Araştırma Makalesi
BibTex RIS Kaynak Göster

Modeling of circular masonry arches systematically via cohesive interface elements and determination of failure mechanisms

Yıl 2025, Cilt: 14 Sayı: 2, 1 - 1

Öz

In this study, masonry arches are modeled using developed simplified micro modeling technique and nonlinear structural behavior of masonry arches are analyzed using 3D finite element models. Nonlinear behavior of masonry arches is obtained with the contact and target elements using cohesive zone material (CZM) model. Interface elements are systematically created by taking into account the number of masonry units, the angle value at which the masonry units are placed, and the loading conditions. In addition, a practical approach is presented for the creation of the geometry of the masonry arch, which is an important stage in the analysis of masonry arches. In this way, masonry arches with different geometric parameters can be easily included in the model. Hinge zones are also determined with this model very efficiently. With the created model, both in-plane and out-of-plane behavior can be examined. It is seen that; the collapse mechanisms of masonry arches can be analyzed practically and the hinge regions are determined successfully using the model. In this study, a model that contributes to the analysis of nonlinear behavior of masonry arches is presented and a practically usable solution is presented for the analysis of these structures.

Kaynakça

  • J. Heyman, The Masonry Arch, Ellis Horwood Ltd, 1982.
  •    P. B. Lourenço, Computational Strategies for Masonry Structures, Ph.D. Thesis, Delft University of Technology, 1996.
  •    N. Cavalagli, V. Gusella, L. Severini, Lateral loads carrying capacity and minimum thickness of circular and pointed masonry arches, Int. J. Mech. Sci. 115-116: 645-656, 2016. https://doi.org/10.1016/ j.ijmecsci.2016.07.015
  •    I.E. Edri, D.Z. Yankelevsky, O. Rabinovitch, Out-of-plane response of arching masonry walls to static loads, Eng. Struct., 201: 109801, 2019. https://doi.org/10.1016/j.engstruct.2019.109801
  •    R. Quinteros-mayne, I. De Arteaga, R. Goñi-lasheras, A. Villarino, J.I. Villarino, The influence of the elastic modulus on the finite element structural analysis of masonry arches, Constr. Build. Mater., 221: 614-626, 2019. https://doi.org/10.1016/j.conbuildmat.2019.06. 013
  •    E. Ricci, A. Fraddosio, M. Daniele, E. Sacco, A new numerical approach for determining optimal thrust curves of masonry arches, Eur. J. Mech. / A Solids 75: 426-442, 2019. https://doi.org/10.1016/j.euromechsol. 2019.02.003
  •    F. Cannizzaro, B. Pantò, S. Caddemi, I. Caliò, A Discrete Macro-Element Method (DMEM) for the nonlinear structural assessment of masonry arches, Eng. Struct. 168: 243-256, 2018. https://doi.org/10.1016/j.engstruct.2018.04.006
  •    P. Di, D. Addessi, E. Sacco, A multiscale force-based curved beam element for masonry arches, Comput. Struct. 208: 17-31, 2018. https://doi.org/10.1016/ j.compstruc.2018.06.009
  •    I.De Arteaga, P. Morer, The effect of geometry on the structural capacity of masonry arch bridges, Constr. Build. Mater. 34: 97-106, 2012. https://doi.org/10.1016/j.conbuildmat.2012.02.037
  • V. Sarhosis, T. Forgács, J.V. Lemos, A discrete approach for modelling backfill material in masonry arch bridges, Comput. Struct. 224: 106108, 2019. https://doi.org/10.1016/j.compstruc.2019.106108
  • G. De Felice, R. Giannini, Out-of-plane Seismic Resistance of Masonry Arches, Earthquake Engineering & Structural Dynamics, 05(2), 253-271, 2001. https://doi.org/10.1080/13632460109350394
  • L. Pelà, A. Aprile, A. Benedetti, Seismic assessment of masonry arch bridges, Eng. Struct. 31, 1777-1788, 2009. https://doi.org/10.1016/j.engstruct.2009.02.012
  • R. Dimitri, F. Tornabene, A parametric investigation of the seismic capacity for masonry arches and portals of different shapes, Eng. Fail. Anal. 52: 1-34, 2015. https://doi.org/10.1016/j.engfailanal.2015.02.021
  • P. Zampieri, N. Simoncello, C. Pellegrino, Seismic capacity of masonry arches with irregular abutments and arch thickness, Constr. Build. Mater. 201: 786-806, 2019. https://doi.org/10.1016/j.conbuildmat.2018.12. 063
  • I. Cancelliere, M. Imbimbo, E. Sacco, Experimental tests and numerical modeling of reinforced masonry arches, Eng. Struct. 32, 776-792, 2010. https://doi.org/10.1016/j.engstruct.2009.12.005
