Araştırma Makalesi
BibTex RIS Kaynak Göster

Konya ili tarım topraklarında mikroplastik kirlilik yükünün araştırılması

Yıl 2025, Cilt: 14 Sayı: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1540381

Öz

Toprak ortamında giderek artan mikroplastik (MP) kirliliği büyük endişe kaynağıdır. Bu çalışmada Konya İli ve yakın çevresinden rastgele seçilmiş olan 20 noktada, 0-20 cm derinlikten alınan toprak örneklerinde mikroplastik miktarı, renkleri ve morfolojileri tespit edilmiştir. Topraklarda mikroplastik kirliliğinin risk seviyesi, kirlilik faktörü (CF) ve kirlilik yük endeksi (PLI) değerleri ile belirlenmiştir. Çalışma sonucunda toprak örneklerinde 80-340 MP/kg arasında MP tespit edilmiştir. Numunelerde %45 fiber (1300 MP); %25 pellet (720 MP) tespit edilirken %51 oranla en fazla şeffaf renkli mikroplastiğe rastlanmıştır. Üç örnekleme noktasında CF değerinin önemli ekolojik risk (3 ≤ CF < 6) oluşturduğu, diğer numuneler için orta seviyede (1 ≤ CF < 3) ekolojik risk olduğu tespit edilmiştir. PLI değerine göre numunelerin tümü için düşük risk (PLI < 10) olduğu tespit edilmiştir. Toprak pH, EC ve organik madde muhtevası ile mikroplastik sayıları arasında anlamlı bir korelasyon tespit edilmezken, fosfor ile orta düzeyli (r=0.56), potasyum ile zayıf düzeyli (r=0.36) korelasyon tespit edilmiştir.

