Araştırma Makalesi
BibTex RIS Kaynak Göster

Demir katkılı zeolitik imidazol ağ yapısı katalizörler kullanılarak fenton benzeri oksidasyonu ile kristal viyole gideriminde reaksiyon parametrelerinin ve kinetiğinin incelenmesi

Yıl 2025, Cilt: 14 Sayı: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1537619

Öz

Kristal Viyole (KV), tekstil ve kâğıt endüstrilerinde yaygın olarak kullanılan sentetik bir boyadır. Bu boya, çevreye atıldığında su kaynaklarında kalıcı kirliliğe yol açabilir, biyolojik olarak parçalanması zordur ve toksik etkileri nedeniyle sucul yaşamı olumsuz etkiler. Bu nedenle, KV'nin su kaynaklarından etkin bir şekilde giderilmesi büyük önem taşır. KV'nin giderimi, çevre sağlığının korunması, ekosistem dengesinin sürdürülebilmesi ve insan sağlığının olumsuz etkilenmesinin önlenmesi açısından kritik bir konudur. Bu çalışmada Demir yüklü ZIF-8 sentezi gerçekleştirilmiştir (Fe/ZIF-8). Zeolit imidazol ağ yapıları, yüksek kimyasal stabilite ve esneklik sergileyen ve reaksiyonlarda, gaz ayırma ve saflaştırma, gibi uygulamalarda kullanılan çok sağlam yapıya sahip gözenekli koordinasyon polimerleridir. Düşük üretim maliyetleri, kolay sentez yöntemleri ve işlevselleştirilebilirliği nedeniyle atık su arıtım proseslerinde kullanılmak üzere zeolit imidazol ağ yapıları seçilmiştir. Sentezlenen Fe yüklü ZIF-8 Fenton benzeri oksidasyonu yöntemi ile atık sulardan KV uzaklaştırılmasında kullanılmıştır. Fenton benzeri oksidasyonunda Fe-ZIF-8 kullanımı ile 60 dakikada %99.6 KV giderimi sağlanmış ve gerçekleştirilen kinetik çalışmalarda boya gideriminin birinci mertebeden reaksiyon kinetiğine uyduğu belirlenmiştir.

Proje Numarası

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) (Proje Numarası: 124M775) ve Çankırı Karatekin Üniversitesi Bilimsel Araştırma Projeleri BAP(MF081123B21)

