00603-020-02063-w.
  • K. Gireson, S. B. Çelik and İ. Çobanoğlu, Non-destructive estimation of uniaxial compressive strength of deteriorated carbonate building stones by frost action. Environmental Earth Sciences, 82(14), 363, 2023. https://doi.org/10.1007/s12665-023-11032-9.
  • W. Verwaal and A. Mulder, Estimating rock strength with the Equotip hardness tester. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 30(6), 659-662, 1993.
  • M. Alvarez Grima and R. Babuška, Fuzzy model for the prediction of unconfined compressive strength of rock samples. International Journal of Rock Mechanics and Mining Sciences, 36(3), 339–349, 1999. https://doi.org/10.1016/S0148-9062(99)00007-8.
  • F. Meulenkamp and M. A. Grima, Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness. International Journal of Rock Mechanics and Mining Sciences, 36(1), 29–39, 1999. https://doi.org/10.1016/S0148-9062(98)00173-9.
  • H. Aoki and Y. Matsukura, Estimating the unconfined compressive strength of intact rocks from equotip hardness. Bulletin of Engineering Geology and the Environment, 67, 23–29, 2008. https://doi.org/10.1007/s10064-007-0116-z.
  • Y. Asiri, A. Corkum and H. El Naggar, Leeb hardness test for UCS estimation of sandstone. 69th Geo Vancouver Conference, Vancouver, Canada, October 2016.
  • A.G. Corkum, Y. Asiri, H .El Naggar and D. Kinakin, The Leeb hardness test for rock: an updated methodology and UCS correlation. Rock Mechanics and Rock Engineering, 51, 665-675. 2018. https://doi.org/10.1007/s00603-017-1372-2.
  • S. B. Çelik and İ. Çobanoğlu, Comparative investigation of Shore, Schmidt, and Leeb hardness tests in the characterization of rock materials. Environmental Earth Sciences, 78, 1-16, 2019. https://doi.org/10.1007/s12665-019-8567-7.
  • N. Yilmaz Güneş and R. M. Goktan, Comparison and combination of two NDT methods with implications for compressive strength evaluation of selected masonry and building stones. Bulletin of Engineering Geology and the Environment, 78: 4493–4503, 2019. https://doi.org/10.1007/s10064-018-1382-7.
  • G. Ekincioğlu, D. Akbay ve M. Sert, Doğaltaşların geri tepme sertlikleri ile bazı kayaç özellikleri arasındaki ilişkilerin incelenmesi. KAYAMEK’2022- 13. Bölgesel Kaya Mekaniği Sempozyumu, sayfa 59-66, Isparta, Türkiye, 26-28 Mayıs 2022.
  • S. Ghorbani, S. H. Hoseinie, E. Ghasemi and T. Sherizadeh, A review on rock hardness testing methods and their applications in rock engineering. Arabian Journal of Geosciences, 15(11), 1067, 2022-a. https://doi.org/10.1007/s12517-022-10314-z.
  • Y. Asiri, Standardized Process for Filed Estimation of Unconfined Compressive Strength Using Leeb Hardness. Master Thesis, Dalhousie University, Canada, 2017.
  • S. B. Çelik, İ. Çobanoğlu, T. Koralay and K. Gireson, Investigation of the Leeb hardness test in rapid characterisation of rock cores with particular emphasis on the effect of length to diameter ratio. International Journal of Mining, Reclamation and Environment, 37(7), 2023. https://doi.org/10.1080/17480930.2023.2213549.
  • S. Ghorbani, S. H. Hoseinie, E. Ghasemi and T. Sherizadeh, Application of Leeb hardness test in prediction of dynamic elastic constants of sedimentary and igneous rocks. Geotechnical and Geological Engineering, 40(6), 3125-3145, 2022-b. https://doi.org/10.1007/s10706-022-02083-z.
  • S. Ghorbani, S. H. Hoseinie, E. Ghasemi and T. Sherizadeh, Adoption of ASTM A956-06 Leeb hardness testing standard to rock engineering applications. Construction and Building Materials, 364, 129886, 2023. https://doi.org/10.1016/j.conbuildmat.2022.129886.
  • S. B. Çelik and İ. Çobanoğlu, Investigation of the effect of saturated conditions and number of measurements on the Leeb hardness test and improved correlations to estimate basic rock properties. Acta Geotechnica, 18(8), 4261–4278, 2023. https://doi.org/10.1007/s11440-023-01823-6.
  • Y. Eren, Konya kuzeybatisinda Bozdaglar masifinin otokton ve örtü birimlerinin stratigrafisi. Türkiye Jeoloji Bülteni, 36(2), 7-23, 1993.
  • A.M. Özkan, Ulumuhsine-Tatköy (Konya) Civarındaki Üst Miyosen-Alt Pliyosen yaşlı kumtaşlarının petrofasiyes özellikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 6(3), 229–239, 2000.
  • R. Aksoy and A. Demiroz, The Konya earthquakes of 10–11 september 2009 and soil conditions in Konya, central Anatolia, Turkey. Natural Hazards and Earth System Sciences. 12(2), 295–303, 2012. https://doi.org/10.5194/nhess-12-295-2012.
  • R. Aksoy, Extensional neotectonic regime in west-southwest Konya, central Anatolia, Turkey. International Geology Review, 61(14), 1803–1821, 2019. https://doi.org/10.1080/00206814.2019.1581996.
  • A. Streickeisen, Classification and nomenclature of volcanic rock. lomprophyres, corbanatites and millitic rocks. Geology, 7, 331–335, 1979.
  • TS EN 1936, Natural Stone Test Methods - Determination of Real Density and Apparent Density and of Total and Open Porosity. Turkish Standards Institution, Ankara, 2010.
  • ASTM E494, Standard Practice for Measuring Ultrasonic Velocity in Materials. ASTM International, West Conshohocken, PA, 2010. https://doi.org/10.1520/E0494-95.
  • ASTM A956, Standard Test Method for Leeb Hardness Testing of Steel Products. ASTM International, West Conshohocken, PA, 2012. https://doi.org/10.1520/A0956_A0956M-22.
  • TS EN-12407, Natural Stone Test Methods - Petrographic Examination. Turkish Standards Institution, Ankara, 2019.

