Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of genetically optimized pixel monopole patch antennas for miniaturization and wideband applications

Yıl 2025, Cilt: 14 Sayı: 3, 965 - 973, 15.07.2025
https://doi.org/10.28948/ngumuh.1679692

Öz

A pixel based synthesis method driven by a genetic algorithm is applied to a rectangular monopole patch antenna on FR 4. A 7x13 grid with 5 mm x 5 mm pixels is optimized with a single |S_11 | objective to realize two contrasting designs: a miniaturized antenna that shifts resonance from 3.5 GHz to 1 GHz while reducing the linear size by 65%, and a wideband antenna that maintains |S_11 |≤-10 dB across 1.9-6 GHz. Full-wave CST simulations validate both cases without altering substrate or feed. The miniaturized version is bandwidth limited, whereas the wideband version exhibits radiation pattern variation—shortcomings that stem from the deliberately simple cost function. Results confirm the versatility of pixel antennas and indicate that multi objective or machine learning assisted optimization can further enhance performance.

Kaynakça

  • M. A. Ullah, R. Keshavarz, M. Abolhasan, J. Lipman, and N. Shariati, Multiservice compact pixelated stacked antenna with different pixel shapes for IoT applications, IEEE Internet Things Journals, vol. 10, no. 22, pp. 19883–19897, 2023. https://doi.org/10.1109/JIOT.2023.3281816
  • M. C. Derbal, M. F. Nakmouche, M. Nedil, A. Amma, D. E. Fawzy and M. F. A. Sree, Dual‑band antenna design using pixeled DGS for energy‑harvesting applications, 9th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 147–150 Antalya, Türkiye, 29-31 Mar. 2022. https://doi.org/10.1109/ICEEE55327.2022.9772605
  • D. Mair and D. Baumgarten, Evolutionary optimisation of pixelated IFA‑inspired antennas, Science Reports, vol. 14, no. 1, Art. no. 26664, Nov. 2024. https://doi.org/10.1038/s41598-024-77695-x
  • M. Shubbar and B. Rakos, A self‑adapting, pixelized planar antenna design for infrared frequencies, Sensors, vol. 22, no. 10, p. 3680, May 2022. https://doi.org/10.3390/s22103680
  • A C. Suresh, T. S. Reddy, B. T. P. Madhav, S. Alshantri, W. El-Shafai, S. Das and V. Sorathiya, A novel design of spike-shaped miniaturized 4x4 MIMO antenna for wireless UWB network applications using characteristic mode analysis, Micromachines, vol. 14, no. 3, p. 612, Jan. 2023. https://doi.org/10.3390/mi14030612
  • D. Rodrigo, B. A. Cetiner, and L. Jofre, Frequency, radiation‑pattern and polarization‑reconfigurable antenna using a parasitic pixel layer, IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, pp. 3422–3427, Jun. 2014. https://doi.org/10.1109/TAP.2014.2314464
  • J. Jayasinghe, J. Anguera, and D. Uduwawala, On the behavior of several fitness functions for genetically optimized microstrip antennas, International Journal of Scientific World, vol. 3, no. 1, pp. 53–58, Feb. 2015. https://doi.org/10.14419/ijsw.v3i1.4132
  • T. Qiao, F. Jiang, S. Shen, Z. Zhang, M. Li and C. Y. Chiu, Pixel‑antenna optimization using the adjoint method and the method of moving asymptotes, IEEE Transactions on Antennas and Propagation, vol. 71, no. 3, pp. 2873–2878, Mar. 2023. https://doi.org/10.1109/TAP.2023.3240563
  • S. Song and R. D. Murch, An efficient approach for optimizing frequency‑reconfigurable pixel antennas using genetic algorithms, IEEE Transactions on Antennas and Propagation, vol. 62, no. 2, pp. 609–620, Dec. 2013. https://doi.org/10.1109/TAP.2013.2293509
