Araştırma Makalesi
BibTex RIS Kaynak Göster

Yapı çeliklerinin mikroyapısı ve faz dönüşümleri üzerine hava soğutmalı ısıl işlemin etkisi

Yıl 2025, Cilt: 14 Sayı: 1, 360 - 369, 15.01.2025
https://doi.org/10.28948/ngumuh.1578719

Öz

Bu çalışmanın amacı, S235JR, S275JR ve S355JR yapısal çeliklerinin hava soğutmalı ısıl işlem sonrası mikro yapısını, faz dönüşümlerini ve sertlik değişimini incelemektir. Çelik numuneleri, 1000°C’de östenitleştirdikten sonra havada soğutulmuş ve soğuma esnasında numune sıcaklıkları bir termokupl ile kaydedilmiştir. Numunelerin mikro yapı incelemeleri ile faz dönüşümleri hem deneysel yöntemlerle hem de Faz Diyagramlarının ve Termokimyanın Bilgisayarla Birleştirilmesi (CALPHAD) malzeme özelliği yazılımıyla analiz edilmiştir. Yapı çeliklerinde artan karbon ve mangan içeriği faz dönüşüm sıcaklıklarını düşürerek beynit oluşumunu arttırdığı, ferrit ortalama tane boyutunu küçülttüğü ve bu yüzden de sertlik değerlerinde artışa yol açtığı görülmüştür. Yazılım ile belirlenen faz oranları ve sertlik değerleri, deneysel sonuçları %3'ten düşük bir sapma ile tahmin etmiştir. Bu sonuçlar, hava soğutma ile dengeli bir ferrit ve beynit faz dağılımının elde edildiğini ve malzeme özellik yazılımının bu faz dönüşümlerini başarılı bir şekilde modelleyebildiğini göstermektedir.