  • E. Bertolesi, G. Milani, F.G. Carozzi, C. Poggi, Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Numerical analyses, Compos. Struct. 187: 385–402, 2018. https://doi.org/10.1016/j.compstruct.2017.12.021
  • M.R. Valluzzi, M. Valdemarca, C. Modena, Behavior of brick masonry vaults strengthened by frp laminates, J. Compos. Constr., 5(3): 163-169, 2001. https://doi.org/10.1061/(ASCE)10900268(2001)5:3(163)
  • G. Milani, P. B. Lourenço, 3D non-linear behavior of masonry arch bridges, Computers and Structures 110–111, 133–150, (2012). https://doi.org/10.1016/ j.compstruc.2012.07.008
  • T. Michiels, S. Adriaenssens, Form-finding algorithm for masonry arches subjected to in-plane earthquake loading, Computers and Structures, 195 (2018) 85–98, 2018. https://doi.org/10.1016/j.compstruc.2017.10.001
  • W.J. Lewis, J.M. Russell, T.Q. Li, Moment-less arches for reduced stress state. Comparisons with conventional arch forms, Computers and Structures, 251 (2021) 106524. https://doi.org/10.1016/ j.compstruc.2021.106524
  • B. Liu, V. Sarhosis, J. V. Lemos, Quantification of the crack propagation and global failure mechanism of single-and multi-ring masonry arch bridges, Engineering Structures, 306 (2024) 117805. https://doi.org/10.1016/j.engstruct.2024.117805
  • S. Grosman, L. Macorini, B.A. Izzuddin, Parametric nonlinear modelling of 3D masonry arch bridges, Advances in Engineering Software, 185 (2023) 103514. https://doi.org/10.1016/j.advengsoft.2023. 103514
  • E. Bertolesi, G. Milani, R. Fedele, Fast and reliable non-linear heterogeneous FE approach for the analysis of FRP-reinforced masonry arches, Composites Part B, 88 (2016) 189-200. https://doi.org/ 10.1016/j.compositesb.2015.11.005
  • D. Aita, M. Bruggi, and E. Garavaglia, Collapse analysis of masonry arches and domes considering finite friction and uncertainties in compressive strength, Eng. Fail. Anal., vol. 163, no. PA, p. 108462, 2024. https://doi.org/10.1016/j.engfailanal.2024. 108462
  • R. Avasthi and D. C. Rai, Seismic behavior of circular segmental masonry arch considering tensile strength of joints, Bull. Earthq. Eng., vol. 21, no. 14, pp. 6367–6391, 2023. https://doi.org/10.1007/s10518-023-01771-2
  • N. Pingaro, M. Buzzetti, and G. Milani, Advanced FE nonlinear numerical modeling to predict historical masonry vaults failure: Assessment of risk collapse for a long span cloister vault heavily loaded at the crown by means of a general-purpose numerical protocol, Eng. Fail. Anal., vol. 167, no. PB, p. 109070, 2025. https://doi.org/10.1016/j.engfailanal.2024.109070
  • R. Varró, G. Bögöly, and P. Görög, Laboratory and numerical analysis of failure of stone masonry arches with and without reinforcement, Eng. Fail. Anal., vol. 123, no. March 2020, 2021. https://doi.org/10.1016/ j.engfailanal.2021.105272
  • P. Zampieri, M. A. Zanini, and F. Faleschini, Influence of damage on the seismic failure analysis of masonry arches, Constr. Build. Mater., vol. 119, pp. 343–355, 2016. https://doi.org/10.1016/j.conbuildmat.2016.05. 024
  • C. Zhao, Y. Xiong, X. Zhong, Z. Shi, and S. Yang, A two-phase modeling strategy for analyzing the failure process of masonry arches, Eng. Struct., vol. 212, no. July 2019, p. 110525, 2020. https://doi.org/ 10.1016/j.engstruct.2020.110525
  • B. Ozturk, Seismic behavior of two monumental buildings in historical Cappadocia region of Turkey, Bulletin of Earthquake Engineering, 2017, 15: 3103-3123. https://doi.org/10.1007/s10518-016-0082-6
  • D. Guney, E. Aydin, B. Ozturk, The evaluation of damage mechanism of unreinforced masonry buildings after Van (2011) and Elazig (2010) Earthquakes. Journal of Physics: Conference Series. Vol. 628. No. 1. IOP Publishing, 2015. https://doi.org/10.1088/1742-6596/628/1/012066
  • B. Ozturk, C. Yilmaz, T. Senturk, Effect of FRP retrofitting application on seismic behavior of a historical building at Nigde, Turkey. 14th European Conference on Earthquake Engineering 2010: Ohrid, Republic of Macedonia, 2010.
  • B. Ozturk, T. Senturk, C. Yilmaz, Analytical investigation of effect of retrofit application using CFRP on seismic behavior of a monumental building at historical Cappadocia region of Turkey. 9th US National and 10th Canadian Conference on Earthquake Engineering, Toronto, Canada. 2010.
  • ANSYS 23.0 (2023) Element reference.

