Araştırma Makalesi
BibTex RIS Kaynak Göster

Köprü ayakları etrafındaki su yüzeyinin sayısal ve deneysel olarak incelenmesi

Yıl 2025, Cilt: 14 Sayı: 1, 289 - 296, 15.01.2025
https://doi.org/10.28948/ngumuh.1537850

Öz

Köprü ayakları etrafındaki serbest yüzeyli akım, açık kanal hidroliğinin en önemli problemlerinden biridir. Köprünün yapısal tasarımı, köprü ayakları etrafında oluşacak oyulma ve köprü ayakları etrafındaki su hareketini simüle eden hidrolik tasarım ile birlikte doğru bir şekilde yapılmalıdır. Köprü ayaklarının hidrolik tasarımı yeterince iyi değilse, sel ve taşkın gibi durumlarda çok ciddi hasarlara neden olabilir. Bu çalışmanın amacı köprü ayaklarının su yüzeyine etkisini deneysel ve sayısal olarak analiz etmektir. Sayısal analiz için hesaplamalı akışkanlar dinamiği ile 3 boyutlu çözüm yapan FLOW-3D paket programı ile HEC-RAS paket programı kullanılmış ve sonuçlar karşılaştırılmıştır. Çalışmada farklı köprü açıklık sayıları için aynı hızda akışlar incelenmiş ve deneysel sonuçlarla karşılaştırılmıştır. Ayrıca sonlu hacimler yöntemi ile çözüm yapan FLOW 3D paket programında farklı mesh boyutları ile çözüm yapılarak deneysel sonuçlar ile karşılaştırılmıştır. Sonuç olarak FLOW-3D paket programı ile gerçekleştirilen çözümlerin deneysel veriler ile oldukça yakın sonuçlar gösterdiği gözlemlenmiştir.

Kaynakça

  • M. H. Chaudry, Open Channel Flow. New York: Springer Science+Business Media, 2008.
  •     F. M. Henderson, Open Channel Flow. New York: MacMillan Company, 1966.
  •     J.F.D.A. Voissins, Traité d'hydraulique: à l'usage des ingénieurs. Pitois-Levrault, 1840.
  •     D. L. Yarnell, Bridge piers as channel obstructions. No. 442. US Department of Agriculture, 1934.
  •     P. Dubuat, Principes d'hydrauliques vérifiés par un grand nombre d'expériences,1786.
  •     P. F. Biery and J. W. Delleur, Hydraulics of single span arch bridge construction. Journal of the Hydraulics Division, 88.(2), 75-108, 1962. https://doi.org/10.1061/JYCEAJ.0000711
  •     G.V. Skogerboe, Comparison of Bridge Backwater Relations. Journal of the Hydraulics Division, 99.6, 921-938, 1973. https://doi.org/10.1061/JYCEAJ. 0003665
  •     G. Seckin, R. Yurtal, and T. Haktanir, Contraction and expansion losses through bridge constrictions. Journal of Hydraulic Engineering 124.5,546-549, 1998. https://doi.org/10.1061/(ASCE)0733-9429(199
  •     F. Ahmed, and N. Rajaratnam, Flow around bridge piers. Journal of Hydraulic Engineering, 124.3,288-300, 1998. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:3(288)
  •   J. Hunt, G.W. Brunner and B. E. Larock, Flow transitions in bridge backwater analysis. Journal of Hydraulic Engineering, 125.9, 981-983, 1999. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(981)
  •   R.J. Charbeneau and E.R. Holley, Backwater effects of bridge piers in subcritical flow. USA: Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, 2001.
  •   E.M. Laursen, Bridge design considering scour and risk. Transportation Engineering Journal of ASCE 96.2, 149-164, 1970. https://doi.org/10.1061/ TPEJAN.0000079
  •   K.J. Kaatz and W. P. James Analysis of alternatives for computing backwater at bridges. Journal of Hydraulic Engineering, 123.9, 784-792, 1997. https://doi.org/ 10.1061/(ASCE)0733-9429(1997)123:9(784)
  •   C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39.1 ,201-225, 1981. https://doi.org/10.1016/0021-9991(81)90145-5
  •   F.S. İnc., Flow-3D User’s Manuals, 2017.
  •   A.M.W.M.H.M. Hadi, Akarsu Üzerindeki Köprülerin Neden Olduğu Kabarmanın Deneysel Ve Hec-Ras İle İncelenmesi, Erciyes Üniversitesi, Yüksek Lisans Tezi, 2017.
  •   L.G. Castillo and J. M. Carrillo, Comparison of methods to estimate the scour downstream of a ski jump. International Journal of Multiphase Flow, 92, 171-180, 2017. https://doi.org/10.1016/ j.ijmultiph
  •   N. Soydan, O. Şimşek, and M. Aköz, Prediction and validation of turbulent flow around a cylindrical weir. European water, 57, p. 85-92, 2017.
  •   J. Vives-Costa, J.J. De-Felipe, and E. Pena-Pitarch, Numerical model for a nineteenth-century hydrometric module. Journal of irrigation and drainage engineering, 145.11, 2019. https://doi.org/10.1061/(
  •   E.H.H. Al-Qadami, et al, Numerical modelling of flow characteristics over sharp crested triangular hump. Results in Engineering, 4, 2019. https://doi.org/10.1016/j.rineng.2019.100052
  •   R. Kaurav and P.K. Mohapatra, Studying the peak discharge through a planar dam breach. Journal of Hydraulic Engineering, 145, 6, 2019. https://doi.org/ 10.1061/(ASCE)HY.1943-7900.0001613
  •   A. M. Helmi, H. T. Essawy, and A. Wagdy, Three-dimensional numerical study of stacked drop manholes. Journal of Irrigation and Drainage Engineering, 145, 9, 2019. https://doi.org/10.1061/(ASCE)IR.1943-
  •   M. İlkentapar and A. A. Öner, Geniş Başlıklı Savak Etrafındaki Akımın İncelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6.2, 615-626, 2017. https://doi.org/10.28948/ngumuh.
  •   H. K. Jalal and W. H. Hassan, Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software, IOP Conference Series: Materials Science and Engineering, Vol. 74
  •   M. Ghasemi and S. Soltani-Gerdefaramarzi, The scour bridge simulation around a cylindrical pier using Flow-3D, Journal of Hydrosciences and Environment, 1.2, 46-54, 2017. https://doi.org/10.22111/jhe.2
  •   L. Hamill, Bridge Hydraulics, CRC Press, 1998.
  •   A.M.W.M.H.M. Hadi, Akarsu Üzerindeki Köprülerin Neden Olduğu Kabarmanın Deneysel Ve Hec-Ras İle İncelenmesi, Erciyes Üniversitesi, Yüksek Lisans Tezi, 2017.

