Araştırma Makalesi
BibTex RIS Kaynak Göster

Havacılık endüstrisinde titanyum parçaların yüzey kalitesi üzerindeki işleme parametrelerinin ve takım kaplamalarının etkisinin araştırılması

Yıl 2025, Cilt: 14 Sayı: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1525630

Öz

Havacılık endüstrisinde çoğu titanyum parça frezeleme işlemi kullanılarak üretilir ve yüksek yüzey kalitesinin elde edilmesinde çeşitli zorluklar vardır. Bu nedenle talaşlı imalatta kesme parametrelerinin optimize edilmesi ve kesici takım kaplamalarının seçilmesi parçaların yüzey pürüzlülüğünü etkileyen en önemli faktörlerdir. Bu çalışmada Ti-6A1-4V alaşımının frezelenmesi sırasında kesme derinliği, kesme hızı ve ilerleme parametrelerinin yüzey pürüzlülüğüne etkileri araştırılmıştır. Ayrıca yüzey kalitesine dayalı AlCrN (Alüminyum Krom Nitrür), AlCrN-tungsten bazlı ve AlTiN (Alüminyum Titanyum Nitrür)-tungsten bazlı olmak üzere üç farklı kaplama derinlemesine incelenmektedir. Taguchi yöntemi kullanılarak her parametre için üç değer belirlenerek yapılan deneylerde sonuçlar, yüzey pürüzlülüğünü etkileyen en önemli parametrenin kesme hızı olduğunu göstermektedir. Ayrıca AlCrN-tungsten bazlı Ayrıca tungsten bazlı AlCrN kaplama en iyi ortalama yüzey pürüzlülüğü değerlerini göstermiştir. Genel olarak bu çalışma, titanyum frezelemede yüzey pürüzlülüğünü etkileyen faktörler hakkında değerli bilgiler vermekte ve havacılık parçaları üretiminde yüzey kalitesini iyileştirmek için kesme parametrelerinin ve takım kaplamalarının seçilmesine yönelik pratik öneriler sunmaktadır. Gelecekteki araştırmalarda, titanyum işlemede yüzey kalitesini daha da artırmak için takım geometrisi ve soğutma stratejileri gibi ek faktörler de araştırılabilir.

