Araştırma Makalesi
BibTex RIS Kaynak Göster

Sürdürülebilir enerji için şebekeye entegre yenilenebilir enerji sistemlerinin bulanık mantık tabanlı simülasyonu ve modellenmesi

Yıl 2025, Cilt: 14 Sayı: 1, 80 - 89, 15.01.2025
https://doi.org/10.28948/ngumuh.1438625

Öz

Son yıllarda enerji krizleri, çevresel sorunlar ve sürdürülebilirlik gibi faktörlerden dolayı fosil yakıtlardan yenilenebilir enerji kaynaklarına doğru önemli bir eğilim gerçekleşmiştir. Özellikle fotovoltaik ve rüzgâr enerjisi sistemleri, yenilenebilir enerji sistemleri içerisinde oldukça kullanışlı ve önemli hale gelmiştir. Bu çalışma, bir hibrit enerji sistemine odaklanmaktadır. Bu hibrit sistem, yenilenebilir enerji kaynakları olarak fotovoltaik ve rüzgâr enerjisi sistemlerini içermektedir. Ayrıca, bir yedek güç kaynağı olarak dizel jeneratör ve bir batarya depolama sistemi kullanılmaktadır. Sistem, bulanık mantık kontrol (BMK) sistemi ile kontrol edilmekte olup enerji dağıtımını optimize etmekte ve dengeyi sağlamaktadır. Bir maksimum güç noktası takip kontrolörü, pertübasyon ve gözlem algoritması ve BMK kullanılarak geliştirilmiştir. Fotovoltaik ve rüzgâr enerjisi, hava koşulları altında analiz edilmiştir. Fotovoltaik sistem yaklaşık 3,5 kW üretim sağlamaktadır. Rüzgâr türbini, 12 m/s rüzgâr hızında yaklaşık 3,5 kW enerji üretmektedir. Düşük yenilenebilir enerji üretimi dönemlerinde, dizel jeneratör 5 kVA yedek güç sağlamaktadır. 1000 Ah kapasiteli batarya, enerji dengesini sağlamakta ve %90 verimlilikle talep artışlarını desteklemektedir. Simülasyon sonuçları, yakıt tüketiminde %30 oranında bir azalma olduğunu göstermektedir. Buna ek olarak, sistem verimliliğinde %15’lik bir artış sağlanmıştır. Önerilen yaklaşım, sürdürülebilir enerji üretimi için yenilenebilir enerjinin entegrasyonunu etkili bir şekilde göstermektedir.

