Araştırma Makalesi
BibTex RIS Kaynak Göster

Pota ocağı cürufunun amonyak ayrışması yoluyla hidrojen üretimi için verimli bir katalizöre dönüştürülmesi

Yıl 2025, Cilt: 14 Sayı: 2, 1 - 1

Öz

Pota ocağı cürufu (LFS), çelik üretiminin bir yan ürünü olup, HCl ile muamele ve kalsinasyon yoluyla amonyak ayrışması için verimli bir katalizör haline getirilmiştir. Tepkimeden önce ve sonra modifiye edilmemiş katalizör (LFS-C500) ve modifiye edilmiş katalizör (MLFS-C500), sıcaklık programlı indirgeme (TPR), X-ışını kırınımı (XRD), enerji dağılımlı X-ışını spektroskopisi ile taramalı elektron mikroskobu (SEM/EDX) ve X-ışını floresansı (XRF) gibi tekniklerle ayrıntılı bir şekilde karakterize edilmiştir. MLFS-C500, 700 °C'de ve 6000 ml NH₃/(h × gkat) boşluk hızında %96,3 amonyak dönüşümü sağlayarak, LFS-C500'den daha üstün bir performans sergilemiştir. Ayrıca, MLFS-C500 (131.7 kJ/mol), LFS-C500’e (153.0 kJ/mol) kıyasla daha düşük bir aktivasyon enerjisi göstermiştir. MLFS-C500’ün üstün performansı, modifikasyon ile kalsiyum içeren bileşiklerin giderilmesi sonucu artan demir içeriği ve bu demir içeriğinin başarılı bir şekilde H2 ile indirgeme sırasında Fe kristalitlerine dönüştürülmesi ile gelişmiş yüzey yapısına atfedilmiştir. Bu çalışma, endüstriyel atıkların COx açığa çıkarmadan hidrojen üretimi için düşük maliyetli katalizörlere nasıl etkin bir şekilde dönüştürülebileceğini göstermektedir.