Kohezif ara yüzey elemanlar aracılığıyla dairesel yığma kemerlerin sistematik olarak modellenmesi ve kırılma mekanizmalarının belirlenmesi

Yıl 2025, Cilt: 14 Sayı: 2, 1 - 1

Öz

Bu çalışmada, yığma kemerler geliştirilen basitleştirilmiş mikro modelleme tekniği ile modellenmekte ve yığma kemerlerin doğrusal olmayan davranışları 3 boyutlu sonlu elemanlar kullanılarak analiz edilmektedir. Yığma kemerlerin doğrusal olmayan davranışı, kohezif bölge malzemesi (KBM) kullanılarak temas ve hedef elemanlarla elde edilmektedir. Sunulan modelde, yığma kemerleri oluşturan yığma birim sayısı, yığma birimlerin yerleştirildiği açı değeri, kemer üzerinde yükün etki ettiği bölgeler göz önüne alınarak sistematik şekilde ara yüzey elemanlar oluşturulmaktadır. Ayrıca yığma kemerlerin analizlerinde önemli bir aşama olan yığma kemer geometrisinin oluşturulması konusunda pratik bir yaklaşım sunulmaktadır. Böylece farklı geometrik parametrelere sahip yığma kemerler modele kolaylıkla dâhil edilebilmektedir. Oluşturulan model ile hem düzlem içi hem de düzlem dışı davranış incelenebilmektedir. Oluşturulan model ile yığma kemerlerin kırılma mekanizmaları pratik şekilde analiz edilmekte ve model kullanılarak mafsal bölgeleri başarıyla belirlenmektedir. Bu çalışmayla yığma kemerlerin doğrusal olmayan davranışlarının analizine katkı sağlayan bir model sunularak bu yapıların analizleri için pratik olarak kullanılabilir bir çözüm aracı ortaya konulmaktadır.

