Derleme
BibTex RIS Kaynak Göster

Taxonomy of sensor fusion techniques for various application areas: A review

Yıl 2025, Cilt: 14 Sayı: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1455086

Öz

Sensor fusion techniques play critical roles in various industries such as defense, automotive, military, and healthcare. These techniques combine data from multiple sources, resulting in more detailed and reliable results. Sensor fusion techniques are indispensable for effective decision-making processes, especially in complex environments and variable conditions. These techniques allow systems to operate more efficiently. This study examines the advantages, challenges, and different algorithms used in various sensor fusion techniques and provides a comprehensive classification. This classification makes it possible to evaluate sensor fusion techniques and categorize them to appeal to broader applications. The study aims to help researchers understand sensor fusion techniques and guide them in making choices that suit their needs. Additionally, when evaluating the future potential of sensor fusion, the focus is on how fusion techniques may evolve, particularly with increasing complexity and diversity. Thus, it contributes to advancing research in sensor fusion and developing more effective systems.

Etik Beyan

The article we present is original, the similarity rate in the literature (excluding references) does not exceed 20% for the Original Research Article and 30% for the Compilation Article, and even within these limits, the similarity rate in a single source does not exceed 5%. We guarantee that it has not been submitted for publication, has not been published before, and has been sent to the Dean of Niğde Ömer Halisdemir University Faculty of Engineering along with the similarity report.

Destekleyen Kurum

YÖK 100/2000

Teşekkür

This study has been supported within the scope of the YOK 100 2000 doctoral scholarship in the field of Advanced Robotic Systems and mechatronics. The authors thank the relevant units.