Kaynakça

  • M. R. Usman, Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews, 167, 111743, 2022. https://doi.org/10.1016/j. rser.2022.112743.
  • S. Ristig, M. Poschmann, J. Folke, O. Gómez‐Cápiro, Z. Chen, N. Sanchez‐Bastardo, R. Schlögl, S. Heumann, H. Ruland, Ammonia decomposition in the process chain for a renewable hydrogen supply. Chemie Ingenieur Technik, 94, 1413-1425, 2022. https://doi.org/10.1002/cite.202200003.
  • J. Dong, X. Wang, H. Xu, Q. Zhao, J. Li, Hydrogen storage in several microporous zeolites. International Journal of Hydrogen Energy, 32, 4998-5004, 2007. https://doi.org/10.1016/j.ijhydene.2007.08.009.
  • M. Hirscher and B. Panella, Hydrogen storage in metal–organic frameworks. Scripta Materialia, 56, 809-812, 2007. https://doi.org/10.1016/j.scriptamat.2007.0 1.005.
  • W. I. F. David, Effective hydrogen storage: A strategic chemistry challenge. Faraday Discussions, 151, 399–414, 2011. https://doi.org/10.1039/C1FD00105A.
  • S. Sun, Q. Jiang, D. Zhao, T. Cao, H. Sha, C. Zhang, H. Song, Z. Da, Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production. Renewable and Sustainable Energy Reviews, 169, 112918, 2022. https://doi.org/10 .1016/j.rser.2022.112918.
  • J. E. Lee, J. Lee, H. Jeong, Y. K. Park, B. S. Kim, Catalytic ammonia decomposition to produce hydrogen: A mini-review. Chemical Engineering Journal, 475, 146108, 2023. https://doi.org/10.1016/j.c ej.2023.146108.
  • L. Li, S. Wang, Z. Zhu, X. Yao, Z. Yan, Catalytic decomposition of ammonia over fly ash supported Ru catalysts. Fuel Processing Technology, 89, 1106-1112, 2008. https://doi.org/10.1016/j.fuproc.2008.05.002.
  • J. L. Cao, Z. L. Yan, Q. F. Deng, Y. Wang, Z. Y. Yuan, G. Sun, T. K. Jia, X. D. Wang, H. Bala, Z. Y. Zhang, Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen. International Journal of Hydrogen Energy, 39, 5747-5755, 2014. https://doi.org/10.1016/j.ijhydene.2014.01.169.
  • S. F. Kurtoğlu, A. Uzun, Red Mud as an Efficient, Stable and Cost-Free Catalyst for COx-Free Hydrogen Production from Ammonia. Scientific Reports, 6, 32279, 2016. https://doi.org/10.1038/srep32279.
  • S. F. Kurtoğlu, S. Soyer-Uzun, A. Uzun, Modifying the structure of red mud by simple treatments for high and stable performance in COx-free hydrogen production from ammonia. International Journal of Hydrogen Energy, 43, 20525-20537, 2018. https://doi.org/10.10 16/j.ijhydene.2018.09.032.
  • J. Setién, D. Hernández, J.J. González, Characterization of ladle furnace basic slag for use as a construction material. Construction and Building Materials, 23, 1788-1794, 2009. https://doi.org/10.10 16/j.conbuildmat.2008.10.003.
  • A Rađenović, J Malina, T Sofilić, Characterization of ladle furnace slag from carbon steel production as a potential adsorbent. Advances in Materials Science and Engineering, 1, 198240, 2013. https://doi.org/10.1155 /2013/198240.
  • S. F. Kurtoğlu, S. Soyer-Uzun, A. Uzun, Tuning structural characteristics of red mud by simple treatments. Ceramics International, 42, 17581-17593, 2020. https://doi.org/10.1016/j.ceramint.2016.08.072.
  • W. Arabczyk, U. Narkiewicz, D. Moszyński, Chlorine as a poison of the fused iron catalyst for ammonia synthesis. Applied Catalysis A: General, 134, 331-338, 1996. https://doi.org/10.1016/0926-860X(95)00211-1.
  • E. Sundhararasu, S. Tuomikoski, H. Runtti, T. Hu, T. Varila, T. Kangas, U. Lassi, Alkali-Activated Adsorbents from Slags: Column Adsorption and Regeneration Study for Nickel(II) Removal. Chemengineering, 5, 13, 2021. https://doi.org/10.3390 /chemengineering5010013.
  • D. Aponte, O. S. Martin, S. Valls del Barrio, M. Barra Bizinotto, Ladle Steel Slag in Activated Systems for Construction Use. Minerals, 10, 687, 2020. https://doi. org/10.3390/min10080687.
  • Y. Wang, W. Ni, P. Suraneni, Use of Ladle Furnace Slag and Other Industrial By-Products to Encapsulate Chloride in Municipal Solid Waste Incineration Fly Ash. Materials, 12, 925, 2019. https://doi.org/10.3390 /ma12060925.
  • N. Durand, H. C. Monger, M. G. Canti, Calcium Carbonate Features. In: Interpretation of micromorphological features of soils and regoliths, Elsevier, pp. 149-194, 2010. https://doi.org/10.1016/B 978-0-444-53156-8.00009-X.
  • S. Sivasangar, M. S. Mastuli, A. Islam, Y. H. Taufiq-Yap, Screening of modified CaO-based catalysts with a series of dopants for the supercritical water gasification of empty palm fruit bunches to produce hydrogen. RSC Advances, 5, 36798-36808, 2015. https://doi.org/10.1039/C5RA03430B.
  • M. Liang, W. Kang, K. Xie, Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique. Journal of Natural Gas Chemistry, 18, 110-113, 2009. https://doi.org/10.1016/S1003-9953(08)60 073-0.
  • Ö. Akarçay, S. F. Kurtoğlu, A. Uzun, Ammonia decomposition on a highly-dispersed carbon-embedded iron catalyst derived from Fe-BTC: Stable and high performance at relatively low temperatures. International Journal of Hydrogen Energy, 45, 28664-28681, 2020. https://doi.org/10.1016/j.ijhydene.2020. 07.188.
  • Z. P. Hu, C. C. Weng, C. Chen, Z. Y. Yuan, Two-dimensional mica nanosheets supported Fe nanoparticles for NH3 decomposition to hydrogen. Molecular Catalysis, 448, 162-170, 2018. https://doi. org/10.1016/j.mcat.2018.01.038.
  • W. Arabczyk, J. Zamlynny, Study of the ammonia decomposition over iron catalysts. Catalysis Letters, 60, 167-171, 1999. https://doi.org/10.1023/A:1019007 024041.
  • J. Zhang, M. Comotti, F. Schüth, R. Schlögl, D. S. Su, Commercial Fe- or Co-containing carbon nanotubes as catalysts for NH3 decomposition. Chemical Communications, 19, 1916-1918, 2007. https://doi.org/ 10.1039/B700969K.
  • T.V. Choudhary, C. Sivadinarayana, D. W. Goodman, Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catalysis Letters, 72, 197-201, 2001. https://doi.org/10.1023/A:1009023 825549.