Computational and experimental investigation of water surface around bridge piers

Yıl 2025, Cilt: 14 Sayı: 1, 289 - 296, 15.01.2025
https://doi.org/10.28948/ngumuh.1537850

Öz

Free surface flow around bridge piers is one of the most important problems of open channel hydraulics. The structural design of the bridge should be done correctly along with the hydraulic design by simulating the water surface around the bridge piers together with the scour that will occur around the bridge piers. If the hydraulic design of the bridge piers is not good enough, it can cause very serious damages in situations such as floods and overflows. The aim of this paper is to analyze the effect of bridge piers on the water surface experimentally and numerically. For the numerical analysis, FLOW-3D, a computational fluid dynamics package program that performs 3-dimensional solution, and HEC-RAS package program are used and the results are compared. In the study, flows with the same velocity for different number of bridge openings were studied and compared with the experimental results. In addition, the FLOW 3D package program, which performs solutions with the finite volume method, was compared with the experimental results by performing solutions with different mesh sizes. As a result, it was observed that the solutions performed with the FLOW-3D package program showed very close results with the experimental data.

Kaynakça

  • M. H. Chaudry, Open Channel Flow. New York: Springer Science+Business Media, 2008.
  •     F. M. Henderson, Open Channel Flow. New York: MacMillan Company, 1966.
  •     J.F.D.A. Voissins, Traité d'hydraulique: à l'usage des ingénieurs. Pitois-Levrault, 1840.
  •     D. L. Yarnell, Bridge piers as channel obstructions. No. 442. US Department of Agriculture, 1934.
  •     P. Dubuat, Principes d'hydrauliques vérifiés par un grand nombre d'expériences,1786.
  •     P. F. Biery and J. W. Delleur, Hydraulics of single span arch bridge construction. Journal of the Hydraulics Division, 88.(2), 75-108, 1962. https://doi.org/10.1061/JYCEAJ.0000711
  •     G.V. Skogerboe, Comparison of Bridge Backwater Relations. Journal of the Hydraulics Division, 99.6, 921-938, 1973. https://doi.org/10.1061/JYCEAJ. 0003665
  •     G. Seckin, R. Yurtal, and T. Haktanir, Contraction and expansion losses through bridge constrictions. Journal of Hydraulic Engineering 124.5,546-549, 1998. https://doi.org/10.1061/(ASCE)0733-9429(199
  •     F. Ahmed, and N. Rajaratnam, Flow around bridge piers. Journal of Hydraulic Engineering, 124.3,288-300, 1998. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:3(288)
  •   J. Hunt, G.W. Brunner and B. E. Larock, Flow transitions in bridge backwater analysis. Journal of Hydraulic Engineering, 125.9, 981-983, 1999. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(981)
  •   R.J. Charbeneau and E.R. Holley, Backwater effects of bridge piers in subcritical flow. USA: Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, 2001.
  •   E.M. Laursen, Bridge design considering scour and risk. Transportation Engineering Journal of ASCE 96.2, 149-164, 1970. https://doi.org/10.1061/ TPEJAN.0000079
  •   K.J. Kaatz and W. P. James Analysis of alternatives for computing backwater at bridges. Journal of Hydraulic Engineering, 123.9, 784-792, 1997. https://doi.org/ 10.1061/(ASCE)0733-9429(1997)123:9(784)
  •   C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39.1 ,201-225, 1981. https://doi.org/10.1016/0021-9991(81)90145-5
  •   F.S. İnc., Flow-3D User’s Manuals, 2017.
  •   A.M.W.M.H.M. Hadi, Akarsu Üzerindeki Köprülerin Neden Olduğu Kabarmanın Deneysel Ve Hec-Ras İle İncelenmesi, Erciyes Üniversitesi, Yüksek Lisans Tezi, 2017.
  •   L.G. Castillo and J. M. Carrillo, Comparison of methods to estimate the scour downstream of a ski jump. International Journal of Multiphase Flow, 92, 171-180, 2017. https://doi.org/10.1016/ j.ijmultiph
  •   N. Soydan, O. Şimşek, and M. Aköz, Prediction and validation of turbulent flow around a cylindrical weir. European water, 57, p. 85-92, 2017.
