Araştırma Makalesi
BibTex RIS Kaynak Göster

Quantitative and semantic analysis of OpenStreetMap data for cities affected by the February 6 earthquakes

Yıl 2024, Cilt: 13 Sayı: 4, 1264 - 1276, 15.10.2024
https://doi.org/10.28948/ngumuh.1476998

Öz

OpenStreetMap (OSM) provides a volunteer-based, open-access platform that can also be used for post-disaster map production. This platform enables widespread access to spatial data, particularly for pre- and post-disaster preparedness, search and rescue, and relief operations. However, the flexibility of user contributions and the predominance of non-expert volunteers in OSM raise concerns about data quality and integrity. Thus, analytical evaluation of these data is critical. This study examines the development of OSM and its application in disaster situations. Following the Kahramanmaraş earthquake on February 6, 2023, OSM data created were quantitatively and semantically assessed; building, road, and point of interest data over a 12-month period before and after the earthquake in eight cities were analyzed. According to the research, the newly added building data represent 32% of Turkey’s total building inventory, road data 6% of the total road network, and points of interest 1%. Additionally, semantic deficiencies were identified, potentially causing issues in various usage contexts.

Proje Numarası

2219 programı (1059B192202917)

Kaynakça

  • A. Basaglia, A. Aprile, E. Spacone, and F. Pilla, Performance-based Seismic Risk Assessment of Urban Systems, International Journal of Architectural Heritage, 12, 7–8, 1131–1149, 2018. https://doi.org/10.1080/15583058.2018.1503371
  • W. Habib, S. Mahmood, N. ul H. Huda, S. Noor, A. Saleem, M. Siraj, and H. Ahmad, A post earthquake damage assessment using GIS in district Mirpur, Pakistan, Advanced GIS, 3, 2, 53–58, 2023. [Online]. Available:https://publish.mersin.edu.tr/index.php/agis/article/view/926
  • E. Özaydin, B. Ami̇rgan, G. Taşkin, ve N. Musaoğlu, Derin öğrenme uygulamalarında kullanılan uzaktan algılama verilerinden oluşturulmuş açık kaynaklı bina veri setleri: Karşılaştırmalı değerlendirme, Geomatik, 2023.https://doi.org/10.29128/geomatik.1257555
  • M. Uzar and Z. Bayramoğlu, Performance analysis of rule-based classification and deep learning method for automatic road extraction, International Journal of Engineering and Geosciences, 8, 1, 83–97, 2023. https://doi.org/10.26833/ijeg.1062250
  • S. Voigt, T. Kemper, T. Riedlinger, R. Kiefl, K. Scholte, and H. Mehl, Satellite Image Analysis for Disaster and Crisis-Management Support, IEEE Transactions on Geoscience and Remote Sensing, 45, 6, 1520–1528, 2007. https://doi.org/ 10.1109/TGRS.2007.895830
  • M. F. Goodchild and J. A. Glennon, Crowdsourcing geographic information for disaster response: a research frontier, International Journal of Digital Earth, 3, 3, 231–241, 2010. https://doi.org/ 10.1080/17538941003759255
  • C. Barron, P. Neis, and A. Zipf, A Comprehensive Framework for Intrinsic OpenStreetMap Quality Analysis, Transactions in GIS, 18, 6, 877–895, 2013. https://doi.org/10.1111/tgis.12073
  • M. Eckle and J. Porto De Albuquerque, Quality Assessment of Remote Mapping for Disaster Management, in Proceedings of the ISCRAM 2015 Conference, Kristiansand, 2015.
  • P. Mooney, P. Corcoran, and A. C. Winstanley, Towards Quality Metrics for OpenStreetMap, in ACM GIS, San Jose, CA, USA, 2010, p. 566.
  • S. Buhur, N. Uluğtekin, M. Ü. Gümüşay, ve N. Musaoğlu, Turistik amaçlı mekânsal sanal ortamların oluşturulması: Tarihi Yarımada Örneği, Geomatik, 8, 2, 99–106, 2023. https://doi.org/ 10.29128/geomatik.1133484