Kaynakça

  • Y. Yan and Z.F. Yang, Sources, distribution, behavior, and detection techniques of microplastics in soil: A review. China Geology, 6, 695-715, 2023. https://doi. org/10.31 035 /cg2023042.
  • R.C. Thompson, Y. Olsen, R.P. Mitchell, A. Davis, S.J. Rowland, A.W.G. John, D. McGonigle and A.E. Russell Lost at sea: where is all the plastic? Science, 304, 838, 2004. https://doi.org/10.1126/science.10945 59.
  • M. Rilling, Microplastic in Terrestrial Ecosystems and the Soil? Environmental Science & Technology, 46(12), 2012. https://doi.org/10.1021/es302011r.
  • L. Nizzetto, S. Langaas and M. Futter, Pollution: do microplastics spill on to farm soils? Nature, 537, 488, 2016. ISSN 1476-4687. https://doi.org/10.1038/53748 8b.
  • E. Bergami, E. Rota, T. Caruso, G. Birarda, L. Vaccari and I. Corsi, Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus. Biology Letters, 16, 2020. http://dx.doi.org/10.1098/rsbl.20 20.0093.
  • B. Basaran, Z. Özçiftçi, E.D. Kanbur, H.T. Akçay, S. Gül, Y. Bektaş and U. Aytan, Microplastics in honey from Türkiye: Occurrence, characteristic, human exposure, and risk assessment. Journal of Food Composition and Analysis, 135, 106646, 2024. http:// dx.doi.org/10.1016 /j.jfca.2024.106646.
  • Y. Li, L. Peng, J.X. Fu, X.L. Dai and G.Q. Wang, A microscopic survey on microplastics in beverages: the case of beer, mineral water and tea. Analyst, 147(6), 1099-1105, 2022. http://dx.doi.org/10.1039/d2an0008 3k
  • A. Tahir, P. Taba, M.F. Samawi and S. Werorilangi, Microplastics in water, sediment and salts from traditional salt producing ponds. Global Journal of Envıronmental Scıence and Management, 5(4), 431-440, 2019. http://dx.doi.org/10.22034/gjesm.2019.04.
  • M. Blasing and W. Amelung, Plastics in soil: analytical methods and possible sources. Science of the Total Environment, 612, 422–435, 2018. https://doi.org/10 .10 16/j.scitotenv.2017.08.086.
  • S. Allen, D. Allen, V.R. Phoenix, G. Le Roux, P.D. Jimenez, A. Simonneau, S. Binet and D. Galop, Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12, 339-344, 2019. https://doi.org/10.1038/s41561-019 -0409-4.
  • G.S. Zhang and F.X. Zhang, Variations in aggregate-associated organic carbon and polyester microfibers resulting from polyester microfibers addition in a clayey soil. Environmental Pollution, 258, 113716, 2020. https://doi.org/10.1016/j.envpol.2019.113716.
  • D.F. He, Y.M. Luo, S.B. Lu, M.T. Liu, Y. Song and L.L. Lei, Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172, 2018. https://doi.org/10.1016/j.trac.2018.10.006.
  • G.S. Zhang and Y.F. Liu, The distribution of microplastics in soil aggregate fractions in southwestern China, Science of The Total Environment, 642, 12-20, 2018. https://doi.org/10.101 6/j. scitotenv.2018.06.004.
  • X. Li, L. Chen, Q. Mei, B. Dong, X. Dai, G. Ding and E.Y. Zeng, Microplastics in sewage sludge from the wastewater treatment plants in China. Water Research, 142, 75–85, 2018. https://doi.org/10.1016/j.watres.201 8.05.034.
  • F. Corradini, P. Meza, R. Eguiluz, F. Casado, E. Huerta-Lwanga and V. Geissen, Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment, 671, 411–420, 2019. https://doi.org/10.1016/j.scitotenv.2019.03 .3 68.
  • G.S. Zhang and Y.F. Liu, The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment, 642, 12–20, 2018. https://doi.org/10.1016/j.scitotenv.2 018.06.004.
  • L. Nizzetto and M. Futter, S. Langaas, Are agricultural soils dumps for microplastics of urban origin? Environmental Science and Technology, 50(20), 10777–10779, 2016. https://doi.org/10.1021/acs.est.6b 04140.
  • R.W. Chia, J.Y. Lee, J. Jang, H. Kim and K.D. Kwon, Soil health and microplastics: a review of the impacts of microplastic contamination on soil properties. Journal of Soils Sediments, 22, 2690–2705, 2022. https://doi.org/10.1007/s11368-022-03254-4.
  • Y. Qiu, S. Zhou, C. Zhang, Y. Zhou and W. Qin, Soil microplastic characteristics and the effects on soil properties and biota: A systematic review and meta-analysis. Environmental Pollution, 313, 120183, 2022. https://doi.org/10.1016/j.envpol.2022.120183.
  • S. Zhao and J. Zhang, Microplastics in soils during the COVID-19 pandemic: Sources, migration and transformations, and remediation technologies. Science of the Total Environment, 883, 163700, 2023. https://doi.org/10.1016/j.scitotenv.2023.163700.
  • L. Fu, J. Li, G. Wang, Y. Luan and W. Dai, Adsorption behavior of organic pollutants on microplastics. Ecotoxicology and Environmental Safety, 217, 2021. https://doi.org/10.1016/j.ecoenv.2021.112207.
  • M. Arienzo, L. Ferrara and M. Trifuoggi, The dual role of microplastics in marine environment: Sink and vectors of pollutants. Journal of Marine Science and Engineering, 9(6), 2021. https://doi.org/10.3390/jmse9 060642
  • K. Cverenkarova, M. Valachovicova, T. Mackulak, L. Zemlicka and L. Birosova, Microplastics in the Food Chain. Life, 11 (12), 1349, 2021. https://doi.org/10.33 90/life11121349.
  • R.W. Chia, J.Y. Lee, M. Lee, G.S. Lee and C.D. Jeong, Role of soil microplastic pollution in climate change. Science of the Total Environment, 887, 164112, 2023. https://doi.org/10.1016/j.scitotenv.2023.164112.
  • M.O. Akça, S. Gündoğdu ve O.C. Tugay, Çilek üretiminde plastik malç uygulamasından kaynaklı toprakta plastik birikiminin belirlenmesi, Toprak Bilimi ve Bitki Besleme Dergisi, 10 (2), 165-176, 2022. https://doi.org/10.33409/tbbbd.1185820.
  • M. Ulvi and S. Aydın, Microplastic and associated polyaromatic hydrocarbons in surface waters feeding Beyşehir lake in Türkiye. Global NEST Journal, 25(7) 91-98, 2023. https://doi.org/10.30955/gnj.004960.