Kaynakça

  • IEA, Renewables 2022 Analysis and Forecast to 2027, 2022, Paris, France, December 2022.
  • S.S. Martin, A. Chebak, A. El Ouafi, M. Mabrouki, An efficient fuzzy logic based MPPT control strategy for multi-source hybrid power system, 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), pp. 1–8 IEEE, 2018. https://doi.org/10.1109/IRSEC.2018.8702845.
  • M.A.M. Khan, S. Rehman, F.A. Al-Sulaiman, A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review, Renewable and Sustainable Energy Reviews 97, 456–477, 2018. https://doi.org/10.1016/j.rser.2018.08.049.
  • M. Özcan, Increasing voluntary carbon credits potential via renewable energy projects in Turkey, Pamukkale University Journal of Engineering Sciences 28, 710-719, 2022. https://doi.org/10.5505/pajes.2022.06882.
  • H. Roh, I. Kim, D. Kim, Ultrathin unified harvesting module capable of generating electrical energy during rainy, windy, and sunny conditions, Nano Energy 70 2020. https://doi.org/10.1016/j.nanoen.2020.104515.
  • X. Wang, A. Palazoglu, N.H. El-Farra, Operational optimization and demand response of hybrid renewable energy systems, Appl Energy, 143, 324-335, 2015. https://doi.org/10.1016/j.apenergy.2015.01.004.
  • V. Gopu, M.S. Nagaraj, Islanded microgrid: hybrid energy resilience optimization, Indonesian Journal of Electrical Engineering and Computer Science, 35, 693-703, 2024. https://doi.org/10.11591/ijeecs.v35.i2.
  • M.A.J. Al-Ani, M.A. Zdiri, F. Ben Salem, N. Derbel, Optimized grid-connected hybrid renewable energy power generation: A comprehensive analysis of photovoltaic, wind, and fuel cell systems, Engineering, Technology and Applied Science Research, 14, 13929-13936, 2024. https://doi.org/10.48084/etasr.6936.
  • Z. Gao, Study on frequency stability control strategies for microgrid based on hybrid renewable energy, Science and Technology for Energy Transition, 2024. https://doi.org/10.2516/stet/2024047.
  • M.K. Raza, M. Alghassab, A. Altamimi, Z.A. Khan, S.A. Abbas Kazmi, M. Ali, U. Diala, Integration of very small modular reactors and renewable energy resources in the microgrid, Front Energy Res, 12, 2024. https://doi.org/10.3389/fenrg.2024.1365735.
  • P. Iliadis, S. Ntomalis, K. Atsonios, A. Nesiadis, N. Nikolopoulos, P. Grammelis, Energy management and techno-economic assessment of a predictive battery storage system applying a load levelling operational strategy in island systems, Int J Energy Res, 45, 2709-2727, 2021. https://doi.org/10.1002/er.5963.
  • M.F. Elmorshedy, M.R. Elkadeem, K.M. Kotb, I.B.M. Taha, D. Mazzeo, Optimal design and energy management of an isolated fully renewable energy system integrating batteries and supercapacitors, Energy Convers Manag., 245, 2021. https://doi.org /10.1016/j.enconman.2021.114584.
  • S. Sumathi, L.A. Kumar, P. Surekha, Solar PV and wind energy conversion systems: an introduction to theory, modeling with MATLAB/SIMULINK, and the role of soft computing techniques, Springer, Switzerland, 2015. https://doi.org/10.1007/978-3-319-14941-7
  • M. Nadzim, M. Yusoof, M. Iqbal Zakaria, E. Farina Shair, N.S. Khalid, A. Rahman, A.A. Emhemed, Investigating the effectiveness of maximum power point tracking (MPPT) with perturb and observe (P&O) algorithm in solar power battery charging system, Journal of Engineering Research and Education, 15, 37-48, 2023. https://doi.org/10.58915/jere.v15.2023.650
  • W.S.E. Abdellatif, M.A. Amar, N.A. Nouraldin, MPPT achieved of PMSG-based WECS using modified perturb and observant method, 24th International Middle East Power System Conference, Institute of Electrical and Electronics Engineers Inc., 2023. https://doi.org/10.1109/MEPCON58725.2023.10462418.
  • A. Belhait, M. Louafi, S. Ghoudelbourk, G. Boukhalfa, A. Milles, Comparative study of three types of MPPT controllers for a wind energy conversion system, 2nd International Conference on Electrical Engineering and Automatic Control, Institute of Electrical and Electronics Engineers Inc., 2024. https://doi.org/10.1109/ICEEAC61226.2024.10576568.
  • A. Kumar Sahu, D. Sharma, A. Mishra, A. Sahu, A comprehensive examination of artificial intelligence-enhanced maximum power point tracking and total harmonic distortion reduction in photovoltaic grids, 2023. https://ssrn.com/abstract=4678678.
  • N.F. Ibrahim, M.M. Mahmoud, H. Alnami, D.E.M. Wapet, S.A.E.M. Ardjoun, M.I. Mosaad, A.M. Hassan, H. Abdelfattah, A new adaptive MPPT technique using an improved INC algorithm supported by fuzzy self-tuning controller for a grid-linked photovoltaic system, PLoS One, 18, 2023. https://doi.org/10.1371/journal.pone.0293613.
  • D. Rekioua, K. Kakouche, T. Rekioua, Z. Mokrani, Control a photovoltaic/wind turbine/diesel generator with storage battery, Renewable Energy and Power Quality Journal, 21, 416-420, 2023. https://doi.org/10.24084/repqj21.342.
  • M. Versaci, F. La Foresta, Fuzzy approach for managing renewable energy flows for DC-microgrid with composite PV-WT generators and energy storage system, Energies (Basel), 17, 2024. https://doi.org/10.3390/en17020402.
  • S. Sahoo, N.K. Jena, B.K. Sahu, A.K. Naik, Fuzzy based PID controller for frequency control of a power system with renewable energy sources, 5th International Conference on Recent Trends in Computer Science and Technology, Proceedings, Institute of Electrical and Electronics Engineers Inc., pp. 543–547, 2024. https://doi.org /10. 1109/ICRTCST61793.2024.10578421.
  • M.B. Prakash, P.R. Sahoo, Analysis of inertia, damping, and synchronization characteristics in grid-connected photovoltaic systems with fuzzy logic control, IAES International Journal of Robotics and Automation, 13, 65-79, 2024. https:/ /doi.org/1 0.11591/ijra.v13i1.pp65-79.
  • S. Chimplee, S. Khwan-On, Fuzzy controller design for boost converter based on current slope, Proceedings of the 2022 International Electrical Engineering Congress, Institute of Electrical and Electronics Engineers Inc., 2022. https://doi.org/10.1109/iEECON53204.2022.9741597.