  • D. Ma, M. Sandberg, and B. Jiang, Characterizing the Heterogeneity of the OpenStreetMap Data and Community, ISPRS International Journal of Geo-Information, 4, 2, Art. 2, 2015. https://doi.org/10.3390/ijgi4020535
  • M. Hacar, A rule-based approach for generating urban footprint maps: from road network to urban footprint, International Journal of Engineering and Geosciences, 5, 2, 100–108, 2020. https://doi.org/ 10.26833/ijeg.623592
  • OSMF, OpenStreetMap Foundation. https://osmfoundation.org/wiki/Main_Page, Erişim Tarihi: 15 Ocak 2024.
  • MapBox, The OpenStreetMap data model. https://labs.mapbox.com/mapping/osm-data-model/, Erişim Tarihi: 21 Aralık 2023.
  • B. Herfort, S. Lautenbach, J. Porto de Albuquerque, J. Anderson, and A. Zipf, The evolution of humanitarian mapping within the OpenStreetMap community, Scientific Reports, 11, 1, 2021. https://doi.org/10.1038/s41598-021-82404-z
  • American University, Humanitarian Mapping. https://subjectguides.library.american.edu/c.php?g=1300153&p=9552274, Erişim Tarihi: 21 Aralık 2023.
  • HOT, What we do?, Humanitarian OpenStreetMap Team. https://www.hotosm.org/what-we-do.html, Erişim Tarihi: 15 Ocak 2024.
  • TC SBB, Türkiye Cumhuriyeti Cumhurbaşkanlığı, Strateji ve Bütçe Başkanlığı - 2023 Kahramanmaraş ve Hatay Depremleri Raporu, Erişim Tarihi: 2024-03-05, 2023. https://www.sbb.gov.tr/wp-content/uploads/2023/03/2023-Kahramanmaras-ve-Hatay-Depremleri-Raporu.pdf, Erişim Tarihi: 03 Ocak 2024.
  • J. Pechmann and C. de los Reyes, Using OSM Data in the Turkey and Syria Earthquake Response. https://www.hotosm.org/updates/using-osm-data-for-the-turkey-and-syria-earthquake-response/, Erişim Tarihi: 21, Aralık 2023.
  • H. Leson, S. Turksever, B. Kavlak, O. M. Yılmaz, and C. Unen, Open source maps and open data help humanitarian response. https://opensource.com/article/23/3/open-source-open-data-humanitarian response?fbclid=PAAaYOi7fKkmMN9paPXQMxic H3KdG6r0gp04O6vL4YJ34Ac6jyYU1NAhzMkI, Erişim Tarihi: 21 Aralık 2023.
  • P. Zhao, T. Jia, K. Qin, J. Shan, and C. Jiao, Statistical analysis on the evolution of OpenStreetMap road networks in Beijing, Physica A: Statistical Mechanics and its Applications, 420, 59–72, 2015. https://doi.org/10.1016/j.physa.2014.10.076
  • M. Hacar, Analyzing the Behaviors of OpenStreetMap Volunteers in Mapping Building Polygons Using a Machine Learning Approach, IJGI, 11, 1, p. 70, 2022. https://doi.org/10.3390/ijgi11010070
  • A. G. Toprak, Dijital İletişim Çağında Mekânsal Bilginin Üretimi: Dijital Haritalar, Topluluklar ve Katılımcı Kültür, İletişim Kuram ve Araştırma Dergisi, 62, Art. 62, 2023. https://doi.org/ 10.47998/ikad.1218329
  • J. Mondzech and M. Sester, Quality Analysis of OpenStreetMap Data Based on Application Needs, Cartographica, 46, 2, Art. 2, 2011. https://doi.org/ 10.3138/carto.46.2.115
  • S. Çabuk, M. Erdoğan, ve E. Önal, Open Street Map Verilerinden Yararlanılarak 1 / 50 K Ölçekli Harita Üretilebilirliğinin Araştırılması, Harita Dergisi, 154, 26–34, 2015.
  • S. Sehra, J. Singh, and H. Rai, Assessing OpenStreetMap Data Using Intrinsic Quality Indicators: An Extension to the QGIS Processing Toolbox, Future Internet, 9, 2, p. 15, 2017. https://doi.org/10.3390/fi9020015
  • M. Basaraner, Geometric and semantic quality assessments of building features in OpenStreetMap for some areas of Istanbul, Polish Cartographical Review, 52, 3, 94–107, 2020. https://doi.org/10.2478/pcr-2020-0010
  • K. C. Küçük ve B. Anbaroğlu, OpenStreetMap Binalarının Mekânsal Doğruluğunun Analizi, Türkiye Coğrafi Bilgi Sistemleri Dergisi, 1, 1, 5–13, 2019.
  • F. Biljecki, Y. S. Chow, and K. Lee, Quality of crowdsourced geospatial building information: A global assessment of OpenStreetMap attributes, Building and Environment, 237, p. 110295, 2023. https://doi.org/10.1016/j.buildenv.2023.110295