  • M. Lamsalli, A. El Hamichi, M. Boussouis, N. A. Touhami, and T. Elhamadi, Genetic‑algorithm optimization for microstrip patch antenna miniaturization, Progress in Electromagnetics Research Letters, vol. 60, pp.113–120, 2016. https://doi.org/10.2528/PIERL16041907
  • S. Shen, Y. Sun, S. Song, D. P. Palomar, and R. D. Murch, Successive Boolean optimization of planar pixel antennas, IEEE Transactions on Antennas and Propagation, vol. 65, no. 2, pp. 920–925, Feb. 2017. https://doi.org/10.1109/TAP.2016.2634399
  • F. Jiang, S. Shen, C.‑Y. Chiu, Z. Zhang, Y. Zhang, and Q. S. Cheng, Pixel‑antenna optimization based on perturbation‑sensitivity analysis, IEEE Transactions on Antennas and Propagation, vol. 70, no. 1, pp. 472–486, July. 2021. https://doi.org/10.1109/TAP.2021.3097104
  • Q. Wu, W. Chen, C. Yu, H. Wang, and W. Hong, Machine‑learning‑assisted optimization for antenna‑geometry design, IEEE Transactions on Antennas and Propagation, vol. 72, no. 3, pp. 2083–2095, Jan. 2024. https://doi.org/10.1109/TAP.2023.3346493
  • M. Rammal, M. Majed, E. Arnaud, J. Andrieu, and B. Jecko, Small‑size wide‑band low‑profile “pixel antenna”: Comparison of theoretical and experimental results in L‑band, International Journal of Antennas and Propagation, vol. 2019, no. 1, 2019. https://doi.org/10.1155/2019/3653270
  • F. Jiang, C.‑Y. Chiu, S. Shen, Q. S. Cheng, and R. Murch, Pixel‑antenna optimization using N‑port characteristic‑mode analysis IEEE Transactions on Antennas and Propagation, vol. 68, no. 5, pp. 3336–3347, Jan. 2020. https://doi.org/10.1109/TAP.2019.2963588
  • J. W. Jayasinghe, Application of genetic algorithm for binary optimization of microstrip antennas: A review, AIMS Electronics and Electrical Engineering, vol. 5, no. 4, pp. 315-333, 2021. https://doi.org/10.3934/electreng.2021016
  • S. K. Goudos, Optimization of antenna design problems using binary differential evolution, in Handbook of Research on Emergent Applications of Optimization Algorithms, Business Science Reference, IGI Global, pp. 614-636, Jan. 2018. https://doi.org/10.4018/978-1-5225-2990-3.ch026
  • H. Chen, Z. Wu, S. Li, X. Li, and Q. Liu, Proximal policy optimization reinforcement learning assisted patch antenna design, in Proc. IEEE 12th Asia-Pacific Conference on Antennas and Propagation (APCAP), Bali, Indonesia, 22-25 Jul. 2024. https://doi.org/10.1109/APCAP2011.2024.10881019
  • Q. Wang, Z. Pang, D. Gao, P. Liu, X. Pang and X. Yin, Machine‑learning‑assisted quasi‑bisection method for pixelated patch‑antenna bandwidth optimization, IEEE Antennas Wireless Propagation Letters, vol. 23, no. 12, pp. 4807–4811, Dec. 2024. https://doi.org/10.1109/LAWP.2024.3475628
  • S. Goudos, Antenna design using binary differential evolution: Application to discrete‑valued design problems, IEEE Antennas and Propagation Magazine, vol. 59, no. 1, pp. 74–93, Feb. 2017. https://doi.org/10.1109/MAP.2016.2630041
  • C. A. Balanis, Antenna Theory: Analysis and Design 3rd ed., New York, USA: Wiley, 2005.
  • W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 3rd ed., Wiley, 2012.
  • L. J. Chu, Physical limitations of omni‑directional antennas, Journal of Applied Physics, vol. 19, pp. 1163–1175, 1948. https://doi.org/10.1063/1.1715038

Minyatürleştirme ve geniş bant çalışmaları için genetik olarak optimize edilmiş piksel monopol yama antenlerin incelemesi

Yıl 2025, Cilt: 14 Sayı: 3, 965 - 973, 15.07.2025
https://doi.org/10.28948/ngumuh.1679692