Kaynakça

  • P. Waranusantigul, P. Pokethitiyook, M. Kruatrachue, E.S. Upatham, Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environmental Pollution, 125, 385–392, 2003. https://doi.org/10.1016/S0269-7491(03)00107-6.
  • S. Gita, S.P. Shukla, N. Saharan, C. Prakash, G. Deshmukhe, Toxic Effects of Selected Textile Dyes on Elemental Composition, Photosynthetic Pigments, Protein Content and Growth of a Freshwater Chlorophycean Alga Chlorella vulgaris. Bulletin of Environmental Contamination and Toxicology, 102, 795–801, 2019. https://doi.org/ 10.1007/s00128-019-02599-w.
  • M. Motola, E. Dworniczek, L. Satrapinskyy, G. Chodaczek, J. Grzesiak, M. Gregor, T. Plecenik, J. Nowicka, G. Plesch, UV light-induced photocatalytic, antimicrobial, and antibiofilm performance of anodic TiO2 nanotube layers prepared on titanium mesh and Ti sputtered on silicon. Chemical Papers, 73, 1163–1172, 2019. https://doi.org/10.1007/s11696-018-0667-4.
  • S. Natarajan, H.C. Bajaj, R.J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. Journal of Environmental Sciences, 65, 201–222, 2018. https: //doi.org/10.1016/j.jes.2017.03.011.
  • N. Sen, N.R. Shefa, K. Reza, S.M.A.Z. Shawon, M.W. Rahman, Adsorption of crystal violet dye from synthetic wastewater by ball-milled royal palm leaf sheath. Scientific Reports, 14, 1–17, 2024. https://do i.org/10.1038/s41598-024-52395-8.
  • E. Fosso-Kankeu, A. Webster, I.O. Ntwampe, F.B. Waanders, Coagulation/Flocculation Potential of Polyaluminium Chloride and Bentonite Clay Tested in the Removal of Methyl Red and Crystal Violet. Arabian Journal for Science and Engineering, 42, 1389–1397, 2017. https://doi.org/10.1007/s13369-016-2244-x.
  • Z. Zhang, F. Chen, R. Liu, C. Sun, H. Fan, Crystal violet degradation in the ozone/persulfate/ferroferric oxide system: A heterogeneous catalytic process for simultaneous catalysis of ozone and persulfate. Journal of Cleaner Production, 434, 139937, 2024. https://doi.org/10.1016/J.JCLEPRO.2023.139937.
  • R. Yu, J. Zhao, Z. Zhao, F. Cui, Copper substituted zinc ferrite with abundant oxygen vacancies for enhanced ciprofloxacin degradation via peroxymonosulfate activation. Journal of Hazardous Materials, 390, 121998, 2020. https://doi.org/10.1 016/J.JHAZMAT.2019.121998.
  • R.A.K. Hirani, A. Hannan, N. Rafique, L. Shi, W. Tian, H. Wang, H. Sun, Three-dimensional rGO/CNT/g-C3N4 macro discs as an efficient peroxymonosulfate activator for catalytic degradation of sulfamethoxazole. Journal of Hazardous Materials, 460, 132400, 2023. https:// doi.org/10.1016/J.JHAZMAT.2023.132400.
  • A.D. Gupta, H. Singh, S. Varjani, M.K. Awasthi, B.S. Giri, A. Pandey, A critical review on biochar-based catalysts for the abatement of toxic pollutants from water via advanced oxidation processes (AOPs). Science of the Total Environment, 849 157831, 2022. https://doi.org/10.1016/j.scitotenv. 2022.157831.
  • J.-H. Sun, S.-P. Sun, G.-L. Wang, L.-P. Qiao, Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74, 647–652, 2007. https://doi.org/10.101 6/j.dyepig.2006.04.006.
  • V.F. Yusuf, N.I. Malek, S.K. Kailasa, Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega, 7, 44507–44531, 2022. htt ps://doi.org/10.1021/acsomega.2c05310.
  • A.K. Adhikari, K. Lin, Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74 ( Ni , Co ) by doping palladium-containing activated carbon. Chemical Engineering Journal, 284, 1348–1360, 2016. https://doi.org/10.1016/j.cej. 2015.09.086.
  • C. Liu, Q. Liu, A. Huang, A superhydrophobic zeolitic imidazolate framework (ZIF-90) with high steam stability for efficient recovery of bioalcohols. Chemical Communications, 52, 3400–3402, 2016. https://doi.org/10.1039/c5cc10171a.
  • X. Duan, R. Lv, Z. Shi, C. Wang, H. Li, J. Ge, Z. Ji, Y. Yang, B. Li, G. Qian, A new metal-organic framework with suitable pore size and ttd-type topology revealing highly selective adsorption and separation of organic dyes. Journal of Solid State Chemistry, 277, 159–162, 2019. https://doi.org/ 10.1016/J.JSSC.2019.06.012.
  • Y. Zhou and M. Zhang, Response to Comment on ‘removal of Crystal Violet by a Novel Cellulose-Based Adsorbent: Comparison with Native Cellulose. Industrial & Engineering Chemistry Research, 55, 1148, 2016. https://doi.org/10.102 1/acs.iecr.5b04874.
  • M. Rahmat, A. Rehman, S. Rahmat, H.N. Bhatti, M. Iqbal, W.S. Khan, S.Z. Bajwa, R. Rahmat, A. Nazir, Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. Journal of Materials Research and Technology, 8, 5149–5159, 2019. https://doi.org/10.1016/J.JMRT.2019.08.038.
  • C.C. Chen, W.C. Chen, M.R. Chiou, S.W. Chen, Y.Y. Chen, H.J. Fan, Degradation of crystal violet by an FeGAC/H2O2 process. Journal of Hazardous Materials, 196, 420–425, 2011. https://doi.org/ 10.1016/J.JHAZMAT.2011.09.042.
  • Y.R. Huang, Y. Kong, H.Z. Li, X.M. Wei, Removal of crystal violet by ultraviolet/persulfate: Effects, kinetics and degradation pathways. Environmental Technology & Innovation, 18, 100780, 2020. https://doi.org/10.1016/J.ETI.2020.100780.
  • M. Wu, S. Li, S. Zhou, F. Li, T. Li, H. Li, Fe/sponge structure peanut shell carbon composite preparation for efficient Fenton oxidation crystal violet. Environmental Science and Pollution Research, 30, 105457–105473, 2023. https://doi.org/10.1007/s113 56-023-29828-4.