Kaynakça

  • M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens, Structure and properties of titanium and titanium alloys, Titanium and Titanium Alloys: Fundamentals and Applications, 1-36, 2003. https://doi.org/10.1002/3527602119.ch1
  • I. Inagaki, T. Takechi, Y. Shirai and N. Ariyasu, Application and features of titanium for the aerospace industry, Nippon Steel & Sumitomo Metal Technical Report, 106, 22-27, 2014.
  • R.R. Boyer, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering: A, 213(1-2), 103-114, 1996. https://doi.org/10.1016/0921-5093(96)10233-1
  • A. Gomez-Gallegos, P. Mandal, D. Gonzalez, N. Zuelli and P. Blackwell, Studies on titanium alloys for aerospace application, Defect and Diffusion Forum, Trans Tech Publications, 419-423, 2018. https://doi.org/10.4028/www.scientific.net/DDF.385.419
  • J.P. Davim, Machining of hard materials, Springer Science & Business Media, 2011.
  • E. Ezugwu and Z. Wang, Titanium alloys and their machinability—a review, Journal of Materials Processing Technology, 68(3), 262-274, 1997. https://doi.org/10.1016/S0924-0136(96)00030-1
  • H. Hong, A. Riga, J. Gahoon and C. Scott, Machinability of steels and titanium alloys under lubrication, Wear, 162, 34-39, 1993. https://doi.org/10.1016/0043-1648(93)90481-Z.
  • C. Ohkubo, I. Watanabe, J. Ford, H. Nakajima, T. Hosoi and T. Okabe, The machinability of cast titanium and Ti–6Al–4V, Biomaterials, 21(4), 421-428, 2000. https://doi.org/10.1016/S0142-9612(99)00206-9.
  • M. Rahman, Y. San WONG, A.R. Zareena, Machinability of titanium alloys, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 46(1), 107-115, 2003. https://doi.org/10.1299/jsmec.46.107.
  • C. Ensarioğlu, M.C. Çakır, Titanyum ve alaşımlarının işlenebilirlik etüdü-Bölüm I, Mühendis ve Makina, 46(546), 36-46, 2005.
  • S. Palanisamy, S.D. McDonald and M.S. Dargusch, Effects of coolant pressure on chip formation while turning Ti6Al4V alloy, International Journal of Machine Tools and Manufacture, 49(9), 739-743, 2009. https://doi.org/10.1016/j.ijmachtools.2009.02.010
  • R.K. Roy, A primer on the Taguchi method, Society of Manufacturing Engineers, 2010.
  • I. Tlhabadira, I.A. Daniyan, L. Masu and L.R. VanStaden, Process design and optimization of surface roughness during M200 TS milling process using the Taguchi method, Procedia Cirp, 84, 868-873, 2019. https://doi.org/10.1016/j.procir.2019.03.200
  • A. Freddi, M. Salmon, A. Freddi and M. Salmon, Introduction to the Taguchi method, Design Principles and Methodologies: from Conceptualization to First Prototyping with Examples and Case Studies, 159-180, 2019. https://doi.org/10.1007/978-3-319-95342-7_7
  • S.K. Karna and R. Sahai, An overview on Taguchi method, International Journal of Engineering And Mathematical Sciences, 1(1), 1-7, 2012.
  • M. Saravi, L.B. Newnes, A.R. Mileham, Y.M. Goh and K. Morton, Using Taguchi method to optimise performance and product cost at the conceptual stage of design, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(9), 1360-1372, 2013. https://doi.org/10.1177/0954405413488361
  • J.J. Pignatiello Jr, An overview of the strategy and tactics of Taguchi, IIE transactions, 20(3), 47-254, 1988. https://doi.org/10.1080/07408178808966177
  • T.B. Barker, Engineering quality by design: interpreting the Taguchi approach, CRC Press, 1990.
  • T.R. Bement, Taguchi techniques for quality engineering, Taylor & Francis, 1989. https://doi.org/10.1080/00401706.1989.10488519
  • K. Yusuf, Y. Nukman, T. Yusof, S. Dawal, H. Qin Yang, T. Mahlia and K. Tamrin, Effect of cutting parameters on the surface roughness of titanium alloys using end milling process, Scientific Research and Essays, 5(11), 1284-1293, 2010.
  • J. Ribeiro, H. Lopes, L. Queijo and D. Figueiredo, Optimization of cutting parameters to minimize the surface roughness in the end milling process using the Taguchi method, Periodica Polytechnica Mechanical Engineering, 61(1), 30-35, 2017. https://doi.org/10.3311/PPme.9114
  • V. Krishnaraj, S. Samsudeensadham, R. Sindhumathi and P. Kuppan, A study on high speed end milling of titanium alloy, Procedia Engineering, 97, 251-257, 2014. https://doi.org/10.1016/j.proeng.2014.12.248
  • E. Ünal ve F. Karaca, Ti–6Al–4V alaşımının dik işlem merkezli CNC tezgahında işlenebilirliğinin araştırılması, Fırat Üniversitesi Doğu Araştırmaları Dergisi, 6(1), 135-139, 2007.
  • S. Ramesh, L. Karunamoorthy and K. Palanikumar, Surface roughness analysis in machining of titanium alloy, Materials and Manufacturing Processes, 23(2), 174-181, 2008. https://doi.org/10.1080/10426910701774700
  • V. Kara, Taguchi metodu yardımıyla, GS 24Mn5 N malzemenin frezeleme operasyonunda, işleme parametrelerinin yüzey kalitesine etkisinin optimizasyonu, Yüksek Lisans Tezi, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Mersin, 2012.
  • Z. Liang, P. Gao, X. Wang, S. Li, T. Zhou and J. Xiang, Cutting performance of different coated micro end mills in machining of Ti-6Al-4V, Micromachines, 9(11), 568, 2018. https://doi.org/10.3390/mi9110568

Investigating the influence of machining parameters and tool coatings on surface qualtiy of titanium parts in aerospace industry

Yıl 2025, Cilt: 14 Sayı: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1525630

Öz

In the aerospace sector, most titanium components are produced through milling, which poses several challenges in achieving superior surface quality. Consequently, optimizing cutting parameters and choosing appropriate cutting tool coatings are critical factors influencing the surface roughness of these parts. This study examines the impact of depth of cut, cutting speed, and feed rate on surface roughness when milling the Ti-6Al-4V alloy. It also provides an in-depth analysis of three different coatings - Aluminum Chromium Nitride (AlCrN), tungsten-based AlCrN, and tungsten-based Aluminum Titanium Nitride (AlTiN) - in terms of surface quality. The findings reveal that cutting speed is the most significant factor affecting surface roughness in experiments conducted using the Taguchi method, with three values assigned to each parameter. Moreover, the tungsten-based AlCrN coating demonstrated the best average surface roughness values. Overall, this study offers valuable insights into factors affecting surface roughness in titanium milling and presents practical recommendations for selecting cutting parameters and tool coatings to improve surface quality in aerospace parts production. In future research, additional factors such as tool geometry and cooling strategies can also be investigated to further improve surface quality in titanium machining.