  • M. Dittus, G. Quattrone, and L. Capra, Mass Participation During Emergency Response: Event-centric Crowdsourcing in Humanitarian Mapping, in Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, 2017. http://osm-analytics.org
  • M. Auer et al., Towards Using the Potential of OpenStreetMap History for Disaster Activation Monitoring, in Proceedings of the 15th ISCRAM Conference, K. Boersma and B. Tomaszewski, Eds., NY, USA, 2018.
  • J. Anderson, R. Soden, B. Keegan, L. Palen, and K. M. Anderson, The Crowd is the Territory: Assessing Quality in Peer-Produced Spatial Data During Disasters, International Journal of Human–Computer Interaction, 34, 4, 295–310, 2018. https://doi.org/10.1080/10447318.2018.1427828
  • P. Campalani, M. Pittore, and K. Renner, Assessing OpenStreetMap roads fitness-for-use for disaster risk assessment in developing countries: The case of Burundi, Open Geosciences, 15, 1, 20220485, 2023. https://doi.org/10.1515/geo-2022-0485
  • K. Tzavella, A. Skopeliti, and A. Fekete, Volunteered geographic information use in crisis, emergency and disaster management: a scoping review and a web atlas, Geo-spatial Information Science, 27, 2, 423–454, 2022. https://doi.org/10.1080/10095020.2022.2139642
  • S. Suthakaran, S. Jayakody, S. Subasinghe, N. Seneviratne, and R. Alahakoon, Mapping the flood risk exposure using open-source geospatial tools and techniques: A case of Gampaha Divisional Secretariat Division, Sri Lanka, Journal of Geoscience and Environment Protection, 10, 18-31, 2022. https://doi.org/10.4236/gep.2022.1010002
  • P. Mooney and P. Corcoran, Analysis of Interaction and Co-editing Patterns amongst OpenStreetMap Contributors, Transactions in GIS, 18, 5, Art. 5, 2013. https://doi.org/10.1111/tgis.12051
  • M. Hacar, B. Kılıç, and K. Şahbaz, Analyzing OpenStreetMap Road Data and Characterizing the Behavior of Contributors in Ankara, Turkey, ISPRS International Journal of Geo-Information, 7, 10, p. 400, 2018. https://doi.org/10.3390/ijgi7100400
  • M. Zia, Z. Cakir, and D. Z. Seker, Turkey OpenStreetMap Dataset - Spatial Analysis of Development and Growth Proxies, Open Geosciences, 11, 1, Art. 1, 2019. https://doi.org/10.1515/geo-2019-0012
  • M. Hacar, OpenStreetMap Yerleşim-içi Yollarına Ait Etiket Bilgilerinin Karşılaştırılmasıyla Gönüllülerin Katkı Sağlama Eğilimlerinin İncelenmesi, Harita Dergisi, 164, 77–87, 2020.
  • M. Minghini and F. Frassinelli, OpenStreetMap history for intrinsic quality assessment: Is OSM up-to-date?, Open Geospatial Data, Software and Standards, 4, 1, 2019. https://doi.org/10.1186/s40965-019-0067-x
  • A. Martini, P. V. Kuper, and M. Breunig, Database-Supported Change Analysis and Quality Evaluation of Openstreetmap Data, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5, 535–541, 2019. https://doi.org/10.5194/isprs-annals-IV-2-W5-535-2019
  • ohsome, ohsome Heidelberg Institute for Geoinformation Technology. https://heigit.org/big-spatial-data-analytics-en/ohsome/, Erişim Tarihi: 04 Mart 2024.
  • ohsome API, Welcome to the documentation of the ohsome API! — ohsome API 1.10.2 documentation. https://docs.ohsome.org/ohsome-api/v1/, Erişim Tarihi: 04 Mart 2024.
  • B. Ciepłuch, P. Mooney, and A. C. Winstanley, Building Generic Quality Indicators for OpenStreetMap, in 19th annual GIS Research UK (GISRUK), Portsmouth, UK, Apr. 2011. Erişim Tarihi: 05 Aralık 2024. http://www.port.ac.uk/ special/gisruk2011/
  • TC SBB, Türkiye Cumhuriyeti Cumhurbaşkanlığı, Strateji ve Bütçe Başkanlığı - Kahramanmaras ve Hatay Depremleri Yeniden Imar ve Gelisme Raporu, Erişim Tarihi: 2024-03-05, 2024. https://www.sbb.gov.tr/wpcontent/uploads/2024/02/Kahramanmaras-ve-Hatay-Depremleri-Yeniden-Imar-ve-Gelisme-Raporu-1.pdf, Erişim Tarihi: 05 Mart 2024.