  • O.P. Kumar, M.A. Nazir, S.S.A. Shah, A. Hashem, A. Kumar, E.F. Abd Allah, A. ur Rehman, Ternary metal conjugated ZIF-67 coordination with Ag and Ce for the efficient Fenton-like remediation of dyes under visible light. Optical Materials, 150, 115228, 2024. https://doi.org/10.1016/j.optmat.2024.11522 8.
  • O. Assila, N. Vilaça, A.R. Bertão, A.M. Fonseca, P. Parpot, O.S.G.P. Soares, M.F.R. Pereira, F. Baltazar, M. Bañobre-López, I.C. Neves, Optimization of iron-ZIF-8 catalysts for degradation of tartrazine in water by Fenton-like reaction. Chemosphere. 339 139634, 2023. https://doi.org/10.1016/j.chemosp here.2023.139634
  • T.H. V. Luong, T.H.T. Nguyen, B. V. Nguyen, N.K. Nguyen, T.Q.C. Nguyen, G.H. Dang, Efficient degradation of methyl orange and methylene blue in aqueous solution using a novel Fenton-like catalyst of CuCo-ZIFs. Green Process Synthesis, 11, 71–83, 2022. https://doi.org/10.1515/gps-2022-0006.
  • J. Li, T. Tian, Y. Jia, N. Xu, S. Yang, C. Zhang, S. Gao, W. Shen, Z. Wang, Adsorption performance and optimization by response surface methodology on tetracycline using Fe-doped ZIF-8-loaded multi-walled carbon nanotubes. Environmental Science and Pollution Research, 30, 4123–4136, 2023. https://doi.org/10.1007/s11356-022-22524-9.
  • A. Ravi, P. Annamalai, V. Sankar, K.R. Achutharaman, H. Valdes, A. SaravanaVadivu, V. MuthaiahPillai, S.A. Alharbi, Sustainable synthesis, superior performance: Nanoflower-like α-Bi2O3 from solvent-free solid state for photocatalytic crystal violet degradation. Journal of the Taiwan Institute of Chemical Engineers, 157, 105413, 2024. https://doi.org/10.1016/j.jtice.2024.105413.
  • M. Siddique, R. Farooq, G.J. Price, Synergistic effects of combining ultrasound with the Fenton process in the degradation of Reactive Blue 19. Ultrasonics Sonochemistry, 21, 1206–1212, 2014. https://doi.org/10.1016/J.ULTSONCH.2013.12.016
  • J.H. Sun, S.P. Sun, G.L. Wang, L.P. Qiao, Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and. Pigments, 74, 647–652, 2007. https://doi.org/10 .1016/J.DYEPIG.2006.04.006.
  • S.A. Walling, W. Um, C.L. Corkhill, N.C. Hyatt, Fenton and Fenton-like wet oxidation for degradation and destruction of organic radioactive wastes. Npj Materials Degradation, 5, 1–20, 2021. https://doi.org/10.1038/s41529-021-00192-3.
  • A.H.A. Rahim, S.R. Majid, Ni/Co-based zeolitic-imidazolate framework pseudocapacitance in asymmetrical cells. Journal of Applied Electrochemistry, 53, 1727–1737, 2023. https://d oi.org/10.1007/s10800-023-01888-x.
  • C. Wu, Q. Liu, R. Chen, J. Liu, H. Zhang, R. Li, K. Takahashi, P. Liu, J. Wang, Fabrication of ZIF-8@SiO2 Micro/Nano Hierarchical Superhydrophobic Surface on AZ31 Magnesium Alloy with Impressive Corrosion Resistance and Abrasion Resistance. ACS Applied Materials & Interfaces, 9, 11106–11115, 2017. https://doi.org /10.1021/acsami.6b16848.
  • Z. Huang, J. Zhou, Y. Zhao, H. Cheng, G. Lu, A.W. Morawski, Y. Yu, Stable core–shell ZIF-8@ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution. Journal of Materials Research, 36, 602–614, 2021. https://doi.org/10.1557/s43578-021-00117-5.
  • Y. Zhang, S.J. Park, Facile construction of MoO3@ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr (VI). Applied Catalysis B: Environmental, 240, 92–101, 2019. https://doi.org/10.1016/J.APCATB.2018.08.077.
  • N.A.H. Md Nordin, S.M. Racha, T. Matsuura, N. Misdan, N.A. Abdullah Sani, A.F. Ismail, A. Mustafa, Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: Synthesis and preparation. RSC Advances, 5, 43110–43120, 2015. https://doi.org/10.1039/c5ra02230d.
  • H. Ghasemi, S. Mozaffari, S.H. Mousavi, B. Aghabarari, N. Abu-Zahra, Decolorization of wastewater by heterogeneous Fenton reaction using MnO2-Fe3O4/CuO hybrid catalysts. Journal of Environmental Chemical Engineering, 9, 105091, 2021. https://doi.org/10.1016/J.JECE.2021.105091.
  • H. Ghasemi, B. Aghabarari, M. Alizadeh, A. Khanlarkhani, N. Abu-Zahra, High efficiency decolorization of wastewater by Fenton catalyst: Magnetic iron-copper hybrid oxides. Journal of Water Process Engineering, 37, 101540, 2020. https://doi.org/10.1016/J.JWPE.2020.101540.
  • M. Nie, Y. Li, J. He, C. Xie, Z. Wu, B. Sun, K. Zhang, L. Kong, J. Liu, Degradation of tetracycline in water using Fe3O4 nanospheres as Fenton-like catalysts: Kinetics, mechanisms and pathways. New Journal of Chemistry, 44, 2847–2857, 2020. https://doi.org/10.1039/d0nj00125b.
  • B. Guo, T. Xu, L. Zhang, S. Li, A heterogeneous fenton-like system with green iron nanoparticles for the removal of bisphenol A:Performance, kinetics and transformation mechanism. Journal of Environmental Management, 272 111047, 2020. https://doi.org/10.1016/J.JENVMAN.2020.111047.
  • N. Nuñez, E. Lima, M. Vásquez Mansilla, G.F. Goya, Á. Gallo-Cordova, M. del P. Morales, E.L. Winkler, Effect of temperature and copper doping on the heterogeneous fenton-like activity of CuxFe3-xO4 nanoparticles. Applied Surface Science, 656, 159655, 2024. https://doi.org/10.1016/J.APSUSC.2 024.159655.