Öz

Bu çalışmada, FR 4 üzerinde dikdörtgen monopole yama antene genetik algoritma destekli piksel tabanlı bir tasarım yöntemi uygulanmıştır. 5 mm x 5 mm boyutlu pikseller ile 7x13 olarak pikselleştirilmiş yapı, yalnızca |S_11 |’e bağlı optimize edilerek iki farklı tasarım elde edilmiştir: rezonansı 3.5 GHz’ten 1 GHz’e kaydırarak boyutu doğrusal olarak %65 azaltan minyatür anten ve 1.9-6 GHz aralığında |S_11 |≤-10 dB sağlayan geniş bant anten. Her iki tasarım da besleme veya substrat değiştirmeden tam dalga CST benzetimleriyle doğrulanmıştır. Basit maliyet fonksiyonuna bağlı olarak mini anten dar bant genişliği, geniş bant anten ise desen değişkenliği göstermektedir. Sonuçlar piksel anten yaklaşımının esnekliğini gösterirken, çoklu hedefli veya makine öğrenmesi destekli optimizasyonlarla performansın daha da iyileştirilebileceği görülebilir.

Kaynakça

  • M. A. Ullah, R. Keshavarz, M. Abolhasan, J. Lipman, and N. Shariati, Multiservice compact pixelated stacked antenna with different pixel shapes for IoT applications, IEEE Internet Things Journals, vol. 10, no. 22, pp. 19883–19897, 2023. https://doi.org/10.1109/JIOT.2023.3281816
  • M. C. Derbal, M. F. Nakmouche, M. Nedil, A. Amma, D. E. Fawzy and M. F. A. Sree, Dual‑band antenna design using pixeled DGS for energy‑harvesting applications, 9th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 147–150 Antalya, Türkiye, 29-31 Mar. 2022. https://doi.org/10.1109/ICEEE55327.2022.9772605
  • D. Mair and D. Baumgarten, Evolutionary optimisation of pixelated IFA‑inspired antennas, Science Reports, vol. 14, no. 1, Art. no. 26664, Nov. 2024. https://doi.org/10.1038/s41598-024-77695-x
  • M. Shubbar and B. Rakos, A self‑adapting, pixelized planar antenna design for infrared frequencies, Sensors, vol. 22, no. 10, p. 3680, May 2022. https://doi.org/10.3390/s22103680
  • A C. Suresh, T. S. Reddy, B. T. P. Madhav, S. Alshantri, W. El-Shafai, S. Das and V. Sorathiya, A novel design of spike-shaped miniaturized 4x4 MIMO antenna for wireless UWB network applications using characteristic mode analysis, Micromachines, vol. 14, no. 3, p. 612, Jan. 2023. https://doi.org/10.3390/mi14030612
  • D. Rodrigo, B. A. Cetiner, and L. Jofre, Frequency, radiation‑pattern and polarization‑reconfigurable antenna using a parasitic pixel layer, IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, pp. 3422–3427, Jun. 2014. https://doi.org/10.1109/TAP.2014.2314464
  • J. Jayasinghe, J. Anguera, and D. Uduwawala, On the behavior of several fitness functions for genetically optimized microstrip antennas, International Journal of Scientific World, vol. 3, no. 1, pp. 53–58, Feb. 2015. https://doi.org/10.14419/ijsw.v3i1.4132
  • T. Qiao, F. Jiang, S. Shen, Z. Zhang, M. Li and C. Y. Chiu, Pixel‑antenna optimization using the adjoint method and the method of moving asymptotes, IEEE Transactions on Antennas and Propagation, vol. 71, no. 3, pp. 2873–2878, Mar. 2023. https://doi.org/10.1109/TAP.2023.3240563
  • S. Song and R. D. Murch, An efficient approach for optimizing frequency‑reconfigurable pixel antennas using genetic algorithms, IEEE Transactions on Antennas and Propagation, vol. 62, no. 2, pp. 609–620, Dec. 2013. https://doi.org/10.1109/TAP.2013.2293509
  • M. Lamsalli, A. El Hamichi, M. Boussouis, N. A. Touhami, and T. Elhamadi, Genetic‑algorithm optimization for microstrip patch antenna miniaturization, Progress in Electromagnetics Research Letters, vol. 60, pp.113–120, 2016. https://doi.org/10.2528/PIERL16041907
  • S. Shen, Y. Sun, S. Song, D. P. Palomar, and R. D. Murch, Successive Boolean optimization of planar pixel antennas, IEEE Transactions on Antennas and Propagation, vol. 65, no. 2, pp. 920–925, Feb. 2017. https://doi.org/10.1109/TAP.2016.2634399