  • C. Huang, S. Yüksel, H. Dinçer, A novel fuzzy model for knowledge-driven process optimization in renewable energy projects, Journal of the Knowledge Economy, 2024. https://doi.org/10.1007/s13132-024-02074-w.
  • B.K. Giri, S.K. Roy, Fuzzy-random robust flexible programming on sustainable closed-loop renewable energy supply chain, Appl Energy, 363, 2024. https://doi.org/10.1016/j.apenergy.2024.123044.
  • C.S. Ganga Bhavani, N. Bhanu Prasad, D. RAVI KISHORE GIET Rajahmundry, Integration of renewable energy sources with intelligent neuro fuzzy control for microgrid system, 2024. https://doi.org/10.21203/rs.3.rs-4657531/v1.
  • P. Giri, S. Paul, B.K. Debnath, A fuzzy graph theory and matrix approach (fuzzy GTMA) to select the best renewable energy alternative in India, Appl Energy, 358, 2024. https://doi.org/10.1016/j.apenergy.2023.122582.
  • N. Singh, B.P. Joshi, S. Gupta, A. Singh, S. Rathee, Renewable-energy-system applications of ambiguous-fuzzy-hybrid-averaging operator, 2nd International Conference on Integrated Circuits and Communication Systems, Institute of Electrical and Electronics Engineers Inc., 2024. https://doi.org/10.1109/ICICACS60521.2024.10498184.
  • G. Jayachitra, H.A. Vidya, S. Reddy H.r, R. Sinha, Fuzzy based perturb & observe MPPT algorithm for grid tied PV system, 2023 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics, Institute of Electrical and Electronics Engineers Inc., pp. 123–127, 2023. https://doi.org/10.1109/DISCOVER58830.2023.10316736.
  • K. Ullah, M. Ishaq, F. Tchier, H. Ahmad, Z. Ahmad, Fuzzy-based maximum power point tracking (MPPT) control system for photovoltaic power generation system, Results in Engineering, 20, 2023. https://doi.org/10.1016/j.rineng.2023.101466.
  • G. Bharathi, P. Sai Mahitha, K. Baby Sree, K. Satya Sai Sri, U. Usha Rani, Fuzzy based solar MPPT for electric vehicle application, IOP Conf Ser Earth Environ Sci., 1375, 2024. https://doi.org/10.1088/1755-1315/1375/1/012005.
  • I. Alam, C.S. Sowmya, N. Beemkumar, Fuzzy circuit MPPT for PV installations, 2023 International Conference on Power Energy, Environment and Intelligent Control, Institute of Electrical and Electronics Engineers Inc., pp. 932–935, 2023. https://doi.org/10.1109/PEEIC59336.2023.10450538.
  • Y. Lamia, M. Cernat, L.G. Pesquer, Comparison between MPPT P&O and MPPT fuzzy controllers for photovoltaic maximum power point tracking, Journal of Materials and Polymer Science, 2024. https://doi.org/10.47485/2832-9384.1044.
  • J. Pande, P. Nasikkar, K. Kotecha, V. Varadarajan, A review of maximum power point tracking algorithms for wind energy conversion systems, J Mar Sci Eng., 9, 2021. https://doi.org/10.3390/jmse9111187.
  • H.H.H. Mousa, A.R. Youssef, E.E.M. Mohamed, State of the art perturb and observe MPPT algorithms based wind energy conversion systems: A technology review, International Journal of Electrical Power and Energy Systems, 126, 2021. https://doi.org/10.1016/j.ijepes.2020.106598.
  • M. Saleh Ebn Sharif, Design, simulation and stability analysis of wind-PV-diesel hybrid power system using ETAP, American Journal of Modern Energy, 3,121,2017. https://doi.org/10.11648/j.ajme.20170306.12.
  • M.A. Abdullah, A.H.M. Yatim, C.W. Tan, R. Saidur, A review of maximum power point tracking algorithms for wind energy systems, Renewable and Sustainable Energy Reviews, 16, 3220-3227, 2012. https://doi.org/10.1016/j.rser.2012.02.016.
  • A. Jain, S. Shankar, V. Vanitha, Power generation using Permanent Magnet Synchronous Generator (PMSG) based variable speed wind energy conversion system (WECS): An overview, Journal of Green Engineering, 7, 477-504, 2018. https://doi.org/10.13052/jge1904-4720.742.
  • O. Apata, D.T.O. Oyedokun, An overview of control techniques for wind turbine systems, Sci Afr., 10, 2020. https://doi.org/10.1016/j.sciaf.2020.e00566.
  • A.S. Al-Ezzi, M.N.M. Ansari, Photovoltaic solar cells: a review, Applied System Innovation 5 (2022). https://doi.org/10.3390/asi5040067.
  • G.K. Singh, Solar power generation by PV (photovoltaic) technology: A review, Energy 53 (2013) 1–13. https://doi.org/10.1016/j.energy.2013.02.057.
  • B. Karaman, S. Taşkın, Development of autonomous photovoltaic panel surface cleaning robot and analyzing of cleaning interval on energy efficiency, Pamukkale University Journal of Engineering Sciences 28, 234-239, 2022. h ttps:// doi.org/10.5505/pajes.2021.45014.
  • Y.B. Koca, Y. Aslan, A. Yonetken, Y. Oguz, Boost converter design and analysis for photovoltaic systems, Int Con Eng Technol Applied Sci (ICETAS), 384-389, 2019.
  • A.K. Podder, N.K. Roy, H.R. Pota, MPPT methods for solar PV systems: A critical review based on tracking nature, IET Renewable Power Generation, 13, 1615-1632, 2019. https://doi.org/10.1049/iet-rpg.2018.5946.
  • K.A. Al Sumarmad, N. Sulaiman, N.I.A. Wahab, H. Hizam, Energy management and voltage control in microgrids using artificial neural networks, PID, and fuzzy logic controllers, Energies (Basel) 15 (2022). https://doi.org/10.3390/en15010303.
  • A.P. Schaffarczyk, Introduction to wind turbine aerodynamics, 3rd ed., Springer Nature, Switzerland AG 2024, 2024. https://doi.org/10.1007/978-3-031-56924-1_1.
  • K.I. Usanova, D.S. Rao, S. Pandey, P. Sharma, R. Deorari, A. Vyas, Fuzzy logic-based energy management in sustainable management for renewable integration, E3S Web of Conferences, EDP Sciences, 2024. https://doi.org/10.1051/e3sconf/202453708003.
  • M.A. Aneesa Farhan, K. Sasi Reka, A. Raveena Pillay, S. Singh, S. Chowhan, Fuzzy logic based energy management for solar PV-battery DC microgrid, 3rd International Conference on Emerging Frontiers in Electrical and Electronic Technologies, Institute of Electrical and Electronics Engineers Inc., 2023. https://doi.org/10.1109/ICEFEET59656.2023.10452213.
  • H.H. Shakir, F. Ben Salem, Efficient fuzzy logic energy management in stand-alone solar systems, in: 2024 21st International Multi-Conference on Systems, Signals and Devices, SSD 2024, Institute of Electrical and Electronics Engineers Inc., pp. 419–424, 2024. https://doi.org/10.1109/SSD61670.2024.10548799.