Kaynakça

  • F. E. White, JDL, Data Fusion Lexicon, Technical Panel for C3 15, 1991.
  • Hall, L. David, J. Llinas. An introduction to multisensor data fusion. Proceedings of the IEEE, 85(1), pp. 6-23, 1997. https://doi.org/10.1109/5.554205
  • F. Castanedo, A review of data fusion techniques. The Scientific World Journal, 2013(1), 704504, 2013. https://doi.org/10.1155/2013/704504
  • K. S. Nagla, M. Uddin, D. Singh. Multisensor data fusion and integration for mobile robots: a review. IAES International Journal of Robotics and Automation, 3(2), pp. 131, 2014.
  • H.F. Durrant-Whyte. Sensor models and multisensor integration. The İnternational Journal of Robotics Research, 7(6), pp. 97-113, 1988. https://doi.org/10.1177/027836498800700608
  • R.C. Luo, M. G. Kay. A tutorial on multisensor integration and fusion. In Proceedings IECON'90: 16th Annual Conference of IEEE Industrial Electronics Society, pp. 707-722, 1990. https://doi.org/10.1109/IECON.1990.149228
  • J. Llinas, D. L. Hall, An introduction to multi-sensor data fusion. In: ISCAS'98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 6, pp. 537-540, May 1998. https://doi.org/10.1109/ISCAS.1998.705329
  • M. B. Alatise, G. P. Hancke, A review on challenges of autonomous mobile robot and sensor fusion methods. IEEE Access, 8, 39830-39846, 2020. https://doi.org/10.1109/ACCESS.2020.2975643
  • M. L. Fung, M. Z. Chen, Y. H. Chen, Sensor fusion: A review of methods and applications. In 2017 29th Chinese Control and Decision Conference (CCDC), pp. 3853-3860, IEEE, May 2017. https://doi.org/10.1109/CCDC.2017.7979175
  • K. Akkaya, I. Guvenc, R. Aygun, N. Pala, A. Kadri, IoT-based occupancy monitoring techniques for energy-efficient smart buildings. In 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 58-63, IEEE, March 2015. https://doi.org/10.1109/WCNCW.2015.7122529
  • N. Ouerhani, N. Pazos, M. Aeberli, M. Muller, IoT-based dynamic street light control for smart cities use cases. In 2016 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1-5, IEEE, May 2016. https://doi.org/10.1109/ISNCC.2016.7746112
  • F. Kirsch, R. Miesen, M. Vossiek, Precise local-positioning for autonomous situation awareness in the Internet of Things. In 2014 IEEE MTT-S International Microwave Symposium (IMS2014), pp. 1-4, June 2014. https://doi.org/10.1109/MWSYM.2014.6848674
  • C. L. Wu, Y. Xie, S. K. Pradhan, L. C. Fu, Y. C. Zeng, Unsupervised context discovery based on hierarchical fusion of heterogeneous features in real smart living environments. In 2016 IEEE International Conference on Automation Science and Engineering (CASE), pp. 1106-1111, IEEE, August 2016. https://doi.org/10.1109/COASE.2016.7743528
  • S. K. Datta, R. P. F. Da Costa, J. Härri, C. Bonnet, Integrating connected vehicles in Internet of Things ecosystems: Challenges and solutions. In 2016 IEEE 17th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1-6, IEEE, June 2016. https://doi.org/10.1109/WoWMoM.2016.7523574
  • S. Wildstrom, Better living through big data. Cisco Newsroom. Available: http://newsroom.cisco.com/feature/778800/Better-Living-Through-Big-Data, Accessed 11 March 2024.
  • W. Ding, X. Jing, Z. Yan, and L. T. Yang, A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion, Information Fusion, vol. 51, pp. 129-144, 2019. https://doi.org/10.1016/j.inffus.2018.12.001
  • A. Westenberger, M. Muntzinger, M. Gabb, M. Fritzsche, and K. Dietmayer, Time-to-collision estimation in automotive multi-sensor fusion with delayed measurements, in Advanced Microsystems for Automotive Applications 2013: Smart Systems for Safe and Green Vehicles, Springer International Publishing, pp. 13-20, 2013. https://doi.org/10.1007/978-3-319-00476-1_2
  • X. Wei, Autonomous control system for the quadrotor unmanned aerial vehicle, in 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), IEEE, pp. 796-799, August 2016. https://doi.org/10.1109/URAI.2016.7733984
  • H. C. Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, Nature, 293(5828), pp. 133-135, 1981. https://doi.org/10.1038/293133a0
  • E. M. Upadhyay and N. K. Rana, "Exposure fusion for concealed weapon detection," in 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS), pp. 1-6, IEEE, March 2014. https://doi.org/10.1109/ICDCSyst.2014.6926141
  • A. M. Sagi-Dolev, Multi-threat detection system, U.S. Patent 8171810, 2012.
  • J. Favre, B. M. Jolles, O. Siegrist, and K. Aminian, Quaternion-based fusion of gyroscopes and accelerometers to improve 3D angle measurement, Electronics Letters, 42(11), p. 1, 2006. https://doi.org/10.1049/el:20060124
  • G. Koshmak, A. Loutfi, M. Linden, Challenges and issues in multisensor fusion approach for fall detection. Journal of Sensors, 2016(1), 6931789, 2016. https://doi.org/10.1155/2016/6931789
  • A. Rihar, M. Mihelj, J. Pašič, J. Kolar, M. Munih, Using sensory data fusion methods for infant body posture assessment. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) pp. 292-297, September 2015. https://doi.org/10.1109/IROS.2015.7353388
  • S. Knoop, S. Vacek, R. Dillmann, Sensor fusion for 3D human body tracking with an articulated 3D body model. In Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA, pp. 1686-1691, May 2006. https://doi.org/10.1109/ROBOT.2006.1641949
  • M. T. Yang, S. Y. Huang, Appearance-based multimodal human tracking and identification for healthcare in the digital home. Sensors, 14(8), 14253-14277, 2014. https://doi.org/10.3390/s140814253
  • S. Begum, S. Barua, M. U. Ahmed, Physiological sensor signals classification for healthcare using sensor data fusion and case-based reasoning. Sensors, 14(7), 11770-11785, 2014. https://doi.org/10.3390/s140711770
  • D. J. Yeong, G. Velasco-Hernandez, J. Barry, J. Walsh, Sensor and sensor fusion technology in autonomous vehicles: a review. Sensors, 21(6), 2140, 2021. https://doi.org/10.3390/s21062140
  • W. Elmenreich, An introduction to sensor fusion. Vienna University of Technology, Austria, 502, pp. 1-28, 2002.
  • A. Deo, V. Palade, M. N. Huda, Centralised and Decentralised Sensor Fusion-Based Emergency Brake Assist. Sensors, 21(16), 5422, 2021. https://doi.org/10.3390/s21165422
  • J. Fayyad, M. A. Jaradat, D. Gruyer, H. Najjaran, Deep learning sensor fusion for autonomous vehicle perception and localization: a review. Sensors, 20(15), 4220, 2020. https://doi.org/10.3390/s20154220
  • M. Almasri, K. Elleithy, Data fusion in WSNs: architecture, taxonomy, evaluation of techniques, and challenges. Int J Sci Eng Res, 6(4), 1620-36, 2015.
  • K. Huang, B. Shi, X. Li, S. Huang, Y. Li, Multi-modal sensor fusion for auto driving perception: a survey. arXiv preprint arXiv:2202.02703, 2022. https://doi.org/10.48550/arXiv.2202.02703
  • Y. Cui, R. Chen, W. Chu, L. Chen, D. Tian, Y. Li, D. Cao, Deep learning for image and point cloud fusion in autonomous driving: a review. IEEE Transactions on Intelligent Transportation Systems, 23(2), 722-739, 2021. https://doi.org/10.1109/TITS.2020.3023541
  • Y. Wang, Q. Mao, H. Zhu, J. Deng, Y. Zhang, J. Ji, Y. Zhang, Multi-modal 3d object detection in autonomous driving: a survey. International Journal of Computer Vision, 131(8), 2122-2152, 2023. https://doi.org/10.1007/s11263-023-01784-z
  • H. F. Durrant-Whyte, Sensor models and multisensor integration. The İnternational Journal Of Robotics Research, 7(6), 97-113, 1988. https://doi.org/10.1177/027836498800700608
  • R. Willett, A. Martin, R. Nowak, Backcasting: adaptive sampling for sensor networks. In Proceedings of the 3rd İnternational Symposium On Information Processing İn Sensor Networks, pp. 124-133, April 2004. https://doi.org/10.1145/984622.984641
  • V. Gupta, R. Pandey, Data fusion and topology control in wireless sensor networks. WSEAS Transactions on Signal Processing, 4(4), 150-172, 2008.
  • K. Qian, S. Zhu, X. Zhang, L. E. Li, Robust multimodal vehicle detection in foggy weather using complementary lidar and radar signals. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 444-453, 2021.
  • X. Xu, L. Zhang, J. Yang, C. Cao, W. Wang, Y. Ran, M. Luo, A review of multi-sensor fusion slam systems based on 3D LIDAR. Remote Sensing, 14(12), 2835, 2022. https://doi.org/10.3390/rs14122835
  • J. Alfred Daniel, C. Chandru Vignesh, B. A. Muthu, R. Senthil Kumar, C. B. Sivaparthipan, C. E. M. Marin, Fully convolutional neural networks for LIDAR–camera fusion for pedestrian detection in autonomous vehicle. Multimedia Tools and Applications, 82(16), 25107-25130, 2023. https://doi.org/10.1007/s11042-023-14417-x
  • E. F. Nakamura, A. A. Loureiro, A. C. Frery, Information fusion for wireless sensor networks: methods, models, and classifications. ACM Computing Surveys (CSUR), 39(3), 9-es, 2007. https://doi.org/10.1145/1267070.1267073
  • J. Samatha, G. Madhavi, Securesense: enhancing person verification through multimodal biometrics for robust authentication. Scalable Computing: Practice and Experience, 25(2), 1040-1054, 2024. https://doi.org/10.12694/scpe.v25i2.2524
  • A. Rehman, T. Saba, M. Kashif, S. M. Fati, S. A. Bahaj, H. Chaudhry, A revisit of internet of things technologies for monitoring and control strategies in smart agriculture. Agronomy, 12(1), 127, 2022. https://doi.org/10.3390/agronomy12010127
  • B. V. Dasarathy, Sensor fusion potential exploitation-innovative architectures and illustrative applications. Proceedings of the IEEE, 85(1), 24-38, 1997. https://doi.org/10.1109/5.554206
  • E. Alpaydin, Classifying multimodal data. In The Handbook of Multimodal-Multisensor Interfaces: Signal Processing, Architectures, and Detection of Emotion and Cognition, 2, pp. 49-69, 2018. https://doi.org/10.1145/3107990.3107994
  • P. A. Neves, J. J. Rodrigues, K. Lin, Data fusion on wireless sensor and actuator networks powered by the ZenSens system. IET communications, 5(12), 1661-1668, 2011. https://doi.org/10.1049/iet-com.2010.0644
  • C. Zhao, Y. Wang, A new classification method on information fusion of wireless sensor networks. In 2008 International Conference on Embedded Software and Systems Symposia, pp. 231-236, IEEE, July 2008. https://doi.org/10.1109/ICESS.Symposia.2008.73
  • K. Maraiya, K. Kant, N. Gupta, Study of data fusion in wireless sensor network. In International Conference on Advanced Computing and Communication Technologies, pp. 535-539, 2011.