Kaynakça

  • J. Heyman, The Masonry Arch, Ellis Horwood Ltd, 1982.
  •    P. B. Lourenço, Computational Strategies for Masonry Structures, Ph.D. Thesis, Delft University of Technology, 1996.
  •    N. Cavalagli, V. Gusella, L. Severini, Lateral loads carrying capacity and minimum thickness of circular and pointed masonry arches, Int. J. Mech. Sci. 115-116: 645-656, 2016. https://doi.org/10.1016/ j.ijmecsci.2016.07.015
  •    I.E. Edri, D.Z. Yankelevsky, O. Rabinovitch, Out-of-plane response of arching masonry walls to static loads, Eng. Struct., 201: 109801, 2019. https://doi.org/10.1016/j.engstruct.2019.109801
  •    R. Quinteros-mayne, I. De Arteaga, R. Goñi-lasheras, A. Villarino, J.I. Villarino, The influence of the elastic modulus on the finite element structural analysis of masonry arches, Constr. Build. Mater., 221: 614-626, 2019. https://doi.org/10.1016/j.conbuildmat.2019.06. 013
  •    E. Ricci, A. Fraddosio, M. Daniele, E. Sacco, A new numerical approach for determining optimal thrust curves of masonry arches, Eur. J. Mech. / A Solids 75: 426-442, 2019. https://doi.org/10.1016/j.euromechsol. 2019.02.003
  •    F. Cannizzaro, B. Pantò, S. Caddemi, I. Caliò, A Discrete Macro-Element Method (DMEM) for the nonlinear structural assessment of masonry arches, Eng. Struct. 168: 243-256, 2018. https://doi.org/10.1016/j.engstruct.2018.04.006
  •    P. Di, D. Addessi, E. Sacco, A multiscale force-based curved beam element for masonry arches, Comput. Struct. 208: 17-31, 2018. https://doi.org/10.1016/ j.compstruc.2018.06.009
  •    I.De Arteaga, P. Morer, The effect of geometry on the structural capacity of masonry arch bridges, Constr. Build. Mater. 34: 97-106, 2012. https://doi.org/10.1016/j.conbuildmat.2012.02.037
  • V. Sarhosis, T. Forgács, J.V. Lemos, A discrete approach for modelling backfill material in masonry arch bridges, Comput. Struct. 224: 106108, 2019. https://doi.org/10.1016/j.compstruc.2019.106108
  • G. De Felice, R. Giannini, Out-of-plane Seismic Resistance of Masonry Arches, Earthquake Engineering & Structural Dynamics, 05(2), 253-271, 2001. https://doi.org/10.1080/13632460109350394
  • L. Pelà, A. Aprile, A. Benedetti, Seismic assessment of masonry arch bridges, Eng. Struct. 31, 1777-1788, 2009. https://doi.org/10.1016/j.engstruct.2009.02.012
  • R. Dimitri, F. Tornabene, A parametric investigation of the seismic capacity for masonry arches and portals of different shapes, Eng. Fail. Anal. 52: 1-34, 2015. https://doi.org/10.1016/j.engfailanal.2015.02.021
  • P. Zampieri, N. Simoncello, C. Pellegrino, Seismic capacity of masonry arches with irregular abutments and arch thickness, Constr. Build. Mater. 201: 786-806, 2019. https://doi.org/10.1016/j.conbuildmat.2018.12. 063
  • I. Cancelliere, M. Imbimbo, E. Sacco, Experimental tests and numerical modeling of reinforced masonry arches, Eng. Struct. 32, 776-792, 2010. https://doi.org/10.1016/j.engstruct.2009.12.005
  • E. Bertolesi, G. Milani, F.G. Carozzi, C. Poggi, Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Numerical analyses, Compos. Struct. 187: 385–402, 2018. https://doi.org/10.1016/j.compstruct.2017.12.021
  • M.R. Valluzzi, M. Valdemarca, C. Modena, Behavior of brick masonry vaults strengthened by frp laminates, J. Compos. Constr., 5(3): 163-169, 2001. https://doi.org/10.1061/(ASCE)10900268(2001)5:3(163)
  • G. Milani, P. B. Lourenço, 3D non-linear behavior of masonry arch bridges, Computers and Structures 110–111, 133–150, (2012). https://doi.org/10.1016/ j.compstruc.2012.07.008
  • T. Michiels, S. Adriaenssens, Form-finding algorithm for masonry arches subjected to in-plane earthquake loading, Computers and Structures, 195 (2018) 85–98, 2018. https://doi.org/10.1016/j.compstruc.2017.10.001