6 Şubat depremlerinden etkilenen şehirlere ait OpenStreetMap verilerinin niceliksel ve semantik analizi

Yıl 2024, Cilt: 13 Sayı: 4, 1264 - 1276, 15.10.2024
https://doi.org/10.28948/ngumuh.1476998

Öz

OpenStreetMap (OSM), afet sonrası harita üretimi için de kullanılabilen gönüllü tabanlı ve açık erişimli bir platform sunar. Bu platform, özellikle afet öncesi ve sonrası hazırlıklar, arama-kurtarma ve yardım faaliyetlerinde kullanılmak üzere mekânsal verilerin geniş çapta erişilebilir olmasını sağlar. Ancak, OSM'deki kullanıcı esnekliği ve gönüllülerin çoğunun uzman olmayışı, veri kalitesi ve bütünlüğü konularında endişelere neden olmaktadır. Verilerin analitik yöntemlerle değerlendirilmesi bu sebeple önem taşır. Bu çalışmada, OSM'nin gelişimi ve afet durumlarında nasıl kullanıldığı incelenmiştir. 6 Şubat 2023 tarihinde meydana gelen Kahramanmaraş depremi sonrası oluşturulan OSM verileri, niceliksel ve semantik olarak değerlendirilmiş; deprem öncesi ve sonrası 12 aylık dönemde 8 şehirdeki bina, yol ve ilgi noktaları analiz edilmiştir. Araştırmaya göre, yeni eklenen bina verileri Türkiye'nin toplam bina envanterinin %32'sini, yol verileri toplam yol ağının %6'sını, ilgi noktaları ise %1'ini temsil etmektedir. Ayrıca, semantik eksiklikler tespit edilerek, çeşitli kullanım alanlarında sorunlara yol açabilecekleri belirlenmiştir.