Fuzzy logic-based simulation and modelling of grid integration renewable energy systems for sustainable energy

Yıl 2025, Cilt: 14 Sayı: 1, 80 - 89, 15.01.2025
https://doi.org/10.28948/ngumuh.1438625

Öz

There has been a more significant trend from fossil fuels to renewable energy sources in recent years due to energy crises, environmental problems and sustainability. Renewable energy systems have become very useful and important especially photovoltaic and wind. This study focuses on a hybrid energy system. This hybrid system includes photovoltaic and wind energy systems as a renewable energy source. In addition, a diesel generator as a backup power source and battery storage system is used. The system is controlled with a fuzzy logic control (FLC) and optimizes energy distribution and maintains balance. A maximum power point tracking controller is developed using the perturb and observe algorithm and FLC. The photovoltaic and wind energy, has been analyzed weather conditions. The photovoltaic system produces about 3.5 kW. The wind turbine produces about 3.5 kW at 12 m/s wind speed. The diesel generator provides 5 kVA of backup power during periods of low renewable energy production. The 1000 Ah battery ensures energy balance and supports peak demand with 90% efficiency. The simulation results represent a 30% reduction in fuel consumption. In addition, this provides a 15% increase in system efficiency. The proposed approach effectively demonstrates the integration of renewable energy for sustainable power production.