Kaynakça

  • Y. Li, M. Wang, G. Li and B. Jiang, Mechanical properties of hot-rolled structural steels at elevated Temperatures: A review. Fire Safety Journal, 119, 1-23, 2021. https://doi.org/10.1016/j.firesaf.2020.103237.
  •     D.A. Fadare, T.G. Fadara and O.Y. Akanbi, Effect of Heat Treatment on Mechanical Properties and Microstructure of NST 37-2 Steel. Journal of Minerals and Materials Characterization and Engineering. 10 299–308, 2011. https://doi.org/10.4236/jmmce.2011.103020.
  •     B. Sun, A.K. da Silva, Y. Wu, Y. Ma, H. Chen, C. Scott, D. Ponge and D. Raabe, Physical metallurgy of medium-Mn advanced high-strength steels. International Materials Reviews. 68, 786–824, 2023. https://doi.org/10.1080/09506608.2022.2153220.
  •     M.M. Solomon, S.A. Umoren, A. Gilda Ritacca, I. Ritacco, D. Hu and L. Guo, Tailoring poly (2-ethyl-2-oxazoline) towards effective mitigation of chloride-induced dissolution of S235JR steel: The synergistic contributions of potassium iodide and myristyl trimethylammonium bromide. Journal of Molecular Liquids, 396, 1–21, 2024.https://doi.org/10.1016/j.molliq.2023.123935.
  •     A.K. Krella, D.E. Zakrzewska and A. Marchewicz, The resistance of S235JR steel to cavitation erosion. Wear, 452–453, 1–14, 2020. https://doi.org/10.1016/j.wear.2020.203295.
  •     G. İrsel, Study of the microstructure and mechanical property relationships of shielded metal arc and TIG welded S235JR steel joints. Materials Science and Engineering: A, 830, 1–14, 2022. https://doi.org/10.1016/j.msea.2021.142320.
  •     M. Gamerdinger, F. Akyel, S. Olschok and U. Reisgen, Investigating mechanical properties of laser beam weld seams with LTT-effect in 1.4307 and S235JR by tensile test and DIC. Procedia CIRP, 111- 420–424, 2022. https://doi.org/10.1016/j.procir.2022.08.179.
  •     A. Neimitz and J. Galkiewicz, The experimental-numerical analyses of the failure mechanisms of S355JR steel, Theoretical and Applied Fracture Mechanics. 108, 1–14, 2020. https://doi.org/10.1016/j.tafmec.2020.102666.
  •     N. Torić, J. Brnić, I. Boko, M. Brčić, I.W. Burgess and I.U. Glavinić, Development of a high temperature material model for grade s275jr steel. Journal of Constructional Steel Research, 137, 161–168, 2017. https://doi.org/10.1016/j.jcsr.2017.06.020.
  •   Q. Chen, J. Yang, X. Liu, J. Tang and B. Huang, Effect of the groove type when considering a thermometallurgical-mechanical model of the welding residual stress and deformation in an S355JR-316L dissimilar welded joint. Journal of Manufacturing Processes, 45, 290–303, 2019. https://doi.org/10.1016/j.jmapro.2019.07.011.
  •   W. Yongzhong and Z. Donghui, Electrochemical corrosion behaviors and microhardness of laser thermal sprayed amorphous AlCrNi coating on S275JR steel. Optics & Laser Technology Journal, 118, 115–120, 2019. https://doi.org/10.1016/j.optlastec.2019.05.004.
  •   Y. Tomita and K. Okabayashi, Effect of microstructure on strength and toughness of heat-treated low alloy structural steels. Metallurgical and Materials Transactions A, 17, 1203–1209, 1986. https://doi.org/10.1007/BF02665319.
  •   L.A. Dobrzański and R. Honysz, Heat treatment influence on mechanical properties of structural steels for quenching and tempering. Journal of Achievements in Materials and Manufacturing, 55, 461–468, 2012.
  •   P. Chakraborty, S. Neogy, N.K. Sarkar, H. Donthula, S.K. Ghosh, H.K. Nandi, B. Gopalakrishna, I. Balasundar and R. Tewari, Formation of Bainite in a Low-Carbon Steel at Slow Cooling Rate – Experimental Observations and Thermodynamic Validation. Steel Research International, 2400593, 1–12 2024. https://doi.org/10.1002/srin.202400593.
  •   F.X. Ding, L.F. Lan, Y.J. Yu and M.K. Man, Experimental study of the effect of a slow-cooling heat treatment on the mechanical properties of high strength steels. Construction and Building Materials, 241, 1–12, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118020.
  •   S.F. Di Martino and G. Thewlis, Transformation characteristics of ferrite/carbide aggregate in continuously cooled, low carbon-manganese steels. Metallurgical and Materials Transactions A. 45, 579–594, 2014. https://doi.org/10.1007/s11661-013-2035-x.
  •   A. Thakur and G.-E. Aregawi, International Journal of Current Engineering and Technology Effect of Heat Treatment on Mechanical Properties and Microstructure of ST 37-2 Rear Trailing Arm (Case study at MIE). International Journal of Current Engineering and Technology, 9, 80–90, 2019. https://doi.org/10.14741/ijcet/v.9.1.12.
  •   G. Thewlis, Classification and quantification of microstructures in steels Materials Science and Technology, 20, 143–160, 2004. https://doi.org/10.1179/026708304225010325.
  •   J.S. Kirkaldy and D. Venugopolan, Phase Transformations in Ferrous Alloys. International Conference on Phase Transformations in Ferrous Alloys, pp. 125–125, Philadelphia, USA, 1984.
  •   J.S. Kirkaldy, Diffusion-controlled phase transformations in steels. Theory and applications, Scandinavian Journal of Metallurgy, 20, 50–61, 1991.
  •   J. Rezaei, M. Habibi Parsa and H. Mirzadeh, Phase transformation kinetics of high-carbon steel during continuous heating. The Journal of Materials Research and Technology, 27, 2524–2537, 2023. https://doi.org/10.1016/j.jmrt.2023.10.089.
  •   S.F. Di Martino and G. Thewlis, Transformation Characteristics of Ferrite/Carbide Aggregate in Continuously Cooled, Low Carbon-Manganese Steels. Metallurgical and Materials Transactions A, 45, 579–594, 2014. https://doi.org/10.1007/s11661-013-2035-x.
  •   V.L. de la Concepción, H.N. Lorusso and H.G. Svoboda, Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels. Procedia Materials Science, 8, 1047–1056, 2015. https://doi.org/10.1016/j.mspro.2015.04.167.
  •   A.N. Ashong, M.Y. Na, H.C. Kim, S.H. Noh, T. Park, H.J. Chang and J.H. Kim, Influence of manganese on the microstructure and mechanical properties of oxide-dispersion-strengthened steels. Materials and Design, 182, 1–13, 2019. https://doi.org/10.1016/j.matdes.2019.107997.
  •   I. Pushkareva, J. Macchi, B. Shalchi-Amirkhiz, F. Fazeli, G. Geandier, F. Danoix, J.D.C. Teixeira, S.Y.P. Allain and C. Scott, A study of the carbon distribution in bainitic ferrite, Scripta Materialia. 224, 1–5, 2023. https://doi.org/10.1016/j.scriptamat.2022.115140.
  •   M. Calcagnotto, D. Ponge and D. Raabe, On the Effect of Manganese on Grain Size Stability and Hardenability in Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels. Metallurgical and Materials Transactions A, 43, 37–46, 2012. https://doi.org/10.1007/s11661-011-0828-3.