  • M. E. Liggins, C. Y. Chong, I. Kadar, M. G. Alford, V. Vannicola, S. Thomopoulos, Distributed fusion architectures and algorithms for target tracking. Proceedings of the IEEE, 85(1), 95-107, 1997. https://doi.org/10.1109/JPROC.1997.554211
  • E. Waltz, Multisensor Data Fusion, Boston: Artech House, 685, 1990.
  • E. Azimirad, J. Haddadnia, The comprehensive review on JDL model in data fusion networks: techniques and methods. International Journal of Computer Science and Information Security, 13(1), 53, 2015.
  • D. E. Moshou, X. E, Pantazi, Data fusion and its applications in agriculture. In Information and Communication Technologies for Agriculture—Theme II: Data, pp. 17-40, Springer International Publishing, 2002. https://doi.org/10.1007/978-3-030-84148-5_2
  • I. Ermolov, A novel data fusion architecture for uncrewed vehicles. In 21TH International Symposium On Measurement And Control In Robotics ISMCR, pp. 26-28, 2018. https://doi.org/10.21014/acta_imeko.v8i4.684
  • M. Markin, C. Harris, M. Bernhardt, J. Austin, M. Bedworth, P. Greenway, D. Lowe, Technology foresight on data fusion and data processing. Publication of The Royal Aeronautical Society, 1997.
  • A. N. Afif, F. Noviyanto, S. Sunardi, S. A. Akbar, E. Aribowo, Integrated application for automatic schedule-based distribution and monitoring of irrigation by applying the waterfall model process. Bulletin of Electrical Engineering and Informatics, 9(1), 420-426, 2020. https://doi.org/10.11591/eei.v9i1.1368
  • C. Wang, T. Ji, F. Mao, Z. Wang, Z. Li, Prognostics and health management system for electric vehicles with a hierarchy fusion framework: concepts, architectures, and methods. Advances in Civil Engineering, 2021(1), 6685900, 2021. https://doi.org/10.1155/2021/6685900
  • M. Bevilacqua, A. Tsourdos, A. Starr, I. Durazo-Cardenas, Data fusion strategy for precise vehicle location for intelligent self-aware maintenance systems. In 2015 6th International Conference on Intelligent Systems, Modelling and Simulation, pp. 76-81, IEEE, 2015. https://doi.org/10.1109/ISMS.2015.37
  • J. R. Boyd, A discourse on winning and losing. Maxwell Air Force Base, AL: Air University Press, 400, 2018.
  • M. Bedworth, J. O'Brien, The Omnibus model: a new model of data fusion?. IEEE Aerospace and Electronic Systems Magazine, 15(4), 30-36, 2000. https://doi.org/10.1109/62.839632
  • K. Maraiya, K. Kant, N. Gupta, Study of data fusion in wireless sensor network. In International Conference on Advanced Computing and Communication Technologies, pp. 535-539, 2011.
  • R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand, An architecture for autonomy. The International Journal of Robotics Research, 17(4), 315-337, 1998. https://doi.org/10.1177/027836499801700402
  • Y. Tao, H. Hu, H. Zhou, Integration of vision and inertial sensors for 3D arm motion tracking in home-based rehabilitation. The International Journal of Robotics Research, 26(6), 607-624, 2007. https://doi.org/10.1177/0278364907079278
  • M. A. Lee, B. Yi, R. Martín-Martín, S. Savarese, J. Bohg, Multimodal sensor fusion with differentiable filters. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10444-10451, IEEE, October 2020. https://doi.org/10.1109/IROS45743.2020.9341579
  • Z. Huang, C. Lv, Y. Xing, J. Wu, Multi-modal sensor fusion-based deep neural network for end-to-end autonomous driving with scene understanding. IEEE Sensors Journal, 21(10), 11781-11790, 2020. https://doi.org/10.1109/JSEN.2020.3003121
  • K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, A.Geiger, Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. https://doi.org/10.1109/TPAMI.2022.3200245
  • Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, A. M. López, Multimodal end-to-end autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 23(1), 537-547, 2020. https://doi.org/10.1109/TITS.2020.3013234
  • Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. L. Rus, S. Han, Bevfusion: Multi-task multi-sensor fusion with unified bird's-eye view representation. In 2023 IEEE international conference on robotics and automation (ICRA), pp. 2774-2781, IEEE, 2023. https://doi.org/10.1109/ICRA48891.2023.10160968
  • A. Singh, Transformer-based sensor fusion for autonomous driving: A survey. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3312-3317, 2023.
  • K. Lin, Y. Li, J. Sun, D. Zhou, Q. Zhang, Multi-sensor fusion for body sensor network in medical human–robot interaction scenario. Information Fusion, 57, pp. 15-26, 2020. https://doi.org/10.1016/j.inffus.2019.11.001
  • M. Z. Uddin, M. M. Hassan, A. Alsanad, C. Savaglio, A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare. Information Fusion, 55, 105-115, 2020. https://doi.org/10.1016/j.inffus.2019.08.004
  • S. Chung, J. Lim, K. J. Noh, G. Kim, H. Jeong, Sensor data acquisition and multimodal sensor fusion for human activity recognition using deep learning. Sensors, 19(7), 1716, 2019. https://doi.org/10.3390/s19071716
  • G. Shi, C. Geng, H. Liu, H. Su, Y. Jin, S. Sun, The human body characteristic parameters extraction and disease tendency prediction based on multi-sensing fusion algorithms. In 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 126-130, IEEE, June 2016. https://doi.org/10.1109/CYBER.2016.7574808
  • A. Alofi, A. Alghamdi, R. Alahmadi, N. Aljuaid, M. Hemalatha, A review of data fusion techniques. International Journal of Computer Applications, 167(7), pp. 37-41, 2017. https://doi.org/10.5120/ijca2017914318
  • Q. Li, C. Zhang, Q. Hu, H. Fu, P. Zhu, Confidence-aware fusion using dempster-shafer theory for multispectral pedestrian detection. IEEE Transactions on Multimedia, 2022. https://doi.org/10.1109/TMM.2022.3160589
  • M. O. Oloyede, G. P. Hancke, Unimodal and multimodal biometric sensing systems: a review. IEEE Access, 4, 7532-7555, 2016. https://doi.org/10.1109/ACCESS.2016.2614720
  • K. Khoshelham, S. Nedkov, C. Nardinocchi, A comparison of Bayesian and evidence-based fusion methods for automated building detection in aerial data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(PART B7), 1183-1188, 2008.
  • M. Z. Uddin, M. M. Hassan, A. Alsanad, C. Savaglio, A body sensor data fusion and deep recurrent neural network-based behaviour recognition approach for robust healthcare. Information Fusion, 55, 105-115, 2020. https://doi.org/10.1016/j.inffus.2019.08.004
  • S. Münzner, P. Schmidt, A. Reiss, M. Hanselmann, R. Stiefelhagen, R. Dürichen, CNN-based sensor fusion techniques for multimodal human activity recognition. In Proceedings of the 2017 ACM International Symposium On Wearable Computers, pp. 158-165, September 2017. https://doi.org/10.1145/3123021.3123046
  • R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition, pp. 580-587, 2014. https://doi.org/10.1109/CVPR.2014.81
  • J. Wagner, V. Fischer, M. Herman, S. Behnke, Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks. In ESANN, 587, pp. 509-514, April 2016.
  • K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions On Pattern Analysis And Machine İntelligence, 37(9), 1904-1916, 2015. https://doi.org/10.1109/TPAMI.2015.2389824
  • R. Girshick, Fast r-cnn. In Proceedings of the IEEE İnternational Conference On Computer Vision, pp. 1440-1448, 2015. https://doi.org/10.1109/ICCV.2015.169
  • S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions On Pattern Analysis And Machine İntelligence, 39(6), 1137-1149, 2016. https://doi.org/10.1109/TPAMI.2016.2577031
  • J. Liu, S. Zhang, S. Wang, D. N. Metaxas, Multispectral deep neural networks for pedestrian detection. arXiv preprint arXiv:1611.02644, 2016. https://doi.org/10.48550/arXiv.1611.02644
  • J., Redmon, S. Divvala, R. Girshick, A. Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition (pp. 779-788), 2016. https://doi.org/10.1109/CVPR.2016.91
  • J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, pp. 7263-7271, 2017. https://doi.org/10.1109/CVPR.2017.690
  • J. Redmon, A. Farhadi, Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018. https://doi.org/10.48550/arXiv.1804.02767
  • A. Asvadi, L. Garrote, C. Premebida, P. Peixoto, U. J. Nunes, Multimodal vehicle detection: fusing 3D-LIDAR and color camera data. Pattern Recognition Letters, 115, 20-29, 2018. https://doi.org/10.1016/j.patrec.2018.04.011
  • H. Wang, X. Lou, Y. Cai, Y. Li, L. Chen, Real-time vehicle detection algorithm based on vision and lidar point cloud fusion. Journal of Sensors, 2019. https://doi.org/10.1155/2019/8473980
  • J. Dou, J. Fang, T. Li, J. Xue, Boosting cnn-based pedestrian detection via 3d lidar fusion in autonomous driving. In Image and Graphics: 9th International Conference, ICIG 2017, Shanghai, China, September 13-15, 2017, Revised Selected Papers, Part II 9, pp. 3-13, Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-71589-6_1
  • J. Han, Y. Liao, J. Zhang, S. Wang, S. Li, Target fusion detection of LiDAR and camera based on the improved YOLO algorithm. Mathematics, 6(10), 213, 2018. https://doi.org/10.3390/math6100213
  • W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, A. C. Berg, Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14, Proceedings, Part I 14, pp. 21-37, Springer International Publishing, October 2016. https://doi.org/10.1007/978-3-319-46448-0_2
  • J. Kim, J. Choi, Y. Kim, J. Koh, C. C. Chung, J. W. Choi, Robust camera lidar sensor fusion via deep gated information fusion network. In 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1620-1625, IEEE, June 2018. https://doi.org/10.1109/IVS.2018.8500711
  • Y. L. Hou, Y. Song, X. Hao, Y. Shen, M. Qian, H. Chen, Multispectral pedestrian detection based on deep convolutional neural networks. Infrared Physics & Technology, 94, 69-77, 2018. https://doi.org/10.1016/j.infrared.2018.08.029
  • Z. Li, L. Yang, F. Zhou, FSSD: feature fusion single shot multibox detector. arXiv preprint arXiv:1712.00960, 2017. https://doi.org/10.48550/arXiv.1712.00960
  • C. Y. Fu, W. Liu, A. Ranga, A. Tyagi, A. C. Berg, Dssd: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659, 2017. https://doi.org/10.48550/arXiv.1701.06659
  • Y. Lee, T. D. Bui, J. Shin, Pedestrian detection based on deep fusion network using feature correlation. In 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 694-699, IEEE, November 2018. https://doi.org/10.23919/APSIPA.2018.8659688
  • Y. Zhao, R. Govindan, D. Estrin, Residual energy scans for monitoring wireless sensor networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC'02), IEEE, Orlando, pp. 356 362, 2002. https://doi.org/10.1109/WCNC.2002.993521