Kaynakça

  • IEA, Renewables 2022 Analysis and Forecast to 2027, 2022, Paris, France, December 2022.
  • S.S. Martin, A. Chebak, A. El Ouafi, M. Mabrouki, An efficient fuzzy logic based MPPT control strategy for multi-source hybrid power system, 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), pp. 1–8 IEEE, 2018. https://doi.org/10.1109/IRSEC.2018.8702845.
  • M.A.M. Khan, S. Rehman, F.A. Al-Sulaiman, A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review, Renewable and Sustainable Energy Reviews 97, 456–477, 2018. https://doi.org/10.1016/j.rser.2018.08.049.
  • M. Özcan, Increasing voluntary carbon credits potential via renewable energy projects in Turkey, Pamukkale University Journal of Engineering Sciences 28, 710-719, 2022. https://doi.org/10.5505/pajes.2022.06882.
  • H. Roh, I. Kim, D. Kim, Ultrathin unified harvesting module capable of generating electrical energy during rainy, windy, and sunny conditions, Nano Energy 70 2020. https://doi.org/10.1016/j.nanoen.2020.104515.
  • X. Wang, A. Palazoglu, N.H. El-Farra, Operational optimization and demand response of hybrid renewable energy systems, Appl Energy, 143, 324-335, 2015. https://doi.org/10.1016/j.apenergy.2015.01.004.
  • V. Gopu, M.S. Nagaraj, Islanded microgrid: hybrid energy resilience optimization, Indonesian Journal of Electrical Engineering and Computer Science, 35, 693-703, 2024. https://doi.org/10.11591/ijeecs.v35.i2.
  • M.A.J. Al-Ani, M.A. Zdiri, F. Ben Salem, N. Derbel, Optimized grid-connected hybrid renewable energy power generation: A comprehensive analysis of photovoltaic, wind, and fuel cell systems, Engineering, Technology and Applied Science Research, 14, 13929-13936, 2024. https://doi.org/10.48084/etasr.6936.
  • Z. Gao, Study on frequency stability control strategies for microgrid based on hybrid renewable energy, Science and Technology for Energy Transition, 2024. https://doi.org/10.2516/stet/2024047.
  • M.K. Raza, M. Alghassab, A. Altamimi, Z.A. Khan, S.A. Abbas Kazmi, M. Ali, U. Diala, Integration of very small modular reactors and renewable energy resources in the microgrid, Front Energy Res, 12, 2024. https://doi.org/10.3389/fenrg.2024.1365735.
  • P. Iliadis, S. Ntomalis, K. Atsonios, A. Nesiadis, N. Nikolopoulos, P. Grammelis, Energy management and techno-economic assessment of a predictive battery storage system applying a load levelling operational strategy in island systems, Int J Energy Res, 45, 2709-2727, 2021. https://doi.org/10.1002/er.5963.
  • M.F. Elmorshedy, M.R. Elkadeem, K.M. Kotb, I.B.M. Taha, D. Mazzeo, Optimal design and energy management of an isolated fully renewable energy system integrating batteries and supercapacitors, Energy Convers Manag., 245, 2021. https://doi.org /10.1016/j.enconman.2021.114584.
  • S. Sumathi, L.A. Kumar, P. Surekha, Solar PV and wind energy conversion systems: an introduction to theory, modeling with MATLAB/SIMULINK, and the role of soft computing techniques, Springer, Switzerland, 2015. https://doi.org/10.1007/978-3-319-14941-7
  • M. Nadzim, M. Yusoof, M. Iqbal Zakaria, E. Farina Shair, N.S. Khalid, A. Rahman, A.A. Emhemed, Investigating the effectiveness of maximum power point tracking (MPPT) with perturb and observe (P&O) algorithm in solar power battery charging system, Journal of Engineering Research and Education, 15, 37-48, 2023. https://doi.org/10.58915/jere.v15.2023.650
  • W.S.E. Abdellatif, M.A. Amar, N.A. Nouraldin, MPPT achieved of PMSG-based WECS using modified perturb and observant method, 24th International Middle East Power System Conference, Institute of Electrical and Electronics Engineers Inc., 2023. https://doi.org/10.1109/MEPCON58725.2023.10462418.
  • A. Belhait, M. Louafi, S. Ghoudelbourk, G. Boukhalfa, A. Milles, Comparative study of three types of MPPT controllers for a wind energy conversion system, 2nd International Conference on Electrical Engineering and Automatic Control, Institute of Electrical and Electronics Engineers Inc., 2024. https://doi.org/10.1109/ICEEAC61226.2024.10576568.