Kayacı oluşturan bileşenlerin Leeb sertliğine etkisi

Yıl 2024, Cilt: 13 Sayı: 4, 1 - 1
https://doi.org/10.28948/ngumuh.1523160

Öz

Bu çalışmanın amacı, kayaçların tek eksenli sıkışma dayanımını dolaylı, tahribatsız, ucuz ve pratik bir şekilde tahminin etmek için son dönemde yaygın olarak kullanılan Leeb sertliğine (HL), örnek içindeki farklı bileşenlerin etkisini araştırmaktır. Bu amaçla, bileşiminde egemen olarak volkanik cam (VC) ve volkanik kayaç parçaları (VKP) içeren piroklastik kayaçtan küp şekilli örnekler hazırlanmıştır. Görüntü işleme programı (Image Pro Plus 6.0) vasıtasıyla küp örneklerin her bir yüzeyindeki volkanik kayaç parçası yüzdeleri (VKPY) belirlenmiştir. Ayrıca küp örneklerin her bir yüzeyinin HL değeri belirlenmiştir. VKPY değişimi ile HL değeri arasındaki ilişki basit regresyon analizi ile araştırılmış ve bu değerler arasında güçlü belirleme katsayıları bulunmuştur. Elde edilen bu ilişkilere göre, HL değerinin kayaç bileşiminde yer alan VKP’dan etkilendiği tespit edilmiştir. HL testinin bu tür kayaçlar için uygun olmadığı görülmüştür.