Çeşitli uygulama alanları için sensör füzyon tekniklerinin taksonomisi: Bir inceleme

Yıl 2025, Cilt: 14 Sayı: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1455086

Öz

Sensör füzyon teknikleri savunma, otomotiv, askeri ve sağlık gibi çeşitli endüstrilerde kritik rol oynamaktadır. Bu teknikler, birden fazla kaynaktan gelen verileri birleştirerek daha ayrıntılı ve güvenilir sonuçların elde edilmesini sağlar. Özellikle karmaşık ortamlarda ve değişken koşullarda etkili karar verme süreçleri için vazgeçilmez olan sensör füzyon teknikleri sistemlerin daha verimli çalışmasına olanak tanır. Bu çalışma, çeşitli sensör füzyon tekniklerinin avantajlarını, zorluklarını ve kullanılan farklı algoritmaları detaylı bir şekilde incelemekte ve kapsamlı bir sınıflandırma sunmaktadır. Bu sınıflandırma, çeşitli sensör füzyon tekniklerini değerlendirmeyi ve bunları daha geniş bir uygulama alanına hitap edecek şekilde kategorilere ayırmayı mümkün kılar. Çalışmanın amacı araştırmacılara sensör füzyon tekniklerini daha iyi anlamalarını sağlamak ve ihtiyaçlarına uygun seçimler yapmaları için rehberlik etmektir. Ayrıca, sensör füzyonunun gelecekteki potansiyeli değerlendirilirken, özellikle artan karmaşıklık ve çeşitlilikle birlikte füzyon tekniklerinin nasıl gelişebileceğine değinilmiştir. Böylece sensör füzyonunda araştırmaların ilerlemesine ve daha etkili sistemlerin geliştirilmesine katkı sağlanır.