  • M.B. Duygu, B. Kirmencioğlu and M. Aras, Essential Tools to Establish a Comprehensive Drought Management Plan - Konya Basin Case Study. Turkish Journal of Water Scıence & Management, 1 (1), 54-70, 2017. https://doi.org/10.31807/tjwsm.297087.
  • L. Li, Y. Luo, R. Li, Q. Zhou, W.J.G.M. Peijnenburg, N. Yin, J. Yang, C. Tu and Y. Zhang, Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Natura Sustainability, 3, 929–937, 2020. https:// doi.org/10.1038/s41893-020-0567-9.
  • B. Chai, Q. Wei, Y. She, G. Lu, Z. Dang and H. Yin, Soil microplastic pollution in an e-waste dismantling zone of China. Waste Management, 118, 291-301, 2020. https://doi.org/10.1016/j.wasman.2020.08.048
  • L. Cao, D. Wu, P. Liu, W. Hu, L. Xu, Y. Sun, Q. Wu, K. Tian, B. Huang, S.J. Yoon, B.O. Kwon and J.S. Khim, Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China. Science for the Total Environment, 794, 148694, 2021. https://doi.org/10.10 16/j.scitotenv.2021.148694.
  • L. Yang, Y. Zhang, S. Kang, Z. Wang and C. Wu, Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Science of the Total Environment, 780, 146546, 2021. https://doi.org/ 10.1016/j.scitotenv.2021.146546.
  • J. Masura, J. Baker, G. Foster, C. Arthur, C. Herring and T. Editor, Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48, 2015. http://dx.doi.org/10.25607/OB P-604.
  • ISO 11464:2006 Soil quality - Pretreatment of samples for physico-chemical analysis. https://www.iso.org/ standard/37718.html, Accessed 10 January 2024.
  • G.J. Bouyoucos, Hydrometer method improved for making particle size analysis of soil. Agronomy Journal. 54, 464–465, 1962. http://dx.doi.org/10.2134/ agronj1962.00021962005400050028x.
  • M.L. Jackson, Soil Chemical Analysis. Prentice-Hall Inc. Englewood, Cliffs. NY. 1962. https://doi.org/10 .1002/jpln.19590850311.
  • D.W. Nelson and L.E. Sommers, Total carbon, organic carbon, and organic matter. In: Page, A.L., Miller, R.H. and Kenney, D.R., Eds., Methods of Soil Analysis, Part 2, American Society of Agronomy, 539-579, 1982. https://doi.org/10.2134/agronmonogr9.2.2ed.c29.
  • EN 16169: Sludge, treated biowaste and soil - Determination of Kjeldahl nitrogen, 2012. https://standards.iteh.ai/catalog/standards/cen,Accessed 10 January 2024.
  • S.R. Olsen, C.V. Cole, F.S. Watanabe and L.A. Dean, Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDA Circular No. 939, US Government Printing Office, Washington DC, 1954.
  • M.O. Rodrigues, A.M.M. Gonçalves, F.J.M. Gonçalves, H. Nogueira, J.C. Marques and N. Abrantes, Efectiveness of a methodology of microplastics isolation for environmental monitoring in freshwater systems. Ecol Indic, 89, 488–495, 2018. https://doi.org /10.1016/j.eco lind.2018.02.038.
  • X. Yang, Z. Wan, J. Xiao, F. Li, F. Zhang and Z. Zhang, Evaluation of niche, diversity, and risks of microplastics in farmland soils of different rocky desertification areas. Journal of Hazardous Materials, 466, 133603, 2024. https://doi.org/10.1016/j.jhazmat.2 024.133603.
  • L. Hakanson, An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001, 1980. https://doi.org/10.10 16/0043-1354(80)90143-8.
  • A. Hossain, M.I. Adham, M. Hasan, M.M. Ali, M.A.B. Siddique, V. Senapathi and A.R.M.T. Islam, Analysis and risk evaluation of soil microplastics in the Rohingya refugee camp area, Bangladesh: A comprehensive study. Regional Studies in Marine Science, 76, 103578, 2024. https://doi.org/10.1016/j.rs ma.2024.103578.
  • M. Ranjani, S. Veerasingam, R. Venkatachalapathy, M. Mugilarasan, A. Bagaev, V. Mukhanov and P.J.M.P.B. Vethamony, Assessment of potential ecological risk of microplastics in the coastal sediments of India: a meta-analysis. Marine Pollution Bulletin, 163, 111969, 2021. https://doi.org/10.1016/j.marpolbul.2021.111969.
  • B. Zhou, J. Wang, H. Zhang, H. Shi, Y. Fei, S. Huang, Y. Tong, D. Wen, Y. Luo and D. Barceló, Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: Multiple sources other than plastic mulching film. Journal of Hazardous Materials, 388, 121814, 2020. https://doi.org/10.1016/j.jhazmat.2019. 121814.
  • L. Han, Q. Li, L. Xu, A. Lu, B. Li, W. Gong and J. Tian. Abundance and distribution of microplastics of soils in Daliao River basin. Asian Journal of Ecotoxicology, 174–185, 2020. http://doi.org/10.33263/BRIAC114.11 70011712.
  • M. Liu, S. Lu, Y. Song, L. Lei, J. Hu, W. Lv, W. Zhou, C. Cao, H. Shi, X. Yang and D. He, Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai. China. Environmental Pollution, 855-862, 2018. http://doi.org/10.1016/j.envpol.2018.07.051.
  • L. Ding, X. Wang, Z. Ouyang, Y. Chen, X. Wang, D. Liu, S. Liu, X. Yang, H. Jia and X. Guo, The occurrence of microplastic in Mu Us Sand Land soils in northwest China: Different soil types, vegetation cover and restoration years. Journal of Hazardous Materials, 403, 123982, 2021. http://doi.org/10.1016/j.jhazmat.2020.1 23982
  • S. Feng, H. Lu, P. Tian, Y. Xue, J. Lu, M. Tang and W. Feng, Analysis of microplastics in a remote region of the Tibetan Plateau: Implications for natural environmental response to human activities. Science of the Total Environment, 739, 140087, 2020. http://doi. org/10.1016/j.scitotenv.2020.140087.
  • Y. Yuchen, Y. Zhang Fang and Y.U. Tao, Sources, ecological hazards and treatment technologies of microplastics in soil. Geology in China, 49, 770–788, 2022. http://doi.org/10.12029/gc20220307. 
  • N. Beriot, J. Peek, R. Zornoza, V. Geissen and E.H. Lwanga, Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Science of the Total Environment, 755, 142653, 2021. https://doi.org /10.1016/j.scitotenv.2020.142653.