  • A. Kumar Sahu, D. Sharma, A. Mishra, A. Sahu, A comprehensive examination of artificial intelligence-enhanced maximum power point tracking and total harmonic distortion reduction in photovoltaic grids, 2023. https://ssrn.com/abstract=4678678.
  • N.F. Ibrahim, M.M. Mahmoud, H. Alnami, D.E.M. Wapet, S.A.E.M. Ardjoun, M.I. Mosaad, A.M. Hassan, H. Abdelfattah, A new adaptive MPPT technique using an improved INC algorithm supported by fuzzy self-tuning controller for a grid-linked photovoltaic system, PLoS One, 18, 2023. https://doi.org/10.1371/journal.pone.0293613.
  • D. Rekioua, K. Kakouche, T. Rekioua, Z. Mokrani, Control a photovoltaic/wind turbine/diesel generator with storage battery, Renewable Energy and Power Quality Journal, 21, 416-420, 2023. https://doi.org/10.24084/repqj21.342.
  • M. Versaci, F. La Foresta, Fuzzy approach for managing renewable energy flows for DC-microgrid with composite PV-WT generators and energy storage system, Energies (Basel), 17, 2024. https://doi.org/10.3390/en17020402.
  • S. Sahoo, N.K. Jena, B.K. Sahu, A.K. Naik, Fuzzy based PID controller for frequency control of a power system with renewable energy sources, 5th International Conference on Recent Trends in Computer Science and Technology, Proceedings, Institute of Electrical and Electronics Engineers Inc., pp. 543–547, 2024. https://doi.org /10. 1109/ICRTCST61793.2024.10578421.
  • M.B. Prakash, P.R. Sahoo, Analysis of inertia, damping, and synchronization characteristics in grid-connected photovoltaic systems with fuzzy logic control, IAES International Journal of Robotics and Automation, 13, 65-79, 2024. https:/ /doi.org/1 0.11591/ijra.v13i1.pp65-79.
  • S. Chimplee, S. Khwan-On, Fuzzy controller design for boost converter based on current slope, Proceedings of the 2022 International Electrical Engineering Congress, Institute of Electrical and Electronics Engineers Inc., 2022. https://doi.org/10.1109/iEECON53204.2022.9741597.
  • C. Huang, S. Yüksel, H. Dinçer, A novel fuzzy model for knowledge-driven process optimization in renewable energy projects, Journal of the Knowledge Economy, 2024. https://doi.org/10.1007/s13132-024-02074-w.
  • B.K. Giri, S.K. Roy, Fuzzy-random robust flexible programming on sustainable closed-loop renewable energy supply chain, Appl Energy, 363, 2024. https://doi.org/10.1016/j.apenergy.2024.123044.
  • C.S. Ganga Bhavani, N. Bhanu Prasad, D. RAVI KISHORE GIET Rajahmundry, Integration of renewable energy sources with intelligent neuro fuzzy control for microgrid system, 2024. https://doi.org/10.21203/rs.3.rs-4657531/v1.
  • P. Giri, S. Paul, B.K. Debnath, A fuzzy graph theory and matrix approach (fuzzy GTMA) to select the best renewable energy alternative in India, Appl Energy, 358, 2024. https://doi.org/10.1016/j.apenergy.2023.122582.
  • N. Singh, B.P. Joshi, S. Gupta, A. Singh, S. Rathee, Renewable-energy-system applications of ambiguous-fuzzy-hybrid-averaging operator, 2nd International Conference on Integrated Circuits and Communication Systems, Institute of Electrical and Electronics Engineers Inc., 2024. https://doi.org/10.1109/ICICACS60521.2024.10498184.
  • G. Jayachitra, H.A. Vidya, S. Reddy H.r, R. Sinha, Fuzzy based perturb & observe MPPT algorithm for grid tied PV system, 2023 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics, Institute of Electrical and Electronics Engineers Inc., pp. 123–127, 2023. https://doi.org/10.1109/DISCOVER58830.2023.10316736.
  • K. Ullah, M. Ishaq, F. Tchier, H. Ahmad, Z. Ahmad, Fuzzy-based maximum power point tracking (MPPT) control system for photovoltaic power generation system, Results in Engineering, 20, 2023. https://doi.org/10.1016/j.rineng.2023.101466.
  • G. Bharathi, P. Sai Mahitha, K. Baby Sree, K. Satya Sai Sri, U. Usha Rani, Fuzzy based solar MPPT for electric vehicle application, IOP Conf Ser Earth Environ Sci., 1375, 2024. https://doi.org/10.1088/1755-1315/1375/1/012005.
  • I. Alam, C.S. Sowmya, N. Beemkumar, Fuzzy circuit MPPT for PV installations, 2023 International Conference on Power Energy, Environment and Intelligent Control, Institute of Electrical and Electronics Engineers Inc., pp. 932–935, 2023. https://doi.org/10.1109/PEEIC59336.2023.10450538.