Etik Beyan

sunduğumuz makalenin orijinal olduğunu, literatürdeki benzerlik oranının (referanslar hariç) Orijinal Araştırma Makalesi için %20’yi, Derleme Makalesi için ise %30’u geçmediğini, bu sınırlar içerisinde olsa dahi tek bir kaynaktaki benzerlik oranının %5’i geçmediğini, başka bir dergiye yayımlanmak üzere verilmediğini, daha önce yayımlanmadığını ve benzerlik raporu ile birlikte Niğde Ömer Halisdemir Üniversitesi Mühendislik Fakültesi Dekanlığına gönderildiğini garanti ederiz.

Destekleyen Kurum

YÖK 100/2000

Teşekkür

Bu çalışma İleri Robotik Sistemler ve Mekatronik alanında YÖK 100 2000 doktora bursu kapsamında desteklenmiştir. Yazarlar, ilgili birimlere teşekkür eder.

Kaynakça

  • F. E. White, JDL, Data Fusion Lexicon, Technical Panel for C3 15, 1991.
  • Hall, L. David, J. Llinas. An introduction to multisensor data fusion. Proceedings of the IEEE, 85(1), pp. 6-23, 1997. https://doi.org/10.1109/5.554205
  • F. Castanedo, A review of data fusion techniques. The Scientific World Journal, 2013(1), 704504, 2013. https://doi.org/10.1155/2013/704504
  • K. S. Nagla, M. Uddin, D. Singh. Multisensor data fusion and integration for mobile robots: a review. IAES International Journal of Robotics and Automation, 3(2), pp. 131, 2014.
  • H.F. Durrant-Whyte. Sensor models and multisensor integration. The İnternational Journal of Robotics Research, 7(6), pp. 97-113, 1988. https://doi.org/10.1177/027836498800700608
  • R.C. Luo, M. G. Kay. A tutorial on multisensor integration and fusion. In Proceedings IECON'90: 16th Annual Conference of IEEE Industrial Electronics Society, pp. 707-722, 1990. https://doi.org/10.1109/IECON.1990.149228
  • J. Llinas, D. L. Hall, An introduction to multi-sensor data fusion. In: ISCAS'98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 6, pp. 537-540, May 1998. https://doi.org/10.1109/ISCAS.1998.705329
  • M. B. Alatise, G. P. Hancke, A review on challenges of autonomous mobile robot and sensor fusion methods. IEEE Access, 8, 39830-39846, 2020. https://doi.org/10.1109/ACCESS.2020.2975643
  • M. L. Fung, M. Z. Chen, Y. H. Chen, Sensor fusion: A review of methods and applications. In 2017 29th Chinese Control and Decision Conference (CCDC), pp. 3853-3860, IEEE, May 2017. https://doi.org/10.1109/CCDC.2017.7979175
  • K. Akkaya, I. Guvenc, R. Aygun, N. Pala, A. Kadri, IoT-based occupancy monitoring techniques for energy-efficient smart buildings. In 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 58-63, IEEE, March 2015. https://doi.org/10.1109/WCNCW.2015.7122529
  • N. Ouerhani, N. Pazos, M. Aeberli, M. Muller, IoT-based dynamic street light control for smart cities use cases. In 2016 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1-5, IEEE, May 2016. https://doi.org/10.1109/ISNCC.2016.7746112
  • F. Kirsch, R. Miesen, M. Vossiek, Precise local-positioning for autonomous situation awareness in the Internet of Things. In 2014 IEEE MTT-S International Microwave Symposium (IMS2014), pp. 1-4, June 2014. https://doi.org/10.1109/MWSYM.2014.6848674
  • C. L. Wu, Y. Xie, S. K. Pradhan, L. C. Fu, Y. C. Zeng, Unsupervised context discovery based on hierarchical fusion of heterogeneous features in real smart living environments. In 2016 IEEE International Conference on Automation Science and Engineering (CASE), pp. 1106-1111, IEEE, August 2016. https://doi.org/10.1109/COASE.2016.7743528
  • S. K. Datta, R. P. F. Da Costa, J. Härri, C. Bonnet, Integrating connected vehicles in Internet of Things ecosystems: Challenges and solutions. In 2016 IEEE 17th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1-6, IEEE, June 2016. https://doi.org/10.1109/WoWMoM.2016.7523574
  • S. Wildstrom, Better living through big data. Cisco Newsroom. Available: http://newsroom.cisco.com/feature/778800/Better-Living-Through-Big-Data, Accessed 11 March 2024.
  • W. Ding, X. Jing, Z. Yan, and L. T. Yang, A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion, Information Fusion, vol. 51, pp. 129-144, 2019. https://doi.org/10.1016/j.inffus.2018.12.001
  • A. Westenberger, M. Muntzinger, M. Gabb, M. Fritzsche, and K. Dietmayer, Time-to-collision estimation in automotive multi-sensor fusion with delayed measurements, in Advanced Microsystems for Automotive Applications 2013: Smart Systems for Safe and Green Vehicles, Springer International Publishing, pp. 13-20, 2013. https://doi.org/10.1007/978-3-319-00476-1_2
  • X. Wei, Autonomous control system for the quadrotor unmanned aerial vehicle, in 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), IEEE, pp. 796-799, August 2016. https://doi.org/10.1109/URAI.2016.7733984
  • H. C. Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, Nature, 293(5828), pp. 133-135, 1981. https://doi.org/10.1038/293133a0
  • E. M. Upadhyay and N. K. Rana, "Exposure fusion for concealed weapon detection," in 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS), pp. 1-6, IEEE, March 2014. https://doi.org/10.1109/ICDCSyst.2014.6926141
  • A. M. Sagi-Dolev, Multi-threat detection system, U.S. Patent 8171810, 2012.
  • J. Favre, B. M. Jolles, O. Siegrist, and K. Aminian, Quaternion-based fusion of gyroscopes and accelerometers to improve 3D angle measurement, Electronics Letters, 42(11), p. 1, 2006. https://doi.org/10.1049/el:20060124
  • G. Koshmak, A. Loutfi, M. Linden, Challenges and issues in multisensor fusion approach for fall detection. Journal of Sensors, 2016(1), 6931789, 2016. https://doi.org/10.1155/2016/6931789
  • A. Rihar, M. Mihelj, J. Pašič, J. Kolar, M. Munih, Using sensory data fusion methods for infant body posture assessment. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) pp. 292-297, September 2015. https://doi.org/10.1109/IROS.2015.7353388
  • S. Knoop, S. Vacek, R. Dillmann, Sensor fusion for 3D human body tracking with an articulated 3D body model. In Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA, pp. 1686-1691, May 2006. https://doi.org/10.1109/ROBOT.2006.1641949
  • M. T. Yang, S. Y. Huang, Appearance-based multimodal human tracking and identification for healthcare in the digital home. Sensors, 14(8), 14253-14277, 2014. https://doi.org/10.3390/s140814253
  • S. Begum, S. Barua, M. U. Ahmed, Physiological sensor signals classification for healthcare using sensor data fusion and case-based reasoning. Sensors, 14(7), 11770-11785, 2014. https://doi.org/10.3390/s140711770
  • D. J. Yeong, G. Velasco-Hernandez, J. Barry, J. Walsh, Sensor and sensor fusion technology in autonomous vehicles: a review. Sensors, 21(6), 2140, 2021. https://doi.org/10.3390/s21062140
  • W. Elmenreich, An introduction to sensor fusion. Vienna University of Technology, Austria, 502, pp. 1-28, 2002.
  • A. Deo, V. Palade, M. N. Huda, Centralised and Decentralised Sensor Fusion-Based Emergency Brake Assist. Sensors, 21(16), 5422, 2021. https://doi.org/10.3390/s21165422
  • J. Fayyad, M. A. Jaradat, D. Gruyer, H. Najjaran, Deep learning sensor fusion for autonomous vehicle perception and localization: a review. Sensors, 20(15), 4220, 2020. https://doi.org/10.3390/s20154220
  • M. Almasri, K. Elleithy, Data fusion in WSNs: architecture, taxonomy, evaluation of techniques, and challenges. Int J Sci Eng Res, 6(4), 1620-36, 2015.