  • P. van den Berg, E. Huerta-Lwanga, F. Corradini and V. Geissen, Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution, 261, 114198, 2020. https:// doi.org/10.1016/j.envpol.2020.114198.
  • I.K. Harms, T. Diekötter, S. Troegel and M. Lenz, Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany. Science of the Total Environment, 758, 143615, 2021. https://doi.org/10.1016/j.scitotenv.202 0.143615
  • J. Alvarez-Lopeztello, C. Robles and R.F. del Castillo, Microplastic Pollution in Neotropical Rainforest, Savanna, Pine Plantations, and Pasture Soils in Lowland Areas of Oaxaca, 121. Preliminary results, Mexico, Ecological Indicators, 107084, 2021. https:// doi.org/10.1016/j.ecolind.2020.107084
  • S.K. Kim, J.S. Kim, H. Lee and H.J. Lee, Abundance and characteristics of microplastics in soils with different agricultural practices: Importance of sources with internal origin and environmental fate. Journal of Hazardous Materials, 403, 123997, 2021. https://doi. org/10.1016/j.jhazmat.2020.123997.
  • Y.R. Choi, Y.N. Kim, J.H. Yoon, N. Dickinson and K.H. Kim, Plastic contamination of forest, urban, and agricultural soils: a case study of Yeoju City in the Republic of Korea. Journal of Soils and Sediments, 21, 1962–1973, 2021. http://doi.org/10.1007/s11368-020-02759-0.
  • J. Crossman, R.R. Hurley, M. Futter and L. Nizzetto, Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. Science of the Total Environment, 724, 138334, 2020. http://do i.org/10.1016/j.scitotenv.2020.138334.
  • E.D. Paes, T.V. Gloaguen, H.D.D. Silva, T.S. Duarte, M.D. de Almeida, O.D.V. Costa, M.R. Bomfim and J.A.G., Santos, Widespread microplastic pollution in mangrove soils of Todos os Santos Bay, northern Brazil. Environmental Research, 210, 2022. http://doi. org/10.1016/j.envres.2022.112952.
  • Z. Maghsodian, A.M. Sanati, B. Ramavandi, A. Ghasemi and G.A. Sorial, Microplastics accumulation in sediments and Periophthalmus waltoni fish, mangrove forests in southern Iran. Chemosphere, 264, 128543, 2021. http://doi.org/10.1016/j.chemosphere. 2020.1285 43.
  • Z. Jia, W. Wei, Y. Wang, Y. Chang, R. Lei and Y. Che. Occurrence characteristics and risk assessment of microplastics in agricultural soils in the loess hilly gully area of Yan’ an, China. Science of The Total Environment, 912, 169627, 2024. http://doi.org/10.10 16/j.scitotenv.2023.169627.
  • O. Mbachu, G. Jenkins, P. Kaparaju and C.J. Pratt, The rise of artificial soil carbon inputs: reviewing microplastic pollution effects in the soil environment. Science of The Total Environment, 780, 146569, 2021. http://doi. org/10.1016/j.scitotenv.2021.146569.
  • G.S. Zhang, F.X. Zhang and X.T. Li, Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Science of the Total Environment, 670, 1–7, 2019. http://doi.org/10.1016/j. scitotenv.2019.03.149.
  • A.A. de Souza Machado, C.W. Lau, J. Till, W. Kloas, A. Lehmann, R. Becker and M.C. Rillig, Impacts of microplastics on the soil biophysical environment. Environmental Science and Technology, 52, 9656–9665, 2018. http://doi.org/10.1021/acs.est.8b02212.
  • A. Lehmann, K. Fitschen and M.C. Rillig, Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. Soil Systems, 3 (1), 21, 2019. http:// doi .org /10.3390/soilsystems3010021.
  • Y. Yan, Z. Chen, F. Zhu, C. Zhu, C. Wang and C. Gu, Effect of polyvinyl chloride microplastics on bacterial community and nutrient status in two agricultural soils. Bulletin of Environmental Contamination and Toxicology, 107, 602– 609, 2021. http://doi.org/10.10 07/s00128-020-02963-1.
  • J.Y. Lee, M. Raza and K.D. Kwon, Land use and land cover changes in the Haean Basin of Korea: impacts on soil erosion. Episodes, 42, 17–32, 2019. http://doi. org/10.18814/epiiugs/2019/0190003.
  • A. Tomczyk, Z. Sokołowska and P. Boguta, Biochar physicochemical properties: pyrolysis temperature and feedstock kind efects. Reviews in Environmental Science and Bio/Technology, 19, 191–215, 2020. http://doi.org/10.1007/s11157-020-09523-3.
  • N. Bandow, V. Will, V. Wachtendorf and F.G. Simon, Contaminant release from aged microplastic. Environmental Chemistry 14, 394–405, 2017. http://doi.org/10.1071/EN17064.
  • B. Boots, C.W. Russell and D.S. Green, Effects of microplastics in soil ecosystems: above and below ground. Environmental Science and Technology, 53, 11496–11506, 2019. http://doi.org/10.1021/acs.est.9b 03304
  • Y. Qi, A. Ossowicki, X. Yang, E.H. Lwanga, F. Dini-Andreote, V. Geissen and P. Garbeva, Effects of plastic mulch film residues on wheat rhizosphere and soil properties. Journal of Hazardous Materials, 387, 121711, 2020. http://doi.org/10.1016/j.jhazmat.2019.1 21711.
  • Y. Qi, N. Beriot, G. Gort, E.H. Lwanga, H. Gooren, X. Yang and V. Geissen, Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environmental Pollution, 266, 115097, 2020. http://doi.org/10.1016/j.envpol.2020.115097.
  • R.W. Brown, D.R. Chadwick, H. Thornton, M.R. Marshall, S. Bei, M.A. Distaso, R. Bargiela, K.A. Marsden, P.L. Clode, D.V. Murphy and S. Pagella, Field application of pure polyethylene microplastic has no signifcant short-term efect on soil biological quality and function. Soil Biology and Biochemistry,165108496, 2022. http://doi.org/10.1016/j.soilbio.2021.10 8496
  • F. Zhang, X. Yang and Z. Zhang, Effects of soil properties and land use patterns on the distribution of microplastics: A case study in southwest China, Journal of Environmental Management, 356, 120598, 2024. http://doi.org/10.1016/j.jenvman.2024.120598.