  • Y. Lamia, M. Cernat, L.G. Pesquer, Comparison between MPPT P&O and MPPT fuzzy controllers for photovoltaic maximum power point tracking, Journal of Materials and Polymer Science, 2024. https://doi.org/10.47485/2832-9384.1044.
  • J. Pande, P. Nasikkar, K. Kotecha, V. Varadarajan, A review of maximum power point tracking algorithms for wind energy conversion systems, J Mar Sci Eng., 9, 2021. https://doi.org/10.3390/jmse9111187.
  • H.H.H. Mousa, A.R. Youssef, E.E.M. Mohamed, State of the art perturb and observe MPPT algorithms based wind energy conversion systems: A technology review, International Journal of Electrical Power and Energy Systems, 126, 2021. https://doi.org/10.1016/j.ijepes.2020.106598.
  • M. Saleh Ebn Sharif, Design, simulation and stability analysis of wind-PV-diesel hybrid power system using ETAP, American Journal of Modern Energy, 3,121,2017. https://doi.org/10.11648/j.ajme.20170306.12.
  • M.A. Abdullah, A.H.M. Yatim, C.W. Tan, R. Saidur, A review of maximum power point tracking algorithms for wind energy systems, Renewable and Sustainable Energy Reviews, 16, 3220-3227, 2012. https://doi.org/10.1016/j.rser.2012.02.016.
  • A. Jain, S. Shankar, V. Vanitha, Power generation using Permanent Magnet Synchronous Generator (PMSG) based variable speed wind energy conversion system (WECS): An overview, Journal of Green Engineering, 7, 477-504, 2018. https://doi.org/10.13052/jge1904-4720.742.
  • O. Apata, D.T.O. Oyedokun, An overview of control techniques for wind turbine systems, Sci Afr., 10, 2020. https://doi.org/10.1016/j.sciaf.2020.e00566.
  • A.S. Al-Ezzi, M.N.M. Ansari, Photovoltaic solar cells: a review, Applied System Innovation 5 (2022). https://doi.org/10.3390/asi5040067.
  • G.K. Singh, Solar power generation by PV (photovoltaic) technology: A review, Energy 53 (2013) 1–13. https://doi.org/10.1016/j.energy.2013.02.057.
  • B. Karaman, S. Taşkın, Development of autonomous photovoltaic panel surface cleaning robot and analyzing of cleaning interval on energy efficiency, Pamukkale University Journal of Engineering Sciences 28, 234-239, 2022. h ttps:// doi.org/10.5505/pajes.2021.45014.
  • Y.B. Koca, Y. Aslan, A. Yonetken, Y. Oguz, Boost converter design and analysis for photovoltaic systems, Int Con Eng Technol Applied Sci (ICETAS), 384-389, 2019.
  • A.K. Podder, N.K. Roy, H.R. Pota, MPPT methods for solar PV systems: A critical review based on tracking nature, IET Renewable Power Generation, 13, 1615-1632, 2019. https://doi.org/10.1049/iet-rpg.2018.5946.
  • K.A. Al Sumarmad, N. Sulaiman, N.I.A. Wahab, H. Hizam, Energy management and voltage control in microgrids using artificial neural networks, PID, and fuzzy logic controllers, Energies (Basel) 15 (2022). https://doi.org/10.3390/en15010303.
  • A.P. Schaffarczyk, Introduction to wind turbine aerodynamics, 3rd ed., Springer Nature, Switzerland AG 2024, 2024. https://doi.org/10.1007/978-3-031-56924-1_1.
  • K.I. Usanova, D.S. Rao, S. Pandey, P. Sharma, R. Deorari, A. Vyas, Fuzzy logic-based energy management in sustainable management for renewable integration, E3S Web of Conferences, EDP Sciences, 2024. https://doi.org/10.1051/e3sconf/202453708003.
  • M.A. Aneesa Farhan, K. Sasi Reka, A. Raveena Pillay, S. Singh, S. Chowhan, Fuzzy logic based energy management for solar PV-battery DC microgrid, 3rd International Conference on Emerging Frontiers in Electrical and Electronic Technologies, Institute of Electrical and Electronics Engineers Inc., 2023. https://doi.org/10.1109/ICEFEET59656.2023.10452213.
  • H.H. Shakir, F. Ben Salem, Efficient fuzzy logic energy management in stand-alone solar systems, in: 2024 21st International Multi-Conference on Systems, Signals and Devices, SSD 2024, Institute of Electrical and Electronics Engineers Inc., pp. 419–424, 2024. https://doi.org/10.1109/SSD61670.2024.10548799.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Enerjisi Üretimi (Yenilenebilir Kaynaklar Dahil, Fotovoltaikler Hariç)
Bölüm Araştırma Makaleleri
Yazarlar