Investigation of reaction parameters and kinetics for crystal violet removal by fenton-like oxidation using iron-doped zeolitic imidazole framework catalysts

Yıl 2025, Cilt: 14 Sayı: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1537619

Öz

Crystal Violet (CV) is a synthetic dye widely used in the textile and paper industries. This dye can cause permanent pollution in water resources when discharged into the environment, is difficult to biodegrade and adversely affects aquatic life due to its toxic effects. Therefore, effective removal of CV from water resources is of great importance. Removal of CV is a critical issue in terms of protecting environmental health, maintaining ecosystem balance and preventing negative effects on human health.
In this study, the synthesis of Iron-loaded ZIF-8 (Fe/ZIF-8) was carried out. Zeolite imidazole network structures are porous coordination polymers with very robust structures that exhibit high chemical stability and flexibility and are used in applications such as reactions, gas separation and purification. Zeolite imidazole network structures were selected for use in wastewater treatment processes due to their low production costs, easy synthesis methods and functionalizability. The synthesized Fe-loaded ZIF-8 was used in the removal of CV from wastewater by Fenton-like oxidation method. 99.6% CV removal was achieved in 60 min by using Fe-ZIF-8 in Fenton-like oxidation and the performed kinetic studies determined that the dye removal obeyed the first-order reaction kinetics.