  • K. Huang, B. Shi, X. Li, S. Huang, Y. Li, Multi-modal sensor fusion for auto driving perception: a survey. arXiv preprint arXiv:2202.02703, 2022. https://doi.org/10.48550/arXiv.2202.02703
  • Y. Cui, R. Chen, W. Chu, L. Chen, D. Tian, Y. Li, D. Cao, Deep learning for image and point cloud fusion in autonomous driving: a review. IEEE Transactions on Intelligent Transportation Systems, 23(2), 722-739, 2021. https://doi.org/10.1109/TITS.2020.3023541
  • Y. Wang, Q. Mao, H. Zhu, J. Deng, Y. Zhang, J. Ji, Y. Zhang, Multi-modal 3d object detection in autonomous driving: a survey. International Journal of Computer Vision, 131(8), 2122-2152, 2023. https://doi.org/10.1007/s11263-023-01784-z
  • H. F. Durrant-Whyte, Sensor models and multisensor integration. The İnternational Journal Of Robotics Research, 7(6), 97-113, 1988. https://doi.org/10.1177/027836498800700608
  • R. Willett, A. Martin, R. Nowak, Backcasting: adaptive sampling for sensor networks. In Proceedings of the 3rd İnternational Symposium On Information Processing İn Sensor Networks, pp. 124-133, April 2004. https://doi.org/10.1145/984622.984641
  • V. Gupta, R. Pandey, Data fusion and topology control in wireless sensor networks. WSEAS Transactions on Signal Processing, 4(4), 150-172, 2008.
  • K. Qian, S. Zhu, X. Zhang, L. E. Li, Robust multimodal vehicle detection in foggy weather using complementary lidar and radar signals. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 444-453, 2021.
  • X. Xu, L. Zhang, J. Yang, C. Cao, W. Wang, Y. Ran, M. Luo, A review of multi-sensor fusion slam systems based on 3D LIDAR. Remote Sensing, 14(12), 2835, 2022. https://doi.org/10.3390/rs14122835
  • J. Alfred Daniel, C. Chandru Vignesh, B. A. Muthu, R. Senthil Kumar, C. B. Sivaparthipan, C. E. M. Marin, Fully convolutional neural networks for LIDAR–camera fusion for pedestrian detection in autonomous vehicle. Multimedia Tools and Applications, 82(16), 25107-25130, 2023. https://doi.org/10.1007/s11042-023-14417-x
  • E. F. Nakamura, A. A. Loureiro, A. C. Frery, Information fusion for wireless sensor networks: methods, models, and classifications. ACM Computing Surveys (CSUR), 39(3), 9-es, 2007. https://doi.org/10.1145/1267070.1267073
  • J. Samatha, G. Madhavi, Securesense: enhancing person verification through multimodal biometrics for robust authentication. Scalable Computing: Practice and Experience, 25(2), 1040-1054, 2024. https://doi.org/10.12694/scpe.v25i2.2524
  • A. Rehman, T. Saba, M. Kashif, S. M. Fati, S. A. Bahaj, H. Chaudhry, A revisit of internet of things technologies for monitoring and control strategies in smart agriculture. Agronomy, 12(1), 127, 2022. https://doi.org/10.3390/agronomy12010127
  • B. V. Dasarathy, Sensor fusion potential exploitation-innovative architectures and illustrative applications. Proceedings of the IEEE, 85(1), 24-38, 1997. https://doi.org/10.1109/5.554206
  • E. Alpaydin, Classifying multimodal data. In The Handbook of Multimodal-Multisensor Interfaces: Signal Processing, Architectures, and Detection of Emotion and Cognition, 2, pp. 49-69, 2018. https://doi.org/10.1145/3107990.3107994
  • P. A. Neves, J. J. Rodrigues, K. Lin, Data fusion on wireless sensor and actuator networks powered by the ZenSens system. IET communications, 5(12), 1661-1668, 2011. https://doi.org/10.1049/iet-com.2010.0644
  • C. Zhao, Y. Wang, A new classification method on information fusion of wireless sensor networks. In 2008 International Conference on Embedded Software and Systems Symposia, pp. 231-236, IEEE, July 2008. https://doi.org/10.1109/ICESS.Symposia.2008.73
  • K. Maraiya, K. Kant, N. Gupta, Study of data fusion in wireless sensor network. In International Conference on Advanced Computing and Communication Technologies, pp. 535-539, 2011.
  • M. E. Liggins, C. Y. Chong, I. Kadar, M. G. Alford, V. Vannicola, S. Thomopoulos, Distributed fusion architectures and algorithms for target tracking. Proceedings of the IEEE, 85(1), 95-107, 1997. https://doi.org/10.1109/JPROC.1997.554211
  • E. Waltz, Multisensor Data Fusion, Boston: Artech House, 685, 1990.
  • E. Azimirad, J. Haddadnia, The comprehensive review on JDL model in data fusion networks: techniques and methods. International Journal of Computer Science and Information Security, 13(1), 53, 2015.
  • D. E. Moshou, X. E, Pantazi, Data fusion and its applications in agriculture. In Information and Communication Technologies for Agriculture—Theme II: Data, pp. 17-40, Springer International Publishing, 2002. https://doi.org/10.1007/978-3-030-84148-5_2
  • I. Ermolov, A novel data fusion architecture for uncrewed vehicles. In 21TH International Symposium On Measurement And Control In Robotics ISMCR, pp. 26-28, 2018. https://doi.org/10.21014/acta_imeko.v8i4.684
  • M. Markin, C. Harris, M. Bernhardt, J. Austin, M. Bedworth, P. Greenway, D. Lowe, Technology foresight on data fusion and data processing. Publication of The Royal Aeronautical Society, 1997.
  • A. N. Afif, F. Noviyanto, S. Sunardi, S. A. Akbar, E. Aribowo, Integrated application for automatic schedule-based distribution and monitoring of irrigation by applying the waterfall model process. Bulletin of Electrical Engineering and Informatics, 9(1), 420-426, 2020. https://doi.org/10.11591/eei.v9i1.1368
  • C. Wang, T. Ji, F. Mao, Z. Wang, Z. Li, Prognostics and health management system for electric vehicles with a hierarchy fusion framework: concepts, architectures, and methods. Advances in Civil Engineering, 2021(1), 6685900, 2021. https://doi.org/10.1155/2021/6685900
  • M. Bevilacqua, A. Tsourdos, A. Starr, I. Durazo-Cardenas, Data fusion strategy for precise vehicle location for intelligent self-aware maintenance systems. In 2015 6th International Conference on Intelligent Systems, Modelling and Simulation, pp. 76-81, IEEE, 2015. https://doi.org/10.1109/ISMS.2015.37
  • J. R. Boyd, A discourse on winning and losing. Maxwell Air Force Base, AL: Air University Press, 400, 2018.
  • M. Bedworth, J. O'Brien, The Omnibus model: a new model of data fusion?. IEEE Aerospace and Electronic Systems Magazine, 15(4), 30-36, 2000. https://doi.org/10.1109/62.839632
  • K. Maraiya, K. Kant, N. Gupta, Study of data fusion in wireless sensor network. In International Conference on Advanced Computing and Communication Technologies, pp. 535-539, 2011.
  • R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand, An architecture for autonomy. The International Journal of Robotics Research, 17(4), 315-337, 1998. https://doi.org/10.1177/027836499801700402
  • Y. Tao, H. Hu, H. Zhou, Integration of vision and inertial sensors for 3D arm motion tracking in home-based rehabilitation. The International Journal of Robotics Research, 26(6), 607-624, 2007. https://doi.org/10.1177/0278364907079278
  • M. A. Lee, B. Yi, R. Martín-Martín, S. Savarese, J. Bohg, Multimodal sensor fusion with differentiable filters. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10444-10451, IEEE, October 2020. https://doi.org/10.1109/IROS45743.2020.9341579
  • Z. Huang, C. Lv, Y. Xing, J. Wu, Multi-modal sensor fusion-based deep neural network for end-to-end autonomous driving with scene understanding. IEEE Sensors Journal, 21(10), 11781-11790, 2020. https://doi.org/10.1109/JSEN.2020.3003121