Investigation of microplastic pollution load in agricultural soils of Konya province

Yıl 2025, Cilt: 14 Sayı: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1540381

Öz

Increasing microplastic (MP) pollution in the soil is of great concern.In this study, microplastic amount, colors and morphologies were determined in soil samples taken from 0-20 cm depth at 20 randomly selected points in Konya Province and its vicinity. The risk level of microplastic pollution in soils was determined by pollution factor (CF) and pollution load index (PLI) values. As a result of the study, MP was detected between 80-340 MP/kg in soil samples. While 45% fiber (1300 MP); 25% pellet (720 MP) was detected in the samples, transparent colored microplastic was encountered the most with 51% rate. It was determined that the CF value constituted a significant ecological risk (3 ≤ CF < 6) in three sampling points and that there was a moderate ecological risk (1 ≤ CF < 3) for the other samples. According to the PLI value, it was determined that all samples had a low risk (PLI < 10). While no significant correlation was found between soil pH, EC and organic matter content and microplastic counts, a moderate correlation (r=0.56) was found with phosphorus and a weak correlation (r=0.36) was found with potassium.

Kaynakça

  • Y. Yan and Z.F. Yang, Sources, distribution, behavior, and detection techniques of microplastics in soil: A review. China Geology, 6, 695-715, 2023. https://doi. org/10.31 035 /cg2023042.
  • R.C. Thompson, Y. Olsen, R.P. Mitchell, A. Davis, S.J. Rowland, A.W.G. John, D. McGonigle and A.E. Russell Lost at sea: where is all the plastic? Science, 304, 838, 2004. https://doi.org/10.1126/science.10945 59.
  • M. Rilling, Microplastic in Terrestrial Ecosystems and the Soil? Environmental Science & Technology, 46(12), 2012. https://doi.org/10.1021/es302011r.
  • L. Nizzetto, S. Langaas and M. Futter, Pollution: do microplastics spill on to farm soils? Nature, 537, 488, 2016. ISSN 1476-4687. https://doi.org/10.1038/53748 8b.
  • E. Bergami, E. Rota, T. Caruso, G. Birarda, L. Vaccari and I. Corsi, Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus. Biology Letters, 16, 2020. http://dx.doi.org/10.1098/rsbl.20 20.0093.
  • B. Basaran, Z. Özçiftçi, E.D. Kanbur, H.T. Akçay, S. Gül, Y. Bektaş and U. Aytan, Microplastics in honey from Türkiye: Occurrence, characteristic, human exposure, and risk assessment. Journal of Food Composition and Analysis, 135, 106646, 2024. http:// dx.doi.org/10.1016 /j.jfca.2024.106646.
  • Y. Li, L. Peng, J.X. Fu, X.L. Dai and G.Q. Wang, A microscopic survey on microplastics in beverages: the case of beer, mineral water and tea. Analyst, 147(6), 1099-1105, 2022. http://dx.doi.org/10.1039/d2an0008 3k
  • A. Tahir, P. Taba, M.F. Samawi and S. Werorilangi, Microplastics in water, sediment and salts from traditional salt producing ponds. Global Journal of Envıronmental Scıence and Management, 5(4), 431-440, 2019. http://dx.doi.org/10.22034/gjesm.2019.04.
  • M. Blasing and W. Amelung, Plastics in soil: analytical methods and possible sources. Science of the Total Environment, 612, 422–435, 2018. https://doi.org/10 .10 16/j.scitotenv.2017.08.086.
  • S. Allen, D. Allen, V.R. Phoenix, G. Le Roux, P.D. Jimenez, A. Simonneau, S. Binet and D. Galop, Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12, 339-344, 2019. https://doi.org/10.1038/s41561-019 -0409-4.
  • G.S. Zhang and F.X. Zhang, Variations in aggregate-associated organic carbon and polyester microfibers resulting from polyester microfibers addition in a clayey soil. Environmental Pollution, 258, 113716, 2020. https://doi.org/10.1016/j.envpol.2019.113716.
  • D.F. He, Y.M. Luo, S.B. Lu, M.T. Liu, Y. Song and L.L. Lei, Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172, 2018. https://doi.org/10.1016/j.trac.2018.10.006.
  • G.S. Zhang and Y.F. Liu, The distribution of microplastics in soil aggregate fractions in southwestern China, Science of The Total Environment, 642, 12-20, 2018. https://doi.org/10.101 6/j. scitotenv.2018.06.004.
  • X. Li, L. Chen, Q. Mei, B. Dong, X. Dai, G. Ding and E.Y. Zeng, Microplastics in sewage sludge from the wastewater treatment plants in China. Water Research, 142, 75–85, 2018. https://doi.org/10.1016/j.watres.201 8.05.034.
  • F. Corradini, P. Meza, R. Eguiluz, F. Casado, E. Huerta-Lwanga and V. Geissen, Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment, 671, 411–420, 2019. https://doi.org/10.1016/j.scitotenv.2019.03 .3 68.
  • G.S. Zhang and Y.F. Liu, The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment, 642, 12–20, 2018. https://doi.org/10.1016/j.scitotenv.2 018.06.004.
  • L. Nizzetto and M. Futter, S. Langaas, Are agricultural soils dumps for microplastics of urban origin? Environmental Science and Technology, 50(20), 10777–10779, 2016. https://doi.org/10.1021/acs.est.6b 04140.
  • R.W. Chia, J.Y. Lee, J. Jang, H. Kim and K.D. Kwon, Soil health and microplastics: a review of the impacts of microplastic contamination on soil properties. Journal of Soils Sediments, 22, 2690–2705, 2022. https://doi.org/10.1007/s11368-022-03254-4.
  • Y. Qiu, S. Zhou, C. Zhang, Y. Zhou and W. Qin, Soil microplastic characteristics and the effects on soil properties and biota: A systematic review and meta-analysis. Environmental Pollution, 313, 120183, 2022. https://doi.org/10.1016/j.envpol.2022.120183.
  • S. Zhao and J. Zhang, Microplastics in soils during the COVID-19 pandemic: Sources, migration and transformations, and remediation technologies. Science of the Total Environment, 883, 163700, 2023. https://doi.org/10.1016/j.scitotenv.2023.163700.
  • L. Fu, J. Li, G. Wang, Y. Luan and W. Dai, Adsorption behavior of organic pollutants on microplastics. Ecotoxicology and Environmental Safety, 217, 2021. https://doi.org/10.1016/j.ecoenv.2021.112207.
  • M. Arienzo, L. Ferrara and M. Trifuoggi, The dual role of microplastics in marine environment: Sink and vectors of pollutants. Journal of Marine Science and Engineering, 9(6), 2021. https://doi.org/10.3390/jmse9 060642