Proje Numarası

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) (Proje Numarası: 124M775) ve Çankırı Karatekin Üniversitesi Bilimsel Araştırma Projeleri BAP(MF081123B21)

Kaynakça

  • P. Waranusantigul, P. Pokethitiyook, M. Kruatrachue, E.S. Upatham, Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environmental Pollution, 125, 385–392, 2003. https://doi.org/10.1016/S0269-7491(03)00107-6.
  • S. Gita, S.P. Shukla, N. Saharan, C. Prakash, G. Deshmukhe, Toxic Effects of Selected Textile Dyes on Elemental Composition, Photosynthetic Pigments, Protein Content and Growth of a Freshwater Chlorophycean Alga Chlorella vulgaris. Bulletin of Environmental Contamination and Toxicology, 102, 795–801, 2019. https://doi.org/ 10.1007/s00128-019-02599-w.
  • M. Motola, E. Dworniczek, L. Satrapinskyy, G. Chodaczek, J. Grzesiak, M. Gregor, T. Plecenik, J. Nowicka, G. Plesch, UV light-induced photocatalytic, antimicrobial, and antibiofilm performance of anodic TiO2 nanotube layers prepared on titanium mesh and Ti sputtered on silicon. Chemical Papers, 73, 1163–1172, 2019. https://doi.org/10.1007/s11696-018-0667-4.
  • S. Natarajan, H.C. Bajaj, R.J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. Journal of Environmental Sciences, 65, 201–222, 2018. https: //doi.org/10.1016/j.jes.2017.03.011.
  • N. Sen, N.R. Shefa, K. Reza, S.M.A.Z. Shawon, M.W. Rahman, Adsorption of crystal violet dye from synthetic wastewater by ball-milled royal palm leaf sheath. Scientific Reports, 14, 1–17, 2024. https://do i.org/10.1038/s41598-024-52395-8.
  • E. Fosso-Kankeu, A. Webster, I.O. Ntwampe, F.B. Waanders, Coagulation/Flocculation Potential of Polyaluminium Chloride and Bentonite Clay Tested in the Removal of Methyl Red and Crystal Violet. Arabian Journal for Science and Engineering, 42, 1389–1397, 2017. https://doi.org/10.1007/s13369-016-2244-x.
  • Z. Zhang, F. Chen, R. Liu, C. Sun, H. Fan, Crystal violet degradation in the ozone/persulfate/ferroferric oxide system: A heterogeneous catalytic process for simultaneous catalysis of ozone and persulfate. Journal of Cleaner Production, 434, 139937, 2024. https://doi.org/10.1016/J.JCLEPRO.2023.139937.
  • R. Yu, J. Zhao, Z. Zhao, F. Cui, Copper substituted zinc ferrite with abundant oxygen vacancies for enhanced ciprofloxacin degradation via peroxymonosulfate activation. Journal of Hazardous Materials, 390, 121998, 2020. https://doi.org/10.1 016/J.JHAZMAT.2019.121998.
  • R.A.K. Hirani, A. Hannan, N. Rafique, L. Shi, W. Tian, H. Wang, H. Sun, Three-dimensional rGO/CNT/g-C3N4 macro discs as an efficient peroxymonosulfate activator for catalytic degradation of sulfamethoxazole. Journal of Hazardous Materials, 460, 132400, 2023. https:// doi.org/10.1016/J.JHAZMAT.2023.132400.
  • A.D. Gupta, H. Singh, S. Varjani, M.K. Awasthi, B.S. Giri, A. Pandey, A critical review on biochar-based catalysts for the abatement of toxic pollutants from water via advanced oxidation processes (AOPs). Science of the Total Environment, 849 157831, 2022. https://doi.org/10.1016/j.scitotenv. 2022.157831.
  • J.-H. Sun, S.-P. Sun, G.-L. Wang, L.-P. Qiao, Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74, 647–652, 2007. https://doi.org/10.101 6/j.dyepig.2006.04.006.
  • V.F. Yusuf, N.I. Malek, S.K. Kailasa, Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega, 7, 44507–44531, 2022. htt ps://doi.org/10.1021/acsomega.2c05310.
  • A.K. Adhikari, K. Lin, Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74 ( Ni , Co ) by doping palladium-containing activated carbon. Chemical Engineering Journal, 284, 1348–1360, 2016. https://doi.org/10.1016/j.cej. 2015.09.086.