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Proje Numarası

2219 programı (1059B192202917)

Kaynakça

  • A. Basaglia, A. Aprile, E. Spacone, and F. Pilla, Performance-based Seismic Risk Assessment of Urban Systems, International Journal of Architectural Heritage, 12, 7–8, 1131–1149, 2018. https://doi.org/10.1080/15583058.2018.1503371
  • W. Habib, S. Mahmood, N. ul H. Huda, S. Noor, A. Saleem, M. Siraj, and H. Ahmad, A post earthquake damage assessment using GIS in district Mirpur, Pakistan, Advanced GIS, 3, 2, 53–58, 2023. [Online]. Available:https://publish.mersin.edu.tr/index.php/agis/article/view/926
  • E. Özaydin, B. Ami̇rgan, G. Taşkin, ve N. Musaoğlu, Derin öğrenme uygulamalarında kullanılan uzaktan algılama verilerinden oluşturulmuş açık kaynaklı bina veri setleri: Karşılaştırmalı değerlendirme, Geomatik, 2023.https://doi.org/10.29128/geomatik.1257555
  • M. Uzar and Z. Bayramoğlu, Performance analysis of rule-based classification and deep learning method for automatic road extraction, International Journal of Engineering and Geosciences, 8, 1, 83–97, 2023. https://doi.org/10.26833/ijeg.1062250
  • S. Voigt, T. Kemper, T. Riedlinger, R. Kiefl, K. Scholte, and H. Mehl, Satellite Image Analysis for Disaster and Crisis-Management Support, IEEE Transactions on Geoscience and Remote Sensing, 45, 6, 1520–1528, 2007. https://doi.org/ 10.1109/TGRS.2007.895830
  • M. F. Goodchild and J. A. Glennon, Crowdsourcing geographic information for disaster response: a research frontier, International Journal of Digital Earth, 3, 3, 231–241, 2010. https://doi.org/ 10.1080/17538941003759255
  • C. Barron, P. Neis, and A. Zipf, A Comprehensive Framework for Intrinsic OpenStreetMap Quality Analysis, Transactions in GIS, 18, 6, 877–895, 2013. https://doi.org/10.1111/tgis.12073
  • M. Eckle and J. Porto De Albuquerque, Quality Assessment of Remote Mapping for Disaster Management, in Proceedings of the ISCRAM 2015 Conference, Kristiansand, 2015.
  • P. Mooney, P. Corcoran, and A. C. Winstanley, Towards Quality Metrics for OpenStreetMap, in ACM GIS, San Jose, CA, USA, 2010, p. 566.
  • S. Buhur, N. Uluğtekin, M. Ü. Gümüşay, ve N. Musaoğlu, Turistik amaçlı mekânsal sanal ortamların oluşturulması: Tarihi Yarımada Örneği, Geomatik, 8, 2, 99–106, 2023. https://doi.org/ 10.29128/geomatik.1133484
  • D. Ma, M. Sandberg, and B. Jiang, Characterizing the Heterogeneity of the OpenStreetMap Data and Community, ISPRS International Journal of Geo-Information, 4, 2, Art. 2, 2015. https://doi.org/10.3390/ijgi4020535
  • M. Hacar, A rule-based approach for generating urban footprint maps: from road network to urban footprint, International Journal of Engineering and Geosciences, 5, 2, 100–108, 2020. https://doi.org/ 10.26833/ijeg.623592
  • OSMF, OpenStreetMap Foundation. https://osmfoundation.org/wiki/Main_Page, Erişim Tarihi: 15 Ocak 2024.
  • MapBox, The OpenStreetMap data model. https://labs.mapbox.com/mapping/osm-data-model/, Erişim Tarihi: 21 Aralık 2023.
  • B. Herfort, S. Lautenbach, J. Porto de Albuquerque, J. Anderson, and A. Zipf, The evolution of humanitarian mapping within the OpenStreetMap community, Scientific Reports, 11, 1, 2021. https://doi.org/10.1038/s41598-021-82404-z
  • American University, Humanitarian Mapping. https://subjectguides.library.american.edu/c.php?g=1300153&p=9552274, Erişim Tarihi: 21 Aralık 2023.