Kaynakça

  • İ. İnce and A. Bozdağ, An investigation on sample size in Leeb hardness test and prediction of some index properties of magmatic rocks. Arabian Journal of Geosciences, 14, 1-13, 2021. https://doi.org/10.1007/s12517-021-06478-9.
  • S. Kawasaki, C. Tanimoto, K. Koizumi and M. Ishikawa, An attempt to estimate mechanical properties of rocks using the Equotip hardness tester. Journal of the Japan Society of Engineering Geology, 43(4), 244–248, 2002. https://doi.org/10.5110/jjseg.43.244.
  • S. Wakasa, H. Matsuzaki, Y. Tanaka and Y. Matsukura, Estimation of episodic exfoliation rates of rock sheets on a granite dome in Korea from cosmogenic nuclide analysis. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 31(10), 1246–1256, 2006. https://doi.org/10.1002/esp.1328.
  • L. Mol and H. A. Viles, The role of rock surface hardness and internal moisture in tafoni development in sandstone. Earth Surf Processes Landforms, 37/3), 301–314, 2012. https://doi.org/10.1002/esp.2252.
  • K. Wilhelm, H. Viles, O. Burke and J. Mayaud, Surface hardness as a proxy for weathering behaviour of limestone heritage: a case study on dated headstones on the Isle of Portland, UK. Environmental Earth Sciences, 75, 931, 2016. https://doi.org/10.1007/s12665-016-5661-y.
  • Y. Wang, Q. Pei, S. Yang, Q. Guo and H. Viles. Evaluating the condition of sandstone rock-hewn cave-temple façade using in situ non-invasive techniques. Rock Mechanics and Rock Engineering, 53, 2915-2920, 2020. https://doi.org/10.1007/s00603-020-02063-w.
  • K. Gireson, S. B. Çelik and İ. Çobanoğlu, Non-destructive estimation of uniaxial compressive strength of deteriorated carbonate building stones by frost action. Environmental Earth Sciences, 82(14), 363, 2023. https://doi.org/10.1007/s12665-023-11032-9.
  • W. Verwaal and A. Mulder, Estimating rock strength with the Equotip hardness tester. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 30(6), 659-662, 1993.
  • M. Alvarez Grima and R. Babuška, Fuzzy model for the prediction of unconfined compressive strength of rock samples. International Journal of Rock Mechanics and Mining Sciences, 36(3), 339–349, 1999. https://doi.org/10.1016/S0148-9062(99)00007-8.
  • F. Meulenkamp and M. A. Grima, Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness. International Journal of Rock Mechanics and Mining Sciences, 36(1), 29–39, 1999. https://doi.org/10.1016/S0148-9062(98)00173-9.
  • H. Aoki and Y. Matsukura, Estimating the unconfined compressive strength of intact rocks from equotip hardness. Bulletin of Engineering Geology and the Environment, 67, 23–29, 2008. https://doi.org/10.1007/s10064-007-0116-z.
  • Y. Asiri, A. Corkum and H. El Naggar, Leeb hardness test for UCS estimation of sandstone. 69th Geo Vancouver Conference, Vancouver, Canada, October 2016.
  • A.G. Corkum, Y. Asiri, H .El Naggar and D. Kinakin, The Leeb hardness test for rock: an updated methodology and UCS correlation. Rock Mechanics and Rock Engineering, 51, 665-675. 2018. https://doi.org/10.1007/s00603-017-1372-2.
  • S. B. Çelik and İ. Çobanoğlu, Comparative investigation of Shore, Schmidt, and Leeb hardness tests in the characterization of rock materials. Environmental Earth Sciences, 78, 1-16, 2019. https://doi.org/10.1007/s12665-019-8567-7.
  • N. Yilmaz Güneş and R. M. Goktan, Comparison and combination of two NDT methods with implications for compressive strength evaluation of selected masonry and building stones. Bulletin of Engineering Geology and the Environment, 78: 4493–4503, 2019. https://doi.org/10.1007/s10064-018-1382-7.
  • G. Ekincioğlu, D. Akbay ve M. Sert, Doğaltaşların geri tepme sertlikleri ile bazı kayaç özellikleri arasındaki ilişkilerin incelenmesi. KAYAMEK’2022- 13. Bölgesel Kaya Mekaniği Sempozyumu, sayfa 59-66, Isparta, Türkiye, 26-28 Mayıs 2022.
  • S. Ghorbani, S. H. Hoseinie, E. Ghasemi and T. Sherizadeh, A review on rock hardness testing methods and their applications in rock engineering. Arabian Journal of Geosciences, 15(11), 1067, 2022-a. https://doi.org/10.1007/s12517-022-10314-z.
  • Y. Asiri, Standardized Process for Filed Estimation of Unconfined Compressive Strength Using Leeb Hardness. Master Thesis, Dalhousie University, Canada, 2017.
  • S. B. Çelik, İ. Çobanoğlu, T. Koralay and K. Gireson, Investigation of the Leeb hardness test in rapid characterisation of rock cores with particular emphasis on the effect of length to diameter ratio. International Journal of Mining, Reclamation and Environment, 37(7), 2023. https://doi.org/10.1080/17480930.2023.2213549.
  • S. Ghorbani, S. H. Hoseinie, E. Ghasemi and T. Sherizadeh, Application of Leeb hardness test in prediction of dynamic elastic constants of sedimentary and igneous rocks. Geotechnical and Geological Engineering, 40(6), 3125-3145, 2022-b. https://doi.org/10.1007/s10706-022-02083-z.
  • S. Ghorbani, S. H. Hoseinie, E. Ghasemi and T. Sherizadeh, Adoption of ASTM A956-06 Leeb hardness testing standard to rock engineering applications. Construction and Building Materials, 364, 129886, 2023. https://doi.org/10.1016/j.conbuildmat.2022.129886.
  • S. B. Çelik and İ. Çobanoğlu, Investigation of the effect of saturated conditions and number of measurements on the Leeb hardness test and improved correlations to estimate basic rock properties. Acta Geotechnica, 18(8), 4261–4278, 2023. https://doi.org/10.1007/s11440-023-01823-6.
  • Y. Eren, Konya kuzeybatisinda Bozdaglar masifinin otokton ve örtü birimlerinin stratigrafisi. Türkiye Jeoloji Bülteni, 36(2), 7-23, 1993.
  • A.M. Özkan, Ulumuhsine-Tatköy (Konya) Civarındaki Üst Miyosen-Alt Pliyosen yaşlı kumtaşlarının petrofasiyes özellikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 6(3), 229–239, 2000.
  • R. Aksoy and A. Demiroz, The Konya earthquakes of 10–11 september 2009 and soil conditions in Konya, central Anatolia, Turkey. Natural Hazards and Earth System Sciences. 12(2), 295–303, 2012. https://doi.org/10.5194/nhess-12-295-2012.
  • R. Aksoy, Extensional neotectonic regime in west-southwest Konya, central Anatolia, Turkey. International Geology Review, 61(14), 1803–1821, 2019. https://doi.org/10.1080/00206814.2019.1581996.
  • A. Streickeisen, Classification and nomenclature of volcanic rock. lomprophyres, corbanatites and millitic rocks. Geology, 7, 331–335, 1979.
  • TS EN 1936, Natural Stone Test Methods - Determination of Real Density and Apparent Density and of Total and Open Porosity. Turkish Standards Institution, Ankara, 2010.
  • ASTM E494, Standard Practice for Measuring Ultrasonic Velocity in Materials. ASTM International, West Conshohocken, PA, 2010. https://doi.org/10.1520/E0494-95.
  • ASTM A956, Standard Test Method for Leeb Hardness Testing of Steel Products. ASTM International, West Conshohocken, PA, 2012. https://doi.org/10.1520/A0956_A0956M-22.
  • TS EN-12407, Natural Stone Test Methods - Petrographic Examination. Turkish Standards Institution, Ankara, 2019.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kaya Mekaniği
Bölüm Makaleler
Yazarlar