Transforming ladle furnace slag into an efficient catalyst for hydrogen production by ammonia decomposition

Yıl 2025, Cilt: 14 Sayı: 2, 1 - 1

Öz

Ladle furnace slag (LFS), a byproduct of steel production, was modified via HCl treatment and calcination to obtain an efficient catalyst for ammonia decomposition. The unmodified catalyst (LFS-C500) and its modified counterpart (MLFS-C500) were thoroughly characterized by a combination of techniques, including temperature programmed reduction (TPR), X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX), and X-ray fluorescence (XRF). MLFS-C500 outperformed LFS-C500, achieving 96.3% ammonia conversion at 700 °C and a space velocity of 6 000 ml NH₃/(h × gcat), with a lower activation energy (131.7 kJ/mol) compared to LFS-C500 (153.0 kJ/mol). The superior performance of MLFS-C500 is attributed to its higher iron content, which successfully forms Fe crystallites upon reduction in H2, and its enhanced surface structure, resulting from the removal of calcium compounds upon HCl modification. This work demonstrates how an industrial waste can be effectively valorised into low-cost catalysts for COx-free hydrogen production.

Teşekkür

The author extends her sincere thanks to Prof. Alper Uzun from Koç University for his mentorship. Büşra Sekizkardeş is gratefully acknowledged for her help in modifying LFS. Special thanks to Dr. Barış Yağcı from Koç University Surface Science and Technology Center (KUYTAM) for his help in SEM/EDX measurements. The author thanks Ali Naci Zenginobuz for his support in BET surface area measurements. Koç University – Boron and Advanced Materials Applications and Research Center is gratefully acknowledged for XRD measurements. Special thanks to Karabük Demir Çelik Sanayi ve Ticaret A.Ş. for kindly providing LFS.