The effect of air-cooling heat treatment on the microstructure and phase transformations of structural steels

Yıl 2025, Cilt: 14 Sayı: 1, 360 - 369, 15.01.2025
https://doi.org/10.28948/ngumuh.1578719

Öz

The aim of this study was to investigate the microstructure, phase transformations, and hardness changes of S235JR, S275JR, and S355JR structural steels after air-cooled heat treatment. The steel samples were austenitized at 1000°C and then cooled in air, and the sample temperatures were recorded with a thermocouple during cooling. The microstructure and phase transformations of the samples were analyzed both experimentally and with the Computerized Combining Phase Diagrams and Thermochemistry (CALPHAD) material property software. It was observed that higher carbon and manganese levels in structural steels lower the phase transformation temperatures, promote bainite formation, reduce the average ferrite grain size, and consequently lead to an increase in hardness. The phase ratios and hardness values were determined by the predicted experimental results with a deviation of less than 3%. These results show that a balanced ferrite and bainite phase distribution is achieved air cooling and the software effectively models these transformations.

Kaynakça

  • Y. Li, M. Wang, G. Li and B. Jiang, Mechanical properties of hot-rolled structural steels at elevated Temperatures: A review. Fire Safety Journal, 119, 1-23, 2021. https://doi.org/10.1016/j.firesaf.2020.103237.
  •     D.A. Fadare, T.G. Fadara and O.Y. Akanbi, Effect of Heat Treatment on Mechanical Properties and Microstructure of NST 37-2 Steel. Journal of Minerals and Materials Characterization and Engineering. 10 299–308, 2011. https://doi.org/10.4236/jmmce.2011.103020.
  •     B. Sun, A.K. da Silva, Y. Wu, Y. Ma, H. Chen, C. Scott, D. Ponge and D. Raabe, Physical metallurgy of medium-Mn advanced high-strength steels. International Materials Reviews. 68, 786–824, 2023. https://doi.org/10.1080/09506608.2022.2153220.
  •     M.M. Solomon, S.A. Umoren, A. Gilda Ritacca, I. Ritacco, D. Hu and L. Guo, Tailoring poly (2-ethyl-2-oxazoline) towards effective mitigation of chloride-induced dissolution of S235JR steel: The synergistic contributions of potassium iodide and myristyl trimethylammonium bromide. Journal of Molecular Liquids, 396, 1–21, 2024.https://doi.org/10.1016/j.molliq.2023.123935.
  •     A.K. Krella, D.E. Zakrzewska and A. Marchewicz, The resistance of S235JR steel to cavitation erosion. Wear, 452–453, 1–14, 2020. https://doi.org/10.1016/j.wear.2020.203295.
  •     G. İrsel, Study of the microstructure and mechanical property relationships of shielded metal arc and TIG welded S235JR steel joints. Materials Science and Engineering: A, 830, 1–14, 2022. https://doi.org/10.1016/j.msea.2021.142320.
  •     M. Gamerdinger, F. Akyel, S. Olschok and U. Reisgen, Investigating mechanical properties of laser beam weld seams with LTT-effect in 1.4307 and S235JR by tensile test and DIC. Procedia CIRP, 111- 420–424, 2022. https://doi.org/10.1016/j.procir.2022.08.179.
  •     A. Neimitz and J. Galkiewicz, The experimental-numerical analyses of the failure mechanisms of S355JR steel, Theoretical and Applied Fracture Mechanics. 108, 1–14, 2020. https://doi.org/10.1016/j.tafmec.2020.102666.
  •     N. Torić, J. Brnić, I. Boko, M. Brčić, I.W. Burgess and I.U. Glavinić, Development of a high temperature material model for grade s275jr steel. Journal of Constructional Steel Research, 137, 161–168, 2017. https://doi.org/10.1016/j.jcsr.2017.06.020.
  •   Q. Chen, J. Yang, X. Liu, J. Tang and B. Huang, Effect of the groove type when considering a thermometallurgical-mechanical model of the welding residual stress and deformation in an S355JR-316L dissimilar welded joint. Journal of Manufacturing Processes, 45, 290–303, 2019. https://doi.org/10.1016/j.jmapro.2019.07.011.