  • HOT, What we do?, Humanitarian OpenStreetMap Team. https://www.hotosm.org/what-we-do.html, Erişim Tarihi: 15 Ocak 2024.
  • TC SBB, Türkiye Cumhuriyeti Cumhurbaşkanlığı, Strateji ve Bütçe Başkanlığı - 2023 Kahramanmaraş ve Hatay Depremleri Raporu, Erişim Tarihi: 2024-03-05, 2023. https://www.sbb.gov.tr/wp-content/uploads/2023/03/2023-Kahramanmaras-ve-Hatay-Depremleri-Raporu.pdf, Erişim Tarihi: 03 Ocak 2024.
  • J. Pechmann and C. de los Reyes, Using OSM Data in the Turkey and Syria Earthquake Response. https://www.hotosm.org/updates/using-osm-data-for-the-turkey-and-syria-earthquake-response/, Erişim Tarihi: 21, Aralık 2023.
  • H. Leson, S. Turksever, B. Kavlak, O. M. Yılmaz, and C. Unen, Open source maps and open data help humanitarian response. https://opensource.com/article/23/3/open-source-open-data-humanitarian response?fbclid=PAAaYOi7fKkmMN9paPXQMxic H3KdG6r0gp04O6vL4YJ34Ac6jyYU1NAhzMkI, Erişim Tarihi: 21 Aralık 2023.
  • P. Zhao, T. Jia, K. Qin, J. Shan, and C. Jiao, Statistical analysis on the evolution of OpenStreetMap road networks in Beijing, Physica A: Statistical Mechanics and its Applications, 420, 59–72, 2015. https://doi.org/10.1016/j.physa.2014.10.076
  • M. Hacar, Analyzing the Behaviors of OpenStreetMap Volunteers in Mapping Building Polygons Using a Machine Learning Approach, IJGI, 11, 1, p. 70, 2022. https://doi.org/10.3390/ijgi11010070
  • A. G. Toprak, Dijital İletişim Çağında Mekânsal Bilginin Üretimi: Dijital Haritalar, Topluluklar ve Katılımcı Kültür, İletişim Kuram ve Araştırma Dergisi, 62, Art. 62, 2023. https://doi.org/ 10.47998/ikad.1218329
  • J. Mondzech and M. Sester, Quality Analysis of OpenStreetMap Data Based on Application Needs, Cartographica, 46, 2, Art. 2, 2011. https://doi.org/ 10.3138/carto.46.2.115
  • S. Çabuk, M. Erdoğan, ve E. Önal, Open Street Map Verilerinden Yararlanılarak 1 / 50 K Ölçekli Harita Üretilebilirliğinin Araştırılması, Harita Dergisi, 154, 26–34, 2015.
  • S. Sehra, J. Singh, and H. Rai, Assessing OpenStreetMap Data Using Intrinsic Quality Indicators: An Extension to the QGIS Processing Toolbox, Future Internet, 9, 2, p. 15, 2017. https://doi.org/10.3390/fi9020015
  • M. Basaraner, Geometric and semantic quality assessments of building features in OpenStreetMap for some areas of Istanbul, Polish Cartographical Review, 52, 3, 94–107, 2020. https://doi.org/10.2478/pcr-2020-0010
  • K. C. Küçük ve B. Anbaroğlu, OpenStreetMap Binalarının Mekânsal Doğruluğunun Analizi, Türkiye Coğrafi Bilgi Sistemleri Dergisi, 1, 1, 5–13, 2019.
  • F. Biljecki, Y. S. Chow, and K. Lee, Quality of crowdsourced geospatial building information: A global assessment of OpenStreetMap attributes, Building and Environment, 237, p. 110295, 2023. https://doi.org/10.1016/j.buildenv.2023.110295
  • M. Dittus, G. Quattrone, and L. Capra, Mass Participation During Emergency Response: Event-centric Crowdsourcing in Humanitarian Mapping, in Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, 2017. http://osm-analytics.org
  • M. Auer et al., Towards Using the Potential of OpenStreetMap History for Disaster Activation Monitoring, in Proceedings of the 15th ISCRAM Conference, K. Boersma and B. Tomaszewski, Eds., NY, USA, 2018.