  • K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, A.Geiger, Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. https://doi.org/10.1109/TPAMI.2022.3200245
  • Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, A. M. López, Multimodal end-to-end autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 23(1), 537-547, 2020. https://doi.org/10.1109/TITS.2020.3013234
  • Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. L. Rus, S. Han, Bevfusion: Multi-task multi-sensor fusion with unified bird's-eye view representation. In 2023 IEEE international conference on robotics and automation (ICRA), pp. 2774-2781, IEEE, 2023. https://doi.org/10.1109/ICRA48891.2023.10160968
  • A. Singh, Transformer-based sensor fusion for autonomous driving: A survey. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3312-3317, 2023.
  • K. Lin, Y. Li, J. Sun, D. Zhou, Q. Zhang, Multi-sensor fusion for body sensor network in medical human–robot interaction scenario. Information Fusion, 57, pp. 15-26, 2020. https://doi.org/10.1016/j.inffus.2019.11.001
  • M. Z. Uddin, M. M. Hassan, A. Alsanad, C. Savaglio, A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare. Information Fusion, 55, 105-115, 2020. https://doi.org/10.1016/j.inffus.2019.08.004
  • S. Chung, J. Lim, K. J. Noh, G. Kim, H. Jeong, Sensor data acquisition and multimodal sensor fusion for human activity recognition using deep learning. Sensors, 19(7), 1716, 2019. https://doi.org/10.3390/s19071716
  • G. Shi, C. Geng, H. Liu, H. Su, Y. Jin, S. Sun, The human body characteristic parameters extraction and disease tendency prediction based on multi-sensing fusion algorithms. In 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 126-130, IEEE, June 2016. https://doi.org/10.1109/CYBER.2016.7574808
  • A. Alofi, A. Alghamdi, R. Alahmadi, N. Aljuaid, M. Hemalatha, A review of data fusion techniques. International Journal of Computer Applications, 167(7), pp. 37-41, 2017. https://doi.org/10.5120/ijca2017914318
  • Q. Li, C. Zhang, Q. Hu, H. Fu, P. Zhu, Confidence-aware fusion using dempster-shafer theory for multispectral pedestrian detection. IEEE Transactions on Multimedia, 2022. https://doi.org/10.1109/TMM.2022.3160589
  • M. O. Oloyede, G. P. Hancke, Unimodal and multimodal biometric sensing systems: a review. IEEE Access, 4, 7532-7555, 2016. https://doi.org/10.1109/ACCESS.2016.2614720
  • K. Khoshelham, S. Nedkov, C. Nardinocchi, A comparison of Bayesian and evidence-based fusion methods for automated building detection in aerial data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(PART B7), 1183-1188, 2008.
  • M. Z. Uddin, M. M. Hassan, A. Alsanad, C. Savaglio, A body sensor data fusion and deep recurrent neural network-based behaviour recognition approach for robust healthcare. Information Fusion, 55, 105-115, 2020. https://doi.org/10.1016/j.inffus.2019.08.004
  • S. Münzner, P. Schmidt, A. Reiss, M. Hanselmann, R. Stiefelhagen, R. Dürichen, CNN-based sensor fusion techniques for multimodal human activity recognition. In Proceedings of the 2017 ACM International Symposium On Wearable Computers, pp. 158-165, September 2017. https://doi.org/10.1145/3123021.3123046
  • R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition, pp. 580-587, 2014. https://doi.org/10.1109/CVPR.2014.81
  • J. Wagner, V. Fischer, M. Herman, S. Behnke, Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks. In ESANN, 587, pp. 509-514, April 2016.
  • K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions On Pattern Analysis And Machine İntelligence, 37(9), 1904-1916, 2015. https://doi.org/10.1109/TPAMI.2015.2389824
  • R. Girshick, Fast r-cnn. In Proceedings of the IEEE İnternational Conference On Computer Vision, pp. 1440-1448, 2015. https://doi.org/10.1109/ICCV.2015.169
  • S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions On Pattern Analysis And Machine İntelligence, 39(6), 1137-1149, 2016. https://doi.org/10.1109/TPAMI.2016.2577031
  • J. Liu, S. Zhang, S. Wang, D. N. Metaxas, Multispectral deep neural networks for pedestrian detection. arXiv preprint arXiv:1611.02644, 2016. https://doi.org/10.48550/arXiv.1611.02644
  • J., Redmon, S. Divvala, R. Girshick, A. Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition (pp. 779-788), 2016. https://doi.org/10.1109/CVPR.2016.91
  • J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, pp. 7263-7271, 2017. https://doi.org/10.1109/CVPR.2017.690
  • J. Redmon, A. Farhadi, Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018. https://doi.org/10.48550/arXiv.1804.02767
  • A. Asvadi, L. Garrote, C. Premebida, P. Peixoto, U. J. Nunes, Multimodal vehicle detection: fusing 3D-LIDAR and color camera data. Pattern Recognition Letters, 115, 20-29, 2018. https://doi.org/10.1016/j.patrec.2018.04.011
  • H. Wang, X. Lou, Y. Cai, Y. Li, L. Chen, Real-time vehicle detection algorithm based on vision and lidar point cloud fusion. Journal of Sensors, 2019. https://doi.org/10.1155/2019/8473980
  • J. Dou, J. Fang, T. Li, J. Xue, Boosting cnn-based pedestrian detection via 3d lidar fusion in autonomous driving. In Image and Graphics: 9th International Conference, ICIG 2017, Shanghai, China, September 13-15, 2017, Revised Selected Papers, Part II 9, pp. 3-13, Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-71589-6_1
  • J. Han, Y. Liao, J. Zhang, S. Wang, S. Li, Target fusion detection of LiDAR and camera based on the improved YOLO algorithm. Mathematics, 6(10), 213, 2018. https://doi.org/10.3390/math6100213
  • W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, A. C. Berg, Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14, Proceedings, Part I 14, pp. 21-37, Springer International Publishing, October 2016. https://doi.org/10.1007/978-3-319-46448-0_2
  • J. Kim, J. Choi, Y. Kim, J. Koh, C. C. Chung, J. W. Choi, Robust camera lidar sensor fusion via deep gated information fusion network. In 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1620-1625, IEEE, June 2018. https://doi.org/10.1109/IVS.2018.8500711
  • Y. L. Hou, Y. Song, X. Hao, Y. Shen, M. Qian, H. Chen, Multispectral pedestrian detection based on deep convolutional neural networks. Infrared Physics & Technology, 94, 69-77, 2018. https://doi.org/10.1016/j.infrared.2018.08.029
  • Z. Li, L. Yang, F. Zhou, FSSD: feature fusion single shot multibox detector. arXiv preprint arXiv:1712.00960, 2017. https://doi.org/10.48550/arXiv.1712.00960
  • C. Y. Fu, W. Liu, A. Ranga, A. Tyagi, A. C. Berg, Dssd: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659, 2017. https://doi.org/10.48550/arXiv.1701.06659
  • Y. Lee, T. D. Bui, J. Shin, Pedestrian detection based on deep fusion network using feature correlation. In 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 694-699, IEEE, November 2018. https://doi.org/10.23919/APSIPA.2018.8659688
  • Y. Zhao, R. Govindan, D. Estrin, Residual energy scans for monitoring wireless sensor networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC'02), IEEE, Orlando, pp. 356 362, 2002. https://doi.org/10.1109/WCNC.2002.993521
Toplam 99 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Akış ve Sensör Verileri, Bilgi Çıkarma ve Füzyon, Veri Mühendisliği ve Veri Bilimi
Bölüm Makaleler
Yazarlar