  •   W. Yongzhong and Z. Donghui, Electrochemical corrosion behaviors and microhardness of laser thermal sprayed amorphous AlCrNi coating on S275JR steel. Optics & Laser Technology Journal, 118, 115–120, 2019. https://doi.org/10.1016/j.optlastec.2019.05.004.
  •   Y. Tomita and K. Okabayashi, Effect of microstructure on strength and toughness of heat-treated low alloy structural steels. Metallurgical and Materials Transactions A, 17, 1203–1209, 1986. https://doi.org/10.1007/BF02665319.
  •   L.A. Dobrzański and R. Honysz, Heat treatment influence on mechanical properties of structural steels for quenching and tempering. Journal of Achievements in Materials and Manufacturing, 55, 461–468, 2012.
  •   P. Chakraborty, S. Neogy, N.K. Sarkar, H. Donthula, S.K. Ghosh, H.K. Nandi, B. Gopalakrishna, I. Balasundar and R. Tewari, Formation of Bainite in a Low-Carbon Steel at Slow Cooling Rate – Experimental Observations and Thermodynamic Validation. Steel Research International, 2400593, 1–12 2024. https://doi.org/10.1002/srin.202400593.
  •   F.X. Ding, L.F. Lan, Y.J. Yu and M.K. Man, Experimental study of the effect of a slow-cooling heat treatment on the mechanical properties of high strength steels. Construction and Building Materials, 241, 1–12, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118020.
  •   S.F. Di Martino and G. Thewlis, Transformation characteristics of ferrite/carbide aggregate in continuously cooled, low carbon-manganese steels. Metallurgical and Materials Transactions A. 45, 579–594, 2014. https://doi.org/10.1007/s11661-013-2035-x.
  •   A. Thakur and G.-E. Aregawi, International Journal of Current Engineering and Technology Effect of Heat Treatment on Mechanical Properties and Microstructure of ST 37-2 Rear Trailing Arm (Case study at MIE). International Journal of Current Engineering and Technology, 9, 80–90, 2019. https://doi.org/10.14741/ijcet/v.9.1.12.
  •   G. Thewlis, Classification and quantification of microstructures in steels Materials Science and Technology, 20, 143–160, 2004. https://doi.org/10.1179/026708304225010325.
  •   J.S. Kirkaldy and D. Venugopolan, Phase Transformations in Ferrous Alloys. International Conference on Phase Transformations in Ferrous Alloys, pp. 125–125, Philadelphia, USA, 1984.
  •   J.S. Kirkaldy, Diffusion-controlled phase transformations in steels. Theory and applications, Scandinavian Journal of Metallurgy, 20, 50–61, 1991.
  •   J. Rezaei, M. Habibi Parsa and H. Mirzadeh, Phase transformation kinetics of high-carbon steel during continuous heating. The Journal of Materials Research and Technology, 27, 2524–2537, 2023. https://doi.org/10.1016/j.jmrt.2023.10.089.
  •   S.F. Di Martino and G. Thewlis, Transformation Characteristics of Ferrite/Carbide Aggregate in Continuously Cooled, Low Carbon-Manganese Steels. Metallurgical and Materials Transactions A, 45, 579–594, 2014. https://doi.org/10.1007/s11661-013-2035-x.
  •   V.L. de la Concepción, H.N. Lorusso and H.G. Svoboda, Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels. Procedia Materials Science, 8, 1047–1056, 2015. https://doi.org/10.1016/j.mspro.2015.04.167.
  •   A.N. Ashong, M.Y. Na, H.C. Kim, S.H. Noh, T. Park, H.J. Chang and J.H. Kim, Influence of manganese on the microstructure and mechanical properties of oxide-dispersion-strengthened steels. Materials and Design, 182, 1–13, 2019. https://doi.org/10.1016/j.matdes.2019.107997.
  •   I. Pushkareva, J. Macchi, B. Shalchi-Amirkhiz, F. Fazeli, G. Geandier, F. Danoix, J.D.C. Teixeira, S.Y.P. Allain and C. Scott, A study of the carbon distribution in bainitic ferrite, Scripta Materialia. 224, 1–5, 2023. https://doi.org/10.1016/j.scriptamat.2022.115140.
  •   M. Calcagnotto, D. Ponge and D. Raabe, On the Effect of Manganese on Grain Size Stability and Hardenability in Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels. Metallurgical and Materials Transactions A, 43, 37–46, 2012. https://doi.org/10.1007/s11661-011-0828-3.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları
Bölüm Araştırma Makaleleri
Yazarlar