Kaynakça

  • M. R. Usman, Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews, 167, 111743, 2022. https://doi.org/10.1016/j. rser.2022.112743.
  • S. Ristig, M. Poschmann, J. Folke, O. Gómez‐Cápiro, Z. Chen, N. Sanchez‐Bastardo, R. Schlögl, S. Heumann, H. Ruland, Ammonia decomposition in the process chain for a renewable hydrogen supply. Chemie Ingenieur Technik, 94, 1413-1425, 2022. https://doi.org/10.1002/cite.202200003.
  • J. Dong, X. Wang, H. Xu, Q. Zhao, J. Li, Hydrogen storage in several microporous zeolites. International Journal of Hydrogen Energy, 32, 4998-5004, 2007. https://doi.org/10.1016/j.ijhydene.2007.08.009.
  • M. Hirscher and B. Panella, Hydrogen storage in metal–organic frameworks. Scripta Materialia, 56, 809-812, 2007. https://doi.org/10.1016/j.scriptamat.2007.0 1.005.
  • W. I. F. David, Effective hydrogen storage: A strategic chemistry challenge. Faraday Discussions, 151, 399–414, 2011. https://doi.org/10.1039/C1FD00105A.
  • S. Sun, Q. Jiang, D. Zhao, T. Cao, H. Sha, C. Zhang, H. Song, Z. Da, Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production. Renewable and Sustainable Energy Reviews, 169, 112918, 2022. https://doi.org/10 .1016/j.rser.2022.112918.
  • J. E. Lee, J. Lee, H. Jeong, Y. K. Park, B. S. Kim, Catalytic ammonia decomposition to produce hydrogen: A mini-review. Chemical Engineering Journal, 475, 146108, 2023. https://doi.org/10.1016/j.c ej.2023.146108.
  • L. Li, S. Wang, Z. Zhu, X. Yao, Z. Yan, Catalytic decomposition of ammonia over fly ash supported Ru catalysts. Fuel Processing Technology, 89, 1106-1112, 2008. https://doi.org/10.1016/j.fuproc.2008.05.002.
  • J. L. Cao, Z. L. Yan, Q. F. Deng, Y. Wang, Z. Y. Yuan, G. Sun, T. K. Jia, X. D. Wang, H. Bala, Z. Y. Zhang, Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen. International Journal of Hydrogen Energy, 39, 5747-5755, 2014. https://doi.org/10.1016/j.ijhydene.2014.01.169.
  • S. F. Kurtoğlu, A. Uzun, Red Mud as an Efficient, Stable and Cost-Free Catalyst for COx-Free Hydrogen Production from Ammonia. Scientific Reports, 6, 32279, 2016. https://doi.org/10.1038/srep32279.
  • S. F. Kurtoğlu, S. Soyer-Uzun, A. Uzun, Modifying the structure of red mud by simple treatments for high and stable performance in COx-free hydrogen production from ammonia. International Journal of Hydrogen Energy, 43, 20525-20537, 2018. https://doi.org/10.10 16/j.ijhydene.2018.09.032.
  • J. Setién, D. Hernández, J.J. González, Characterization of ladle furnace basic slag for use as a construction material. Construction and Building Materials, 23, 1788-1794, 2009. https://doi.org/10.10 16/j.conbuildmat.2008.10.003.
  • A Rađenović, J Malina, T Sofilić, Characterization of ladle furnace slag from carbon steel production as a potential adsorbent. Advances in Materials Science and Engineering, 1, 198240, 2013. https://doi.org/10.1155 /2013/198240.
  • S. F. Kurtoğlu, S. Soyer-Uzun, A. Uzun, Tuning structural characteristics of red mud by simple treatments. Ceramics International, 42, 17581-17593, 2020. https://doi.org/10.1016/j.ceramint.2016.08.072.
  • W. Arabczyk, U. Narkiewicz, D. Moszyński, Chlorine as a poison of the fused iron catalyst for ammonia synthesis. Applied Catalysis A: General, 134, 331-338, 1996. https://doi.org/10.1016/0926-860X(95)00211-1.
  • E. Sundhararasu, S. Tuomikoski, H. Runtti, T. Hu, T. Varila, T. Kangas, U. Lassi, Alkali-Activated Adsorbents from Slags: Column Adsorption and Regeneration Study for Nickel(II) Removal. Chemengineering, 5, 13, 2021. https://doi.org/10.3390 /chemengineering5010013.
  • D. Aponte, O. S. Martin, S. Valls del Barrio, M. Barra Bizinotto, Ladle Steel Slag in Activated Systems for Construction Use. Minerals, 10, 687, 2020. https://doi. org/10.3390/min10080687.
  • Y. Wang, W. Ni, P. Suraneni, Use of Ladle Furnace Slag and Other Industrial By-Products to Encapsulate Chloride in Municipal Solid Waste Incineration Fly Ash. Materials, 12, 925, 2019. https://doi.org/10.3390 /ma12060925.
  • N. Durand, H. C. Monger, M. G. Canti, Calcium Carbonate Features. In: Interpretation of micromorphological features of soils and regoliths, Elsevier, pp. 149-194, 2010. https://doi.org/10.1016/B 978-0-444-53156-8.00009-X.
  • S. Sivasangar, M. S. Mastuli, A. Islam, Y. H. Taufiq-Yap, Screening of modified CaO-based catalysts with a series of dopants for the supercritical water gasification of empty palm fruit bunches to produce hydrogen. RSC Advances, 5, 36798-36808, 2015. https://doi.org/10.1039/C5RA03430B.
  • M. Liang, W. Kang, K. Xie, Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique. Journal of Natural Gas Chemistry, 18, 110-113, 2009. https://doi.org/10.1016/S1003-9953(08)60 073-0.
  • Ö. Akarçay, S. F. Kurtoğlu, A. Uzun, Ammonia decomposition on a highly-dispersed carbon-embedded iron catalyst derived from Fe-BTC: Stable and high performance at relatively low temperatures. International Journal of Hydrogen Energy, 45, 28664-28681, 2020. https://doi.org/10.1016/j.ijhydene.2020. 07.188.
  • Z. P. Hu, C. C. Weng, C. Chen, Z. Y. Yuan, Two-dimensional mica nanosheets supported Fe nanoparticles for NH3 decomposition to hydrogen. Molecular Catalysis, 448, 162-170, 2018. https://doi. org/10.1016/j.mcat.2018.01.038.
  • W. Arabczyk, J. Zamlynny, Study of the ammonia decomposition over iron catalysts. Catalysis Letters, 60, 167-171, 1999. https://doi.org/10.1023/A:1019007 024041.
  • J. Zhang, M. Comotti, F. Schüth, R. Schlögl, D. S. Su, Commercial Fe- or Co-containing carbon nanotubes as catalysts for NH3 decomposition. Chemical Communications, 19, 1916-1918, 2007. https://doi.org/ 10.1039/B700969K.
  • T.V. Choudhary, C. Sivadinarayana, D. W. Goodman, Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catalysis Letters, 72, 197-201, 2001. https://doi.org/10.1023/A:1009023 825549.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Katalitik Aktivite
Bölüm Makaleler
Yazarlar