  • K. Cverenkarova, M. Valachovicova, T. Mackulak, L. Zemlicka and L. Birosova, Microplastics in the Food Chain. Life, 11 (12), 1349, 2021. https://doi.org/10.33 90/life11121349.
  • R.W. Chia, J.Y. Lee, M. Lee, G.S. Lee and C.D. Jeong, Role of soil microplastic pollution in climate change. Science of the Total Environment, 887, 164112, 2023. https://doi.org/10.1016/j.scitotenv.2023.164112.
  • M.O. Akça, S. Gündoğdu ve O.C. Tugay, Çilek üretiminde plastik malç uygulamasından kaynaklı toprakta plastik birikiminin belirlenmesi, Toprak Bilimi ve Bitki Besleme Dergisi, 10 (2), 165-176, 2022. https://doi.org/10.33409/tbbbd.1185820.
  • M. Ulvi and S. Aydın, Microplastic and associated polyaromatic hydrocarbons in surface waters feeding Beyşehir lake in Türkiye. Global NEST Journal, 25(7) 91-98, 2023. https://doi.org/10.30955/gnj.004960.
  • M.B. Duygu, B. Kirmencioğlu and M. Aras, Essential Tools to Establish a Comprehensive Drought Management Plan - Konya Basin Case Study. Turkish Journal of Water Scıence & Management, 1 (1), 54-70, 2017. https://doi.org/10.31807/tjwsm.297087.
  • L. Li, Y. Luo, R. Li, Q. Zhou, W.J.G.M. Peijnenburg, N. Yin, J. Yang, C. Tu and Y. Zhang, Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Natura Sustainability, 3, 929–937, 2020. https:// doi.org/10.1038/s41893-020-0567-9.
  • B. Chai, Q. Wei, Y. She, G. Lu, Z. Dang and H. Yin, Soil microplastic pollution in an e-waste dismantling zone of China. Waste Management, 118, 291-301, 2020. https://doi.org/10.1016/j.wasman.2020.08.048
  • L. Cao, D. Wu, P. Liu, W. Hu, L. Xu, Y. Sun, Q. Wu, K. Tian, B. Huang, S.J. Yoon, B.O. Kwon and J.S. Khim, Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China. Science for the Total Environment, 794, 148694, 2021. https://doi.org/10.10 16/j.scitotenv.2021.148694.
  • L. Yang, Y. Zhang, S. Kang, Z. Wang and C. Wu, Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Science of the Total Environment, 780, 146546, 2021. https://doi.org/ 10.1016/j.scitotenv.2021.146546.
  • J. Masura, J. Baker, G. Foster, C. Arthur, C. Herring and T. Editor, Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48, 2015. http://dx.doi.org/10.25607/OB P-604.
  • ISO 11464:2006 Soil quality - Pretreatment of samples for physico-chemical analysis. https://www.iso.org/ standard/37718.html, Accessed 10 January 2024.
  • G.J. Bouyoucos, Hydrometer method improved for making particle size analysis of soil. Agronomy Journal. 54, 464–465, 1962. http://dx.doi.org/10.2134/ agronj1962.00021962005400050028x.
  • M.L. Jackson, Soil Chemical Analysis. Prentice-Hall Inc. Englewood, Cliffs. NY. 1962. https://doi.org/10 .1002/jpln.19590850311.
  • D.W. Nelson and L.E. Sommers, Total carbon, organic carbon, and organic matter. In: Page, A.L., Miller, R.H. and Kenney, D.R., Eds., Methods of Soil Analysis, Part 2, American Society of Agronomy, 539-579, 1982. https://doi.org/10.2134/agronmonogr9.2.2ed.c29.
  • EN 16169: Sludge, treated biowaste and soil - Determination of Kjeldahl nitrogen, 2012. https://standards.iteh.ai/catalog/standards/cen,Accessed 10 January 2024.
  • S.R. Olsen, C.V. Cole, F.S. Watanabe and L.A. Dean, Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDA Circular No. 939, US Government Printing Office, Washington DC, 1954.
  • M.O. Rodrigues, A.M.M. Gonçalves, F.J.M. Gonçalves, H. Nogueira, J.C. Marques and N. Abrantes, Efectiveness of a methodology of microplastics isolation for environmental monitoring in freshwater systems. Ecol Indic, 89, 488–495, 2018. https://doi.org /10.1016/j.eco lind.2018.02.038.
  • X. Yang, Z. Wan, J. Xiao, F. Li, F. Zhang and Z. Zhang, Evaluation of niche, diversity, and risks of microplastics in farmland soils of different rocky desertification areas. Journal of Hazardous Materials, 466, 133603, 2024. https://doi.org/10.1016/j.jhazmat.2 024.133603.
  • L. Hakanson, An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001, 1980. https://doi.org/10.10 16/0043-1354(80)90143-8.
  • A. Hossain, M.I. Adham, M. Hasan, M.M. Ali, M.A.B. Siddique, V. Senapathi and A.R.M.T. Islam, Analysis and risk evaluation of soil microplastics in the Rohingya refugee camp area, Bangladesh: A comprehensive study. Regional Studies in Marine Science, 76, 103578, 2024. https://doi.org/10.1016/j.rs ma.2024.103578.
  • M. Ranjani, S. Veerasingam, R. Venkatachalapathy, M. Mugilarasan, A. Bagaev, V. Mukhanov and P.J.M.P.B. Vethamony, Assessment of potential ecological risk of microplastics in the coastal sediments of India: a meta-analysis. Marine Pollution Bulletin, 163, 111969, 2021. https://doi.org/10.1016/j.marpolbul.2021.111969.
  • B. Zhou, J. Wang, H. Zhang, H. Shi, Y. Fei, S. Huang, Y. Tong, D. Wen, Y. Luo and D. Barceló, Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: Multiple sources other than plastic mulching film. Journal of Hazardous Materials, 388, 121814, 2020. https://doi.org/10.1016/j.jhazmat.2019. 121814.
  • L. Han, Q. Li, L. Xu, A. Lu, B. Li, W. Gong and J. Tian. Abundance and distribution of microplastics of soils in Daliao River basin. Asian Journal of Ecotoxicology, 174–185, 2020. http://doi.org/10.33263/BRIAC114.11 70011712.
  • M. Liu, S. Lu, Y. Song, L. Lei, J. Hu, W. Lv, W. Zhou, C. Cao, H. Shi, X. Yang and D. He, Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai. China. Environmental Pollution, 855-862, 2018. http://doi.org/10.1016/j.envpol.2018.07.051.
  • L. Ding, X. Wang, Z. Ouyang, Y. Chen, X. Wang, D. Liu, S. Liu, X. Yang, H. Jia and X. Guo, The occurrence of microplastic in Mu Us Sand Land soils in northwest China: Different soil types, vegetation cover and restoration years. Journal of Hazardous Materials, 403, 123982, 2021. http://doi.org/10.1016/j.jhazmat.2020.1 23982
  • S. Feng, H. Lu, P. Tian, Y. Xue, J. Lu, M. Tang and W. Feng, Analysis of microplastics in a remote region of the Tibetan Plateau: Implications for natural environmental response to human activities. Science of the Total Environment, 739, 140087, 2020. http://doi. org/10.1016/j.scitotenv.2020.140087.