Semih Mahmut Aktarer 0000-0001-5650-7431

Erken Görünüm Tarihi 8 Ocak 2025
Yayımlanma Tarihi 15 Ocak 2025
Gönderilme Tarihi 4 Kasım 2024
Kabul Tarihi 29 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA Aktarer, S. M. (2025). The effect of air-cooling heat treatment on the microstructure and phase transformations of structural steels. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 360-369. https://doi.org/10.28948/ngumuh.1578719
AMA Aktarer SM. The effect of air-cooling heat treatment on the microstructure and phase transformations of structural steels. NÖHÜ Müh. Bilim. Derg. Ocak 2025;14(1):360-369. doi:10.28948/ngumuh.1578719
Chicago Aktarer, Semih Mahmut. “The Effect of Air-Cooling Heat Treatment on the Microstructure and Phase Transformations of Structural Steels”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 1 (Ocak 2025): 360-69. https://doi.org/10.28948/ngumuh.1578719.
EndNote Aktarer SM (01 Ocak 2025) The effect of air-cooling heat treatment on the microstructure and phase transformations of structural steels. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 360–369.
IEEE S. M. Aktarer, “The effect of air-cooling heat treatment on the microstructure and phase transformations of structural steels”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 1, ss. 360–369, 2025, doi: 10.28948/ngumuh.1578719.
ISNAD Aktarer, Semih Mahmut. “The Effect of Air-Cooling Heat Treatment on the Microstructure and Phase Transformations of Structural Steels”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (Ocak 2025), 360-369. https://doi.org/10.28948/ngumuh.1578719.
JAMA Aktarer SM. The effect of air-cooling heat treatment on the microstructure and phase transformations of structural steels. NÖHÜ Müh. Bilim. Derg. 2025;14:360–369.
MLA Aktarer, Semih Mahmut. “The Effect of Air-Cooling Heat Treatment on the Microstructure and Phase Transformations of Structural Steels”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 1, 2025, ss. 360-9, doi:10.28948/ngumuh.1578719.
Vancouver Aktarer SM. The effect of air-cooling heat treatment on the microstructure and phase transformations of structural steels. NÖHÜ Müh. Bilim. Derg. 2025;14(1):360-9.

download