Kaynakça

  • M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens, Structure and properties of titanium and titanium alloys, Titanium and Titanium Alloys: Fundamentals and Applications, 1-36, 2003. https://doi.org/10.1002/3527602119.ch1
  • I. Inagaki, T. Takechi, Y. Shirai and N. Ariyasu, Application and features of titanium for the aerospace industry, Nippon Steel & Sumitomo Metal Technical Report, 106, 22-27, 2014.
  • R.R. Boyer, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering: A, 213(1-2), 103-114, 1996. https://doi.org/10.1016/0921-5093(96)10233-1
  • A. Gomez-Gallegos, P. Mandal, D. Gonzalez, N. Zuelli and P. Blackwell, Studies on titanium alloys for aerospace application, Defect and Diffusion Forum, Trans Tech Publications, 419-423, 2018. https://doi.org/10.4028/www.scientific.net/DDF.385.419
  • J.P. Davim, Machining of hard materials, Springer Science & Business Media, 2011.
  • E. Ezugwu and Z. Wang, Titanium alloys and their machinability—a review, Journal of Materials Processing Technology, 68(3), 262-274, 1997. https://doi.org/10.1016/S0924-0136(96)00030-1
  • H. Hong, A. Riga, J. Gahoon and C. Scott, Machinability of steels and titanium alloys under lubrication, Wear, 162, 34-39, 1993. https://doi.org/10.1016/0043-1648(93)90481-Z.
  • C. Ohkubo, I. Watanabe, J. Ford, H. Nakajima, T. Hosoi and T. Okabe, The machinability of cast titanium and Ti–6Al–4V, Biomaterials, 21(4), 421-428, 2000. https://doi.org/10.1016/S0142-9612(99)00206-9.
  • M. Rahman, Y. San WONG, A.R. Zareena, Machinability of titanium alloys, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 46(1), 107-115, 2003. https://doi.org/10.1299/jsmec.46.107.
  • C. Ensarioğlu, M.C. Çakır, Titanyum ve alaşımlarının işlenebilirlik etüdü-Bölüm I, Mühendis ve Makina, 46(546), 36-46, 2005.
  • S. Palanisamy, S.D. McDonald and M.S. Dargusch, Effects of coolant pressure on chip formation while turning Ti6Al4V alloy, International Journal of Machine Tools and Manufacture, 49(9), 739-743, 2009. https://doi.org/10.1016/j.ijmachtools.2009.02.010
  • R.K. Roy, A primer on the Taguchi method, Society of Manufacturing Engineers, 2010.
  • I. Tlhabadira, I.A. Daniyan, L. Masu and L.R. VanStaden, Process design and optimization of surface roughness during M200 TS milling process using the Taguchi method, Procedia Cirp, 84, 868-873, 2019. https://doi.org/10.1016/j.procir.2019.03.200
  • A. Freddi, M. Salmon, A. Freddi and M. Salmon, Introduction to the Taguchi method, Design Principles and Methodologies: from Conceptualization to First Prototyping with Examples and Case Studies, 159-180, 2019. https://doi.org/10.1007/978-3-319-95342-7_7
  • S.K. Karna and R. Sahai, An overview on Taguchi method, International Journal of Engineering And Mathematical Sciences, 1(1), 1-7, 2012.
  • M. Saravi, L.B. Newnes, A.R. Mileham, Y.M. Goh and K. Morton, Using Taguchi method to optimise performance and product cost at the conceptual stage of design, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(9), 1360-1372, 2013. https://doi.org/10.1177/0954405413488361
  • J.J. Pignatiello Jr, An overview of the strategy and tactics of Taguchi, IIE transactions, 20(3), 47-254, 1988. https://doi.org/10.1080/07408178808966177
  • T.B. Barker, Engineering quality by design: interpreting the Taguchi approach, CRC Press, 1990.
  • T.R. Bement, Taguchi techniques for quality engineering, Taylor & Francis, 1989. https://doi.org/10.1080/00401706.1989.10488519
  • K. Yusuf, Y. Nukman, T. Yusof, S. Dawal, H. Qin Yang, T. Mahlia and K. Tamrin, Effect of cutting parameters on the surface roughness of titanium alloys using end milling process, Scientific Research and Essays, 5(11), 1284-1293, 2010.
  • J. Ribeiro, H. Lopes, L. Queijo and D. Figueiredo, Optimization of cutting parameters to minimize the surface roughness in the end milling process using the Taguchi method, Periodica Polytechnica Mechanical Engineering, 61(1), 30-35, 2017. https://doi.org/10.3311/PPme.9114
  • V. Krishnaraj, S. Samsudeensadham, R. Sindhumathi and P. Kuppan, A study on high speed end milling of titanium alloy, Procedia Engineering, 97, 251-257, 2014. https://doi.org/10.1016/j.proeng.2014.12.248
  • E. Ünal ve F. Karaca, Ti–6Al–4V alaşımının dik işlem merkezli CNC tezgahında işlenebilirliğinin araştırılması, Fırat Üniversitesi Doğu Araştırmaları Dergisi, 6(1), 135-139, 2007.
  • S. Ramesh, L. Karunamoorthy and K. Palanikumar, Surface roughness analysis in machining of titanium alloy, Materials and Manufacturing Processes, 23(2), 174-181, 2008. https://doi.org/10.1080/10426910701774700
  • V. Kara, Taguchi metodu yardımıyla, GS 24Mn5 N malzemenin frezeleme operasyonunda, işleme parametrelerinin yüzey kalitesine etkisinin optimizasyonu, Yüksek Lisans Tezi, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Mersin, 2012.
  • Z. Liang, P. Gao, X. Wang, S. Li, T. Zhou and J. Xiang, Cutting performance of different coated micro end mills in machining of Ti-6Al-4V, Micromachines, 9(11), 568, 2018. https://doi.org/10.3390/mi9110568
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Burak Kaymak Bu kişi benim 0000-0002-6865-9894