  • C. Liu, Q. Liu, A. Huang, A superhydrophobic zeolitic imidazolate framework (ZIF-90) with high steam stability for efficient recovery of bioalcohols. Chemical Communications, 52, 3400–3402, 2016. https://doi.org/10.1039/c5cc10171a.
  • X. Duan, R. Lv, Z. Shi, C. Wang, H. Li, J. Ge, Z. Ji, Y. Yang, B. Li, G. Qian, A new metal-organic framework with suitable pore size and ttd-type topology revealing highly selective adsorption and separation of organic dyes. Journal of Solid State Chemistry, 277, 159–162, 2019. https://doi.org/ 10.1016/J.JSSC.2019.06.012.
  • Y. Zhou and M. Zhang, Response to Comment on ‘removal of Crystal Violet by a Novel Cellulose-Based Adsorbent: Comparison with Native Cellulose. Industrial & Engineering Chemistry Research, 55, 1148, 2016. https://doi.org/10.102 1/acs.iecr.5b04874.
  • M. Rahmat, A. Rehman, S. Rahmat, H.N. Bhatti, M. Iqbal, W.S. Khan, S.Z. Bajwa, R. Rahmat, A. Nazir, Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. Journal of Materials Research and Technology, 8, 5149–5159, 2019. https://doi.org/10.1016/J.JMRT.2019.08.038.
  • C.C. Chen, W.C. Chen, M.R. Chiou, S.W. Chen, Y.Y. Chen, H.J. Fan, Degradation of crystal violet by an FeGAC/H2O2 process. Journal of Hazardous Materials, 196, 420–425, 2011. https://doi.org/ 10.1016/J.JHAZMAT.2011.09.042.
  • Y.R. Huang, Y. Kong, H.Z. Li, X.M. Wei, Removal of crystal violet by ultraviolet/persulfate: Effects, kinetics and degradation pathways. Environmental Technology & Innovation, 18, 100780, 2020. https://doi.org/10.1016/J.ETI.2020.100780.
  • M. Wu, S. Li, S. Zhou, F. Li, T. Li, H. Li, Fe/sponge structure peanut shell carbon composite preparation for efficient Fenton oxidation crystal violet. Environmental Science and Pollution Research, 30, 105457–105473, 2023. https://doi.org/10.1007/s113 56-023-29828-4.
  • O.P. Kumar, M.A. Nazir, S.S.A. Shah, A. Hashem, A. Kumar, E.F. Abd Allah, A. ur Rehman, Ternary metal conjugated ZIF-67 coordination with Ag and Ce for the efficient Fenton-like remediation of dyes under visible light. Optical Materials, 150, 115228, 2024. https://doi.org/10.1016/j.optmat.2024.11522 8.
  • O. Assila, N. Vilaça, A.R. Bertão, A.M. Fonseca, P. Parpot, O.S.G.P. Soares, M.F.R. Pereira, F. Baltazar, M. Bañobre-López, I.C. Neves, Optimization of iron-ZIF-8 catalysts for degradation of tartrazine in water by Fenton-like reaction. Chemosphere. 339 139634, 2023. https://doi.org/10.1016/j.chemosp here.2023.139634
  • T.H. V. Luong, T.H.T. Nguyen, B. V. Nguyen, N.K. Nguyen, T.Q.C. Nguyen, G.H. Dang, Efficient degradation of methyl orange and methylene blue in aqueous solution using a novel Fenton-like catalyst of CuCo-ZIFs. Green Process Synthesis, 11, 71–83, 2022. https://doi.org/10.1515/gps-2022-0006.
  • J. Li, T. Tian, Y. Jia, N. Xu, S. Yang, C. Zhang, S. Gao, W. Shen, Z. Wang, Adsorption performance and optimization by response surface methodology on tetracycline using Fe-doped ZIF-8-loaded multi-walled carbon nanotubes. Environmental Science and Pollution Research, 30, 4123–4136, 2023. https://doi.org/10.1007/s11356-022-22524-9.
  • A. Ravi, P. Annamalai, V. Sankar, K.R. Achutharaman, H. Valdes, A. SaravanaVadivu, V. MuthaiahPillai, S.A. Alharbi, Sustainable synthesis, superior performance: Nanoflower-like α-Bi2O3 from solvent-free solid state for photocatalytic crystal violet degradation. Journal of the Taiwan Institute of Chemical Engineers, 157, 105413, 2024. https://doi.org/10.1016/j.jtice.2024.105413.