  • W.J. Lewis, J.M. Russell, T.Q. Li, Moment-less arches for reduced stress state. Comparisons with conventional arch forms, Computers and Structures, 251 (2021) 106524. https://doi.org/10.1016/ j.compstruc.2021.106524
  • B. Liu, V. Sarhosis, J. V. Lemos, Quantification of the crack propagation and global failure mechanism of single-and multi-ring masonry arch bridges, Engineering Structures, 306 (2024) 117805. https://doi.org/10.1016/j.engstruct.2024.117805
  • S. Grosman, L. Macorini, B.A. Izzuddin, Parametric nonlinear modelling of 3D masonry arch bridges, Advances in Engineering Software, 185 (2023) 103514. https://doi.org/10.1016/j.advengsoft.2023. 103514
  • E. Bertolesi, G. Milani, R. Fedele, Fast and reliable non-linear heterogeneous FE approach for the analysis of FRP-reinforced masonry arches, Composites Part B, 88 (2016) 189-200. https://doi.org/ 10.1016/j.compositesb.2015.11.005
  • D. Aita, M. Bruggi, and E. Garavaglia, Collapse analysis of masonry arches and domes considering finite friction and uncertainties in compressive strength, Eng. Fail. Anal., vol. 163, no. PA, p. 108462, 2024. https://doi.org/10.1016/j.engfailanal.2024. 108462
  • R. Avasthi and D. C. Rai, Seismic behavior of circular segmental masonry arch considering tensile strength of joints, Bull. Earthq. Eng., vol. 21, no. 14, pp. 6367–6391, 2023. https://doi.org/10.1007/s10518-023-01771-2
  • N. Pingaro, M. Buzzetti, and G. Milani, Advanced FE nonlinear numerical modeling to predict historical masonry vaults failure: Assessment of risk collapse for a long span cloister vault heavily loaded at the crown by means of a general-purpose numerical protocol, Eng. Fail. Anal., vol. 167, no. PB, p. 109070, 2025. https://doi.org/10.1016/j.engfailanal.2024.109070
  • R. Varró, G. Bögöly, and P. Görög, Laboratory and numerical analysis of failure of stone masonry arches with and without reinforcement, Eng. Fail. Anal., vol. 123, no. March 2020, 2021. https://doi.org/10.1016/ j.engfailanal.2021.105272
  • P. Zampieri, M. A. Zanini, and F. Faleschini, Influence of damage on the seismic failure analysis of masonry arches, Constr. Build. Mater., vol. 119, pp. 343–355, 2016. https://doi.org/10.1016/j.conbuildmat.2016.05. 024
  • C. Zhao, Y. Xiong, X. Zhong, Z. Shi, and S. Yang, A two-phase modeling strategy for analyzing the failure process of masonry arches, Eng. Struct., vol. 212, no. July 2019, p. 110525, 2020. https://doi.org/ 10.1016/j.engstruct.2020.110525
  • B. Ozturk, Seismic behavior of two monumental buildings in historical Cappadocia region of Turkey, Bulletin of Earthquake Engineering, 2017, 15: 3103-3123. https://doi.org/10.1007/s10518-016-0082-6
  • D. Guney, E. Aydin, B. Ozturk, The evaluation of damage mechanism of unreinforced masonry buildings after Van (2011) and Elazig (2010) Earthquakes. Journal of Physics: Conference Series. Vol. 628. No. 1. IOP Publishing, 2015. https://doi.org/10.1088/1742-6596/628/1/012066
  • B. Ozturk, C. Yilmaz, T. Senturk, Effect of FRP retrofitting application on seismic behavior of a historical building at Nigde, Turkey. 14th European Conference on Earthquake Engineering 2010: Ohrid, Republic of Macedonia, 2010.
  • B. Ozturk, T. Senturk, C. Yilmaz, Analytical investigation of effect of retrofit application using CFRP on seismic behavior of a monumental building at historical Cappadocia region of Turkey. 9th US National and 10th Canadian Conference on Earthquake Engineering, Toronto, Canada. 2010.
  • ANSYS 23.0 (2023) Element reference.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliğinde Sayısal Modelleme, Kırılma Mekaniği, Yapı Mühendisliği
Bölüm Makaleler
Yazarlar