Fahrettin Öztürk 0000-0001-9517-7957

Erken Görünüm Tarihi 10 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 31 Temmuz 2024
Kabul Tarihi 8 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA Kaymak, B., & Öztürk, F. (2024). Investigating the influence of machining parameters and tool coatings on surface qualtiy of titanium parts in aerospace industry. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 1-1. https://doi.org/10.28948/ngumuh.1525630
AMA Kaymak B, Öztürk F. Investigating the influence of machining parameters and tool coatings on surface qualtiy of titanium parts in aerospace industry. NÖHÜ Müh. Bilim. Derg. Aralık 2024;14(1):1-1. doi:10.28948/ngumuh.1525630
Chicago Kaymak, Burak, ve Fahrettin Öztürk. “Investigating the Influence of Machining Parameters and Tool Coatings on Surface Qualtiy of Titanium Parts in Aerospace Industry”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 1 (Aralık 2024): 1-1. https://doi.org/10.28948/ngumuh.1525630.
EndNote Kaymak B, Öztürk F (01 Aralık 2024) Investigating the influence of machining parameters and tool coatings on surface qualtiy of titanium parts in aerospace industry. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 1–1.
IEEE B. Kaymak ve F. Öztürk, “Investigating the influence of machining parameters and tool coatings on surface qualtiy of titanium parts in aerospace industry”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 1, ss. 1–1, 2024, doi: 10.28948/ngumuh.1525630.
ISNAD Kaymak, Burak - Öztürk, Fahrettin. “Investigating the Influence of Machining Parameters and Tool Coatings on Surface Qualtiy of Titanium Parts in Aerospace Industry”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (Aralık 2024), 1-1. https://doi.org/10.28948/ngumuh.1525630.
JAMA Kaymak B, Öztürk F. Investigating the influence of machining parameters and tool coatings on surface qualtiy of titanium parts in aerospace industry. NÖHÜ Müh. Bilim. Derg. 2024;14:1–1.
MLA Kaymak, Burak ve Fahrettin Öztürk. “Investigating the Influence of Machining Parameters and Tool Coatings on Surface Qualtiy of Titanium Parts in Aerospace Industry”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 1, 2024, ss. 1-1, doi:10.28948/ngumuh.1525630.
Vancouver Kaymak B, Öztürk F. Investigating the influence of machining parameters and tool coatings on surface qualtiy of titanium parts in aerospace industry. NÖHÜ Müh. Bilim. Derg. 2024;14(1):1-.

download