Mehmet Can Balcı 0000-0003-3737-2556

İsmail İnce 0000-0002-6692-7584

Erken Görünüm Tarihi 4 Eylül 2024
Yayımlanma Tarihi
Gönderilme Tarihi 26 Temmuz 2024
Kabul Tarihi 20 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 4

Kaynak Göster

APA Balcı, M. C., & İnce, İ. (2024). Kayacı oluşturan bileşenlerin Leeb sertliğine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1-1. https://doi.org/10.28948/ngumuh.1523160
AMA Balcı MC, İnce İ. Kayacı oluşturan bileşenlerin Leeb sertliğine etkisi. NÖHÜ Müh. Bilim. Derg. Eylül 2024;13(4):1-1. doi:10.28948/ngumuh.1523160
Chicago Balcı, Mehmet Can, ve İsmail İnce. “Kayacı oluşturan bileşenlerin Leeb sertliğine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 4 (Eylül 2024): 1-1. https://doi.org/10.28948/ngumuh.1523160.
EndNote Balcı MC, İnce İ (01 Eylül 2024) Kayacı oluşturan bileşenlerin Leeb sertliğine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1–1.
IEEE M. C. Balcı ve İ. İnce, “Kayacı oluşturan bileşenlerin Leeb sertliğine etkisi”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 4, ss. 1–1, 2024, doi: 10.28948/ngumuh.1523160.
ISNAD Balcı, Mehmet Can - İnce, İsmail. “Kayacı oluşturan bileşenlerin Leeb sertliğine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (Eylül 2024), 1-1. https://doi.org/10.28948/ngumuh.1523160.
JAMA Balcı MC, İnce İ. Kayacı oluşturan bileşenlerin Leeb sertliğine etkisi. NÖHÜ Müh. Bilim. Derg. 2024;13:1–1.
MLA Balcı, Mehmet Can ve İsmail İnce. “Kayacı oluşturan bileşenlerin Leeb sertliğine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 4, 2024, ss. 1-1, doi:10.28948/ngumuh.1523160.
Vancouver Balcı MC, İnce İ. Kayacı oluşturan bileşenlerin Leeb sertliğine etkisi. NÖHÜ Müh. Bilim. Derg. 2024;13(4):1-.

download