Samira Fatma Kurtoğlu Öztulum 0000-0001-9136-6988

Erken Görünüm Tarihi 3 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 21 Ekim 2024
Kabul Tarihi 12 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 2

Kaynak Göster

APA Kurtoğlu Öztulum, S. F. (2025). Transforming ladle furnace slag into an efficient catalyst for hydrogen production by ammonia decomposition. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(2), 1-1. https://doi.org/10.28948/ngumuh.1571359
AMA Kurtoğlu Öztulum SF. Transforming ladle furnace slag into an efficient catalyst for hydrogen production by ammonia decomposition. NÖHÜ Müh. Bilim. Derg. Mart 2025;14(2):1-1. doi:10.28948/ngumuh.1571359
Chicago Kurtoğlu Öztulum, Samira Fatma. “Transforming Ladle Furnace Slag into an Efficient Catalyst for Hydrogen Production by Ammonia Decomposition”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 2 (Mart 2025): 1-1. https://doi.org/10.28948/ngumuh.1571359.
EndNote Kurtoğlu Öztulum SF (01 Mart 2025) Transforming ladle furnace slag into an efficient catalyst for hydrogen production by ammonia decomposition. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 2 1–1.
IEEE S. F. Kurtoğlu Öztulum, “Transforming ladle furnace slag into an efficient catalyst for hydrogen production by ammonia decomposition”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 2, ss. 1–1, 2025, doi: 10.28948/ngumuh.1571359.
ISNAD Kurtoğlu Öztulum, Samira Fatma. “Transforming Ladle Furnace Slag into an Efficient Catalyst for Hydrogen Production by Ammonia Decomposition”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/2 (Mart 2025), 1-1. https://doi.org/10.28948/ngumuh.1571359.
JAMA Kurtoğlu Öztulum SF. Transforming ladle furnace slag into an efficient catalyst for hydrogen production by ammonia decomposition. NÖHÜ Müh. Bilim. Derg. 2025;14:1–1.
MLA Kurtoğlu Öztulum, Samira Fatma. “Transforming Ladle Furnace Slag into an Efficient Catalyst for Hydrogen Production by Ammonia Decomposition”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 2, 2025, ss. 1-1, doi:10.28948/ngumuh.1571359.
Vancouver Kurtoğlu Öztulum SF. Transforming ladle furnace slag into an efficient catalyst for hydrogen production by ammonia decomposition. NÖHÜ Müh. Bilim. Derg. 2025;14(2):1-.

download