  • J. Anderson, R. Soden, B. Keegan, L. Palen, and K. M. Anderson, The Crowd is the Territory: Assessing Quality in Peer-Produced Spatial Data During Disasters, International Journal of Human–Computer Interaction, 34, 4, 295–310, 2018. https://doi.org/10.1080/10447318.2018.1427828
  • P. Campalani, M. Pittore, and K. Renner, Assessing OpenStreetMap roads fitness-for-use for disaster risk assessment in developing countries: The case of Burundi, Open Geosciences, 15, 1, 20220485, 2023. https://doi.org/10.1515/geo-2022-0485
  • K. Tzavella, A. Skopeliti, and A. Fekete, Volunteered geographic information use in crisis, emergency and disaster management: a scoping review and a web atlas, Geo-spatial Information Science, 27, 2, 423–454, 2022. https://doi.org/10.1080/10095020.2022.2139642
  • S. Suthakaran, S. Jayakody, S. Subasinghe, N. Seneviratne, and R. Alahakoon, Mapping the flood risk exposure using open-source geospatial tools and techniques: A case of Gampaha Divisional Secretariat Division, Sri Lanka, Journal of Geoscience and Environment Protection, 10, 18-31, 2022. https://doi.org/10.4236/gep.2022.1010002
  • P. Mooney and P. Corcoran, Analysis of Interaction and Co-editing Patterns amongst OpenStreetMap Contributors, Transactions in GIS, 18, 5, Art. 5, 2013. https://doi.org/10.1111/tgis.12051
  • M. Hacar, B. Kılıç, and K. Şahbaz, Analyzing OpenStreetMap Road Data and Characterizing the Behavior of Contributors in Ankara, Turkey, ISPRS International Journal of Geo-Information, 7, 10, p. 400, 2018. https://doi.org/10.3390/ijgi7100400
  • M. Zia, Z. Cakir, and D. Z. Seker, Turkey OpenStreetMap Dataset - Spatial Analysis of Development and Growth Proxies, Open Geosciences, 11, 1, Art. 1, 2019. https://doi.org/10.1515/geo-2019-0012
  • M. Hacar, OpenStreetMap Yerleşim-içi Yollarına Ait Etiket Bilgilerinin Karşılaştırılmasıyla Gönüllülerin Katkı Sağlama Eğilimlerinin İncelenmesi, Harita Dergisi, 164, 77–87, 2020.
  • M. Minghini and F. Frassinelli, OpenStreetMap history for intrinsic quality assessment: Is OSM up-to-date?, Open Geospatial Data, Software and Standards, 4, 1, 2019. https://doi.org/10.1186/s40965-019-0067-x
  • A. Martini, P. V. Kuper, and M. Breunig, Database-Supported Change Analysis and Quality Evaluation of Openstreetmap Data, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5, 535–541, 2019. https://doi.org/10.5194/isprs-annals-IV-2-W5-535-2019
  • ohsome, ohsome Heidelberg Institute for Geoinformation Technology. https://heigit.org/big-spatial-data-analytics-en/ohsome/, Erişim Tarihi: 04 Mart 2024.
  • ohsome API, Welcome to the documentation of the ohsome API! — ohsome API 1.10.2 documentation. https://docs.ohsome.org/ohsome-api/v1/, Erişim Tarihi: 04 Mart 2024.
  • B. Ciepłuch, P. Mooney, and A. C. Winstanley, Building Generic Quality Indicators for OpenStreetMap, in 19th annual GIS Research UK (GISRUK), Portsmouth, UK, Apr. 2011. Erişim Tarihi: 05 Aralık 2024. http://www.port.ac.uk/ special/gisruk2011/
  • TC SBB, Türkiye Cumhuriyeti Cumhurbaşkanlığı, Strateji ve Bütçe Başkanlığı - Kahramanmaras ve Hatay Depremleri Yeniden Imar ve Gelisme Raporu, Erişim Tarihi: 2024-03-05, 2024. https://www.sbb.gov.tr/wpcontent/uploads/2024/02/Kahramanmaras-ve-Hatay-Depremleri-Yeniden-Imar-ve-Gelisme-Raporu-1.pdf, Erişim Tarihi: 05 Mart 2024.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Coğrafi Bilgi Sistemleri ve Mekansal Veri Modelleme
Bölüm Araştırma Makaleleri
Yazarlar