  • M. Siddique, R. Farooq, G.J. Price, Synergistic effects of combining ultrasound with the Fenton process in the degradation of Reactive Blue 19. Ultrasonics Sonochemistry, 21, 1206–1212, 2014. https://doi.org/10.1016/J.ULTSONCH.2013.12.016
  • J.H. Sun, S.P. Sun, G.L. Wang, L.P. Qiao, Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and. Pigments, 74, 647–652, 2007. https://doi.org/10 .1016/J.DYEPIG.2006.04.006.
  • S.A. Walling, W. Um, C.L. Corkhill, N.C. Hyatt, Fenton and Fenton-like wet oxidation for degradation and destruction of organic radioactive wastes. Npj Materials Degradation, 5, 1–20, 2021. https://doi.org/10.1038/s41529-021-00192-3.
  • A.H.A. Rahim, S.R. Majid, Ni/Co-based zeolitic-imidazolate framework pseudocapacitance in asymmetrical cells. Journal of Applied Electrochemistry, 53, 1727–1737, 2023. https://d oi.org/10.1007/s10800-023-01888-x.
  • C. Wu, Q. Liu, R. Chen, J. Liu, H. Zhang, R. Li, K. Takahashi, P. Liu, J. Wang, Fabrication of ZIF-8@SiO2 Micro/Nano Hierarchical Superhydrophobic Surface on AZ31 Magnesium Alloy with Impressive Corrosion Resistance and Abrasion Resistance. ACS Applied Materials & Interfaces, 9, 11106–11115, 2017. https://doi.org /10.1021/acsami.6b16848.
  • Z. Huang, J. Zhou, Y. Zhao, H. Cheng, G. Lu, A.W. Morawski, Y. Yu, Stable core–shell ZIF-8@ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution. Journal of Materials Research, 36, 602–614, 2021. https://doi.org/10.1557/s43578-021-00117-5.
  • Y. Zhang, S.J. Park, Facile construction of MoO3@ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr (VI). Applied Catalysis B: Environmental, 240, 92–101, 2019. https://doi.org/10.1016/J.APCATB.2018.08.077.
  • N.A.H. Md Nordin, S.M. Racha, T. Matsuura, N. Misdan, N.A. Abdullah Sani, A.F. Ismail, A. Mustafa, Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: Synthesis and preparation. RSC Advances, 5, 43110–43120, 2015. https://doi.org/10.1039/c5ra02230d.
  • H. Ghasemi, S. Mozaffari, S.H. Mousavi, B. Aghabarari, N. Abu-Zahra, Decolorization of wastewater by heterogeneous Fenton reaction using MnO2-Fe3O4/CuO hybrid catalysts. Journal of Environmental Chemical Engineering, 9, 105091, 2021. https://doi.org/10.1016/J.JECE.2021.105091.
  • H. Ghasemi, B. Aghabarari, M. Alizadeh, A. Khanlarkhani, N. Abu-Zahra, High efficiency decolorization of wastewater by Fenton catalyst: Magnetic iron-copper hybrid oxides. Journal of Water Process Engineering, 37, 101540, 2020. https://doi.org/10.1016/J.JWPE.2020.101540.
  • M. Nie, Y. Li, J. He, C. Xie, Z. Wu, B. Sun, K. Zhang, L. Kong, J. Liu, Degradation of tetracycline in water using Fe3O4 nanospheres as Fenton-like catalysts: Kinetics, mechanisms and pathways. New Journal of Chemistry, 44, 2847–2857, 2020. https://doi.org/10.1039/d0nj00125b.
  • B. Guo, T. Xu, L. Zhang, S. Li, A heterogeneous fenton-like system with green iron nanoparticles for the removal of bisphenol A:Performance, kinetics and transformation mechanism. Journal of Environmental Management, 272 111047, 2020. https://doi.org/10.1016/J.JENVMAN.2020.111047.
  • N. Nuñez, E. Lima, M. Vásquez Mansilla, G.F. Goya, Á. Gallo-Cordova, M. del P. Morales, E.L. Winkler, Effect of temperature and copper doping on the heterogeneous fenton-like activity of CuxFe3-xO4 nanoparticles. Applied Surface Science, 656, 159655, 2024. https://doi.org/10.1016/J.APSUSC.2 024.159655.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ayırma İşlemleri
Bölüm Makaleler
Yazarlar