Yavuz Bahadir Koca 0000-0002-0317-1417

Erken Görünüm Tarihi 6 Ocak 2025
Yayımlanma Tarihi 15 Ocak 2025
Gönderilme Tarihi 16 Şubat 2024
Kabul Tarihi 16 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA Koca, Y. B. (2025). Fuzzy logic-based simulation and modelling of grid integration renewable energy systems for sustainable energy. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 80-89. https://doi.org/10.28948/ngumuh.1438625
AMA Koca YB. Fuzzy logic-based simulation and modelling of grid integration renewable energy systems for sustainable energy. NÖHÜ Müh. Bilim. Derg. Ocak 2025;14(1):80-89. doi:10.28948/ngumuh.1438625
Chicago Koca, Yavuz Bahadir. “Fuzzy Logic-Based Simulation and Modelling of Grid Integration Renewable Energy Systems for Sustainable Energy”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 1 (Ocak 2025): 80-89. https://doi.org/10.28948/ngumuh.1438625.
EndNote Koca YB (01 Ocak 2025) Fuzzy logic-based simulation and modelling of grid integration renewable energy systems for sustainable energy. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 80–89.
IEEE Y. B. Koca, “Fuzzy logic-based simulation and modelling of grid integration renewable energy systems for sustainable energy”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 1, ss. 80–89, 2025, doi: 10.28948/ngumuh.1438625.
ISNAD Koca, Yavuz Bahadir. “Fuzzy Logic-Based Simulation and Modelling of Grid Integration Renewable Energy Systems for Sustainable Energy”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (Ocak 2025), 80-89. https://doi.org/10.28948/ngumuh.1438625.
JAMA Koca YB. Fuzzy logic-based simulation and modelling of grid integration renewable energy systems for sustainable energy. NÖHÜ Müh. Bilim. Derg. 2025;14:80–89.
MLA Koca, Yavuz Bahadir. “Fuzzy Logic-Based Simulation and Modelling of Grid Integration Renewable Energy Systems for Sustainable Energy”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 1, 2025, ss. 80-89, doi:10.28948/ngumuh.1438625.
Vancouver Koca YB. Fuzzy logic-based simulation and modelling of grid integration renewable energy systems for sustainable energy. NÖHÜ Müh. Bilim. Derg. 2025;14(1):80-9.

download