  • Y. Yuchen, Y. Zhang Fang and Y.U. Tao, Sources, ecological hazards and treatment technologies of microplastics in soil. Geology in China, 49, 770–788, 2022. http://doi.org/10.12029/gc20220307. 
  • N. Beriot, J. Peek, R. Zornoza, V. Geissen and E.H. Lwanga, Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Science of the Total Environment, 755, 142653, 2021. https://doi.org /10.1016/j.scitotenv.2020.142653.
  • P. van den Berg, E. Huerta-Lwanga, F. Corradini and V. Geissen, Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution, 261, 114198, 2020. https:// doi.org/10.1016/j.envpol.2020.114198.
  • I.K. Harms, T. Diekötter, S. Troegel and M. Lenz, Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany. Science of the Total Environment, 758, 143615, 2021. https://doi.org/10.1016/j.scitotenv.202 0.143615
  • J. Alvarez-Lopeztello, C. Robles and R.F. del Castillo, Microplastic Pollution in Neotropical Rainforest, Savanna, Pine Plantations, and Pasture Soils in Lowland Areas of Oaxaca, 121. Preliminary results, Mexico, Ecological Indicators, 107084, 2021. https:// doi.org/10.1016/j.ecolind.2020.107084
  • S.K. Kim, J.S. Kim, H. Lee and H.J. Lee, Abundance and characteristics of microplastics in soils with different agricultural practices: Importance of sources with internal origin and environmental fate. Journal of Hazardous Materials, 403, 123997, 2021. https://doi. org/10.1016/j.jhazmat.2020.123997.
  • Y.R. Choi, Y.N. Kim, J.H. Yoon, N. Dickinson and K.H. Kim, Plastic contamination of forest, urban, and agricultural soils: a case study of Yeoju City in the Republic of Korea. Journal of Soils and Sediments, 21, 1962–1973, 2021. http://doi.org/10.1007/s11368-020-02759-0.
  • J. Crossman, R.R. Hurley, M. Futter and L. Nizzetto, Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. Science of the Total Environment, 724, 138334, 2020. http://do i.org/10.1016/j.scitotenv.2020.138334.
  • E.D. Paes, T.V. Gloaguen, H.D.D. Silva, T.S. Duarte, M.D. de Almeida, O.D.V. Costa, M.R. Bomfim and J.A.G., Santos, Widespread microplastic pollution in mangrove soils of Todos os Santos Bay, northern Brazil. Environmental Research, 210, 2022. http://doi. org/10.1016/j.envres.2022.112952.
  • Z. Maghsodian, A.M. Sanati, B. Ramavandi, A. Ghasemi and G.A. Sorial, Microplastics accumulation in sediments and Periophthalmus waltoni fish, mangrove forests in southern Iran. Chemosphere, 264, 128543, 2021. http://doi.org/10.1016/j.chemosphere. 2020.1285 43.
  • Z. Jia, W. Wei, Y. Wang, Y. Chang, R. Lei and Y. Che. Occurrence characteristics and risk assessment of microplastics in agricultural soils in the loess hilly gully area of Yan’ an, China. Science of The Total Environment, 912, 169627, 2024. http://doi.org/10.10 16/j.scitotenv.2023.169627.
  • O. Mbachu, G. Jenkins, P. Kaparaju and C.J. Pratt, The rise of artificial soil carbon inputs: reviewing microplastic pollution effects in the soil environment. Science of The Total Environment, 780, 146569, 2021. http://doi. org/10.1016/j.scitotenv.2021.146569.
  • G.S. Zhang, F.X. Zhang and X.T. Li, Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Science of the Total Environment, 670, 1–7, 2019. http://doi.org/10.1016/j. scitotenv.2019.03.149.
  • A.A. de Souza Machado, C.W. Lau, J. Till, W. Kloas, A. Lehmann, R. Becker and M.C. Rillig, Impacts of microplastics on the soil biophysical environment. Environmental Science and Technology, 52, 9656–9665, 2018. http://doi.org/10.1021/acs.est.8b02212.
  • A. Lehmann, K. Fitschen and M.C. Rillig, Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. Soil Systems, 3 (1), 21, 2019. http:// doi .org /10.3390/soilsystems3010021.
  • Y. Yan, Z. Chen, F. Zhu, C. Zhu, C. Wang and C. Gu, Effect of polyvinyl chloride microplastics on bacterial community and nutrient status in two agricultural soils. Bulletin of Environmental Contamination and Toxicology, 107, 602– 609, 2021. http://doi.org/10.10 07/s00128-020-02963-1.
  • J.Y. Lee, M. Raza and K.D. Kwon, Land use and land cover changes in the Haean Basin of Korea: impacts on soil erosion. Episodes, 42, 17–32, 2019. http://doi. org/10.18814/epiiugs/2019/0190003.
  • A. Tomczyk, Z. Sokołowska and P. Boguta, Biochar physicochemical properties: pyrolysis temperature and feedstock kind efects. Reviews in Environmental Science and Bio/Technology, 19, 191–215, 2020. http://doi.org/10.1007/s11157-020-09523-3.
  • N. Bandow, V. Will, V. Wachtendorf and F.G. Simon, Contaminant release from aged microplastic. Environmental Chemistry 14, 394–405, 2017. http://doi.org/10.1071/EN17064.
  • B. Boots, C.W. Russell and D.S. Green, Effects of microplastics in soil ecosystems: above and below ground. Environmental Science and Technology, 53, 11496–11506, 2019. http://doi.org/10.1021/acs.est.9b 03304
  • Y. Qi, A. Ossowicki, X. Yang, E.H. Lwanga, F. Dini-Andreote, V. Geissen and P. Garbeva, Effects of plastic mulch film residues on wheat rhizosphere and soil properties. Journal of Hazardous Materials, 387, 121711, 2020. http://doi.org/10.1016/j.jhazmat.2019.1 21711.
  • Y. Qi, N. Beriot, G. Gort, E.H. Lwanga, H. Gooren, X. Yang and V. Geissen, Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environmental Pollution, 266, 115097, 2020. http://doi.org/10.1016/j.envpol.2020.115097.
  • R.W. Brown, D.R. Chadwick, H. Thornton, M.R. Marshall, S. Bei, M.A. Distaso, R. Bargiela, K.A. Marsden, P.L. Clode, D.V. Murphy and S. Pagella, Field application of pure polyethylene microplastic has no signifcant short-term efect on soil biological quality and function. Soil Biology and Biochemistry,165108496, 2022. http://doi.org/10.1016/j.soilbio.2021.10 8496
  • F. Zhang, X. Yang and Z. Zhang, Effects of soil properties and land use patterns on the distribution of microplastics: A case study in southwest China, Journal of Environmental Management, 356, 120598, 2024. http://doi.org/10.1016/j.jenvman.2024.120598.
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Atık Yönetimi, Azaltma, Yeniden Kullanım ve Geri Dönüşüm, Toprak Kirliliği ve Kontrolü
Bölüm Makaleler
Yazarlar