Sedat Kömürcü 0000-0003-2981-0755

Erken Görünüm Tarihi 4 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 25 Kasım 2024
Kabul Tarihi 28 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 2

Kaynak Göster

APA Kömürcü, S. (2025). Kohezif ara yüzey elemanlar aracılığıyla dairesel yığma kemerlerin sistematik olarak modellenmesi ve kırılma mekanizmalarının belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(2), 1-1. https://doi.org/10.28948/ngumuh.1590866
AMA Kömürcü S. Kohezif ara yüzey elemanlar aracılığıyla dairesel yığma kemerlerin sistematik olarak modellenmesi ve kırılma mekanizmalarının belirlenmesi. NÖHÜ Müh. Bilim. Derg. Mart 2025;14(2):1-1. doi:10.28948/ngumuh.1590866
Chicago Kömürcü, Sedat. “Kohezif Ara yüzey Elemanlar aracılığıyla Dairesel yığma Kemerlerin Sistematik Olarak Modellenmesi Ve kırılma mekanizmalarının Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 2 (Mart 2025): 1-1. https://doi.org/10.28948/ngumuh.1590866.
EndNote Kömürcü S (01 Mart 2025) Kohezif ara yüzey elemanlar aracılığıyla dairesel yığma kemerlerin sistematik olarak modellenmesi ve kırılma mekanizmalarının belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 2 1–1.
IEEE S. Kömürcü, “Kohezif ara yüzey elemanlar aracılığıyla dairesel yığma kemerlerin sistematik olarak modellenmesi ve kırılma mekanizmalarının belirlenmesi”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 2, ss. 1–1, 2025, doi: 10.28948/ngumuh.1590866.
ISNAD Kömürcü, Sedat. “Kohezif Ara yüzey Elemanlar aracılığıyla Dairesel yığma Kemerlerin Sistematik Olarak Modellenmesi Ve kırılma mekanizmalarının Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/2 (Mart 2025), 1-1. https://doi.org/10.28948/ngumuh.1590866.
JAMA Kömürcü S. Kohezif ara yüzey elemanlar aracılığıyla dairesel yığma kemerlerin sistematik olarak modellenmesi ve kırılma mekanizmalarının belirlenmesi. NÖHÜ Müh. Bilim. Derg. 2025;14:1–1.
MLA Kömürcü, Sedat. “Kohezif Ara yüzey Elemanlar aracılığıyla Dairesel yığma Kemerlerin Sistematik Olarak Modellenmesi Ve kırılma mekanizmalarının Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 2, 2025, ss. 1-1, doi:10.28948/ngumuh.1590866.
Vancouver Kömürcü S. Kohezif ara yüzey elemanlar aracılığıyla dairesel yığma kemerlerin sistematik olarak modellenmesi ve kırılma mekanizmalarının belirlenmesi. NÖHÜ Müh. Bilim. Derg. 2025;14(2):1-.

download