  •   J. Vives-Costa, J.J. De-Felipe, and E. Pena-Pitarch, Numerical model for a nineteenth-century hydrometric module. Journal of irrigation and drainage engineering, 145.11, 2019. https://doi.org/10.1061/(
  •   E.H.H. Al-Qadami, et al, Numerical modelling of flow characteristics over sharp crested triangular hump. Results in Engineering, 4, 2019. https://doi.org/10.1016/j.rineng.2019.100052
  •   R. Kaurav and P.K. Mohapatra, Studying the peak discharge through a planar dam breach. Journal of Hydraulic Engineering, 145, 6, 2019. https://doi.org/ 10.1061/(ASCE)HY.1943-7900.0001613
  •   A. M. Helmi, H. T. Essawy, and A. Wagdy, Three-dimensional numerical study of stacked drop manholes. Journal of Irrigation and Drainage Engineering, 145, 9, 2019. https://doi.org/10.1061/(ASCE)IR.1943-
  •   M. İlkentapar and A. A. Öner, Geniş Başlıklı Savak Etrafındaki Akımın İncelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6.2, 615-626, 2017. https://doi.org/10.28948/ngumuh.
  •   H. K. Jalal and W. H. Hassan, Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software, IOP Conference Series: Materials Science and Engineering, Vol. 74
  •   M. Ghasemi and S. Soltani-Gerdefaramarzi, The scour bridge simulation around a cylindrical pier using Flow-3D, Journal of Hydrosciences and Environment, 1.2, 46-54, 2017. https://doi.org/10.22111/jhe.2
  •   L. Hamill, Bridge Hydraulics, CRC Press, 1998.
  •   A.M.W.M.H.M. Hadi, Akarsu Üzerindeki Köprülerin Neden Olduğu Kabarmanın Deneysel Ve Hec-Ras İle İncelenmesi, Erciyes Üniversitesi, Yüksek Lisans Tezi, 2017.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hidromekanik, Su Kaynakları ve Su Yapıları
Bölüm Araştırma Makaleleri
Yazarlar

Mesut Çelik 0000-0002-9375-4084

Mücella İlkentapar 0000-0001-8600-0105

Serhat Akşit 0000-0002-7458-5131

Ahmet Alper Öner 0000-0001-9473-1864

Erken Görünüm Tarihi 9 Ocak 2025
Yayımlanma Tarihi 15 Ocak 2025
Gönderilme Tarihi 23 Ağustos 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA Çelik, M., İlkentapar, M., Akşit, S., Öner, A. A. (2025). Computational and experimental investigation of water surface around bridge piers. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 289-296. https://doi.org/10.28948/ngumuh.1537850
AMA Çelik M, İlkentapar M, Akşit S, Öner AA. Computational and experimental investigation of water surface around bridge piers. NÖHÜ Müh. Bilim. Derg. Ocak 2025;14(1):289-296. doi:10.28948/ngumuh.1537850
Chicago Çelik, Mesut, Mücella İlkentapar, Serhat Akşit, ve Ahmet Alper Öner. “Computational and Experimental Investigation of Water Surface Around Bridge Piers”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 1 (Ocak 2025): 289-96. https://doi.org/10.28948/ngumuh.1537850.
EndNote Çelik M, İlkentapar M, Akşit S, Öner AA (01 Ocak 2025) Computational and experimental investigation of water surface around bridge piers. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 289–296.
IEEE M. Çelik, M. İlkentapar, S. Akşit, ve A. A. Öner, “Computational and experimental investigation of water surface around bridge piers”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 1, ss. 289–296, 2025, doi: 10.28948/ngumuh.1537850.
ISNAD Çelik, Mesut vd. “Computational and Experimental Investigation of Water Surface Around Bridge Piers”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (Ocak 2025), 289-296. https://doi.org/10.28948/ngumuh.1537850.
JAMA Çelik M, İlkentapar M, Akşit S, Öner AA. Computational and experimental investigation of water surface around bridge piers. NÖHÜ Müh. Bilim. Derg. 2025;14:289–296.
MLA Çelik, Mesut vd. “Computational and Experimental Investigation of Water Surface Around Bridge Piers”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 1, 2025, ss. 289-96, doi:10.28948/ngumuh.1537850.
Vancouver Çelik M, İlkentapar M, Akşit S, Öner AA. Computational and experimental investigation of water surface around bridge piers. NÖHÜ Müh. Bilim. Derg. 2025;14(1):289-96.

download