Abdulkadir Memduhoğlu 0000-0002-9072-869X

Proje Numarası 2219 programı (1059B192202917)
Erken Görünüm Tarihi 2 Eylül 2024
Yayımlanma Tarihi 15 Ekim 2024
Gönderilme Tarihi 1 Mayıs 2024
Kabul Tarihi 13 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 4

Kaynak Göster

APA Memduhoğlu, A. (2024). 6 Şubat depremlerinden etkilenen şehirlere ait OpenStreetMap verilerinin niceliksel ve semantik analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1264-1276. https://doi.org/10.28948/ngumuh.1476998
AMA Memduhoğlu A. 6 Şubat depremlerinden etkilenen şehirlere ait OpenStreetMap verilerinin niceliksel ve semantik analizi. NÖHÜ Müh. Bilim. Derg. Ekim 2024;13(4):1264-1276. doi:10.28948/ngumuh.1476998
Chicago Memduhoğlu, Abdulkadir. “6 Şubat Depremlerinden Etkilenen şehirlere Ait OpenStreetMap Verilerinin Niceliksel Ve Semantik Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 4 (Ekim 2024): 1264-76. https://doi.org/10.28948/ngumuh.1476998.
EndNote Memduhoğlu A (01 Ekim 2024) 6 Şubat depremlerinden etkilenen şehirlere ait OpenStreetMap verilerinin niceliksel ve semantik analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1264–1276.
IEEE A. Memduhoğlu, “6 Şubat depremlerinden etkilenen şehirlere ait OpenStreetMap verilerinin niceliksel ve semantik analizi”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 4, ss. 1264–1276, 2024, doi: 10.28948/ngumuh.1476998.
ISNAD Memduhoğlu, Abdulkadir. “6 Şubat Depremlerinden Etkilenen şehirlere Ait OpenStreetMap Verilerinin Niceliksel Ve Semantik Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (Ekim 2024), 1264-1276. https://doi.org/10.28948/ngumuh.1476998.
JAMA Memduhoğlu A. 6 Şubat depremlerinden etkilenen şehirlere ait OpenStreetMap verilerinin niceliksel ve semantik analizi. NÖHÜ Müh. Bilim. Derg. 2024;13:1264–1276.
MLA Memduhoğlu, Abdulkadir. “6 Şubat Depremlerinden Etkilenen şehirlere Ait OpenStreetMap Verilerinin Niceliksel Ve Semantik Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 4, 2024, ss. 1264-76, doi:10.28948/ngumuh.1476998.
Vancouver Memduhoğlu A. 6 Şubat depremlerinden etkilenen şehirlere ait OpenStreetMap verilerinin niceliksel ve semantik analizi. NÖHÜ Müh. Bilim. Derg. 2024;13(4):1264-76.

download