Hande Çavşi Zaim 0000-0002-9032-5145

Esra N. Yolaçan 0000-0002-0008-1037

Erken Görünüm Tarihi 10 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 19 Mart 2024
Kabul Tarihi 2 Ağustos 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA Çavşi Zaim, H., & Yolaçan, E. N. (2024). Taxonomy of sensor fusion techniques for various application areas: A review. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 1-1. https://doi.org/10.28948/ngumuh.1455086
AMA Çavşi Zaim H, Yolaçan EN. Taxonomy of sensor fusion techniques for various application areas: A review. NÖHÜ Müh. Bilim. Derg. Aralık 2024;14(1):1-1. doi:10.28948/ngumuh.1455086
Chicago Çavşi Zaim, Hande, ve Esra N. Yolaçan. “Taxonomy of Sensor Fusion Techniques for Various Application Areas: A Review”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 1 (Aralık 2024): 1-1. https://doi.org/10.28948/ngumuh.1455086.
EndNote Çavşi Zaim H, Yolaçan EN (01 Aralık 2024) Taxonomy of sensor fusion techniques for various application areas: A review. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 1–1.
IEEE H. Çavşi Zaim ve E. N. Yolaçan, “Taxonomy of sensor fusion techniques for various application areas: A review”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 1, ss. 1–1, 2024, doi: 10.28948/ngumuh.1455086.
ISNAD Çavşi Zaim, Hande - Yolaçan, Esra N. “Taxonomy of Sensor Fusion Techniques for Various Application Areas: A Review”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (Aralık 2024), 1-1. https://doi.org/10.28948/ngumuh.1455086.
JAMA Çavşi Zaim H, Yolaçan EN. Taxonomy of sensor fusion techniques for various application areas: A review. NÖHÜ Müh. Bilim. Derg. 2024;14:1–1.
MLA Çavşi Zaim, Hande ve Esra N. Yolaçan. “Taxonomy of Sensor Fusion Techniques for Various Application Areas: A Review”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 1, 2024, ss. 1-1, doi:10.28948/ngumuh.1455086.
Vancouver Çavşi Zaim H, Yolaçan EN. Taxonomy of sensor fusion techniques for various application areas: A review. NÖHÜ Müh. Bilim. Derg. 2024;14(1):1-.

download