Esra Yılmaz Mertsoy 0000-0001-5217-5425

Burcu Palas 0000-0002-2815-0057

Proje Numarası Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) (Proje Numarası: 124M775) ve Çankırı Karatekin Üniversitesi Bilimsel Araştırma Projeleri BAP(MF081123B21)
Erken Görünüm Tarihi 10 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 23 Ağustos 2024
Kabul Tarihi 14 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA Yılmaz Mertsoy, E., & Palas, B. (2024). Demir katkılı zeolitik imidazol ağ yapısı katalizörler kullanılarak fenton benzeri oksidasyonu ile kristal viyole gideriminde reaksiyon parametrelerinin ve kinetiğinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 1-1. https://doi.org/10.28948/ngumuh.1537619
AMA Yılmaz Mertsoy E, Palas B. Demir katkılı zeolitik imidazol ağ yapısı katalizörler kullanılarak fenton benzeri oksidasyonu ile kristal viyole gideriminde reaksiyon parametrelerinin ve kinetiğinin incelenmesi. NÖHÜ Müh. Bilim. Derg. Aralık 2024;14(1):1-1. doi:10.28948/ngumuh.1537619
Chicago Yılmaz Mertsoy, Esra, ve Burcu Palas. “Demir katkılı Zeolitik Imidazol Ağ yapısı katalizörler kullanılarak Fenton Benzeri Oksidasyonu Ile Kristal Viyole Gideriminde Reaksiyon Parametrelerinin Ve kinetiğinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 1 (Aralık 2024): 1-1. https://doi.org/10.28948/ngumuh.1537619.
EndNote Yılmaz Mertsoy E, Palas B (01 Aralık 2024) Demir katkılı zeolitik imidazol ağ yapısı katalizörler kullanılarak fenton benzeri oksidasyonu ile kristal viyole gideriminde reaksiyon parametrelerinin ve kinetiğinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 1–1.
IEEE E. Yılmaz Mertsoy ve B. Palas, “Demir katkılı zeolitik imidazol ağ yapısı katalizörler kullanılarak fenton benzeri oksidasyonu ile kristal viyole gideriminde reaksiyon parametrelerinin ve kinetiğinin incelenmesi”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 1, ss. 1–1, 2024, doi: 10.28948/ngumuh.1537619.
ISNAD Yılmaz Mertsoy, Esra - Palas, Burcu. “Demir katkılı Zeolitik Imidazol Ağ yapısı katalizörler kullanılarak Fenton Benzeri Oksidasyonu Ile Kristal Viyole Gideriminde Reaksiyon Parametrelerinin Ve kinetiğinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (Aralık 2024), 1-1. https://doi.org/10.28948/ngumuh.1537619.
JAMA Yılmaz Mertsoy E, Palas B. Demir katkılı zeolitik imidazol ağ yapısı katalizörler kullanılarak fenton benzeri oksidasyonu ile kristal viyole gideriminde reaksiyon parametrelerinin ve kinetiğinin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2024;14:1–1.
MLA Yılmaz Mertsoy, Esra ve Burcu Palas. “Demir katkılı Zeolitik Imidazol Ağ yapısı katalizörler kullanılarak Fenton Benzeri Oksidasyonu Ile Kristal Viyole Gideriminde Reaksiyon Parametrelerinin Ve kinetiğinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 1, 2024, ss. 1-1, doi:10.28948/ngumuh.1537619.
Vancouver Yılmaz Mertsoy E, Palas B. Demir katkılı zeolitik imidazol ağ yapısı katalizörler kullanılarak fenton benzeri oksidasyonu ile kristal viyole gideriminde reaksiyon parametrelerinin ve kinetiğinin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2024;14(1):1-.

download