Senar Aydın 0000-0002-0960-480X

Arzu Ulvi 0000-0001-7303-1869

Fatma Bedük 0000-0003-0142-0122

Mehmet Emin Aydın 0000-0001-6665-198X

Erken Görünüm Tarihi 18 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 29 Ağustos 2024
Kabul Tarihi 6 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA Aydın, S., Ulvi, A., Bedük, F., Aydın, M. E. (2024). Konya ili tarım topraklarında mikroplastik kirlilik yükünün araştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 1-1. https://doi.org/10.28948/ngumuh.1540381
AMA Aydın S, Ulvi A, Bedük F, Aydın ME. Konya ili tarım topraklarında mikroplastik kirlilik yükünün araştırılması. NÖHÜ Müh. Bilim. Derg. Aralık 2024;14(1):1-1. doi:10.28948/ngumuh.1540381
Chicago Aydın, Senar, Arzu Ulvi, Fatma Bedük, ve Mehmet Emin Aydın. “Konya Ili tarım topraklarında Mikroplastik Kirlilik yükünün araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 1 (Aralık 2024): 1-1. https://doi.org/10.28948/ngumuh.1540381.
EndNote Aydın S, Ulvi A, Bedük F, Aydın ME (01 Aralık 2024) Konya ili tarım topraklarında mikroplastik kirlilik yükünün araştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 1–1.
IEEE S. Aydın, A. Ulvi, F. Bedük, ve M. E. Aydın, “Konya ili tarım topraklarında mikroplastik kirlilik yükünün araştırılması”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 1, ss. 1–1, 2024, doi: 10.28948/ngumuh.1540381.
ISNAD Aydın, Senar vd. “Konya Ili tarım topraklarında Mikroplastik Kirlilik yükünün araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (Aralık 2024), 1-1. https://doi.org/10.28948/ngumuh.1540381.
JAMA Aydın S, Ulvi A, Bedük F, Aydın ME. Konya ili tarım topraklarında mikroplastik kirlilik yükünün araştırılması. NÖHÜ Müh. Bilim. Derg. 2024;14:1–1.
MLA Aydın, Senar vd. “Konya Ili tarım topraklarında Mikroplastik Kirlilik yükünün araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 1, 2024, ss. 1-1, doi:10.28948/ngumuh.1540381.
Vancouver Aydın S, Ulvi A, Bedük F, Aydın ME. Konya ili tarım topraklarında mikroplastik kirlilik yükünün araştırılması. NÖHÜ Müh. Bilim. Derg. 2024;14(1):1-.

download