  • F. Jiang, S. Shen, C.‑Y. Chiu, Z. Zhang, Y. Zhang, and Q. S. Cheng, Pixel‑antenna optimization based on perturbation‑sensitivity analysis, IEEE Transactions on Antennas and Propagation, vol. 70, no. 1, pp. 472–486, July. 2021. https://doi.org/10.1109/TAP.2021.3097104
  • Q. Wu, W. Chen, C. Yu, H. Wang, and W. Hong, Machine‑learning‑assisted optimization for antenna‑geometry design, IEEE Transactions on Antennas and Propagation, vol. 72, no. 3, pp. 2083–2095, Jan. 2024. https://doi.org/10.1109/TAP.2023.3346493
  • M. Rammal, M. Majed, E. Arnaud, J. Andrieu, and B. Jecko, Small‑size wide‑band low‑profile “pixel antenna”: Comparison of theoretical and experimental results in L‑band, International Journal of Antennas and Propagation, vol. 2019, no. 1, 2019. https://doi.org/10.1155/2019/3653270
  • F. Jiang, C.‑Y. Chiu, S. Shen, Q. S. Cheng, and R. Murch, Pixel‑antenna optimization using N‑port characteristic‑mode analysis IEEE Transactions on Antennas and Propagation, vol. 68, no. 5, pp. 3336–3347, Jan. 2020. https://doi.org/10.1109/TAP.2019.2963588
  • J. W. Jayasinghe, Application of genetic algorithm for binary optimization of microstrip antennas: A review, AIMS Electronics and Electrical Engineering, vol. 5, no. 4, pp. 315-333, 2021. https://doi.org/10.3934/electreng.2021016
  • S. K. Goudos, Optimization of antenna design problems using binary differential evolution, in Handbook of Research on Emergent Applications of Optimization Algorithms, Business Science Reference, IGI Global, pp. 614-636, Jan. 2018. https://doi.org/10.4018/978-1-5225-2990-3.ch026
  • H. Chen, Z. Wu, S. Li, X. Li, and Q. Liu, Proximal policy optimization reinforcement learning assisted patch antenna design, in Proc. IEEE 12th Asia-Pacific Conference on Antennas and Propagation (APCAP), Bali, Indonesia, 22-25 Jul. 2024. https://doi.org/10.1109/APCAP2011.2024.10881019
  • Q. Wang, Z. Pang, D. Gao, P. Liu, X. Pang and X. Yin, Machine‑learning‑assisted quasi‑bisection method for pixelated patch‑antenna bandwidth optimization, IEEE Antennas Wireless Propagation Letters, vol. 23, no. 12, pp. 4807–4811, Dec. 2024. https://doi.org/10.1109/LAWP.2024.3475628
  • S. Goudos, Antenna design using binary differential evolution: Application to discrete‑valued design problems, IEEE Antennas and Propagation Magazine, vol. 59, no. 1, pp. 74–93, Feb. 2017. https://doi.org/10.1109/MAP.2016.2630041
  • C. A. Balanis, Antenna Theory: Analysis and Design 3rd ed., New York, USA: Wiley, 2005.
  • W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 3rd ed., Wiley, 2012.
  • L. J. Chu, Physical limitations of omni‑directional antennas, Journal of Applied Physics, vol. 19, pp. 1163–1175, 1948. https://doi.org/10.1063/1.1715038
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Elektromanyetiği, Radyo Frekansı Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Çağatay Aydın 0000-0002-1895-0333

Erken Görünüm Tarihi 27 Mayıs 2025
Yayımlanma Tarihi 15 Temmuz 2025
Gönderilme Tarihi 19 Nisan 2025
Kabul Tarihi 14 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 3

Kaynak Göster

APA Aydın, Ç. (2025). Investigation of genetically optimized pixel monopole patch antennas for miniaturization and wideband applications. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 965-973. https://doi.org/10.28948/ngumuh.1679692
AMA Aydın Ç. Investigation of genetically optimized pixel monopole patch antennas for miniaturization and wideband applications. NÖHÜ Müh. Bilim. Derg. Temmuz 2025;14(3):965-973. doi:10.28948/ngumuh.1679692
Chicago Aydın, Çağatay. “Investigation of genetically optimized pixel monopole patch antennas for miniaturization and wideband applications”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 3 (Temmuz 2025): 965-73. https://doi.org/10.28948/ngumuh.1679692.
EndNote Aydın Ç (01 Temmuz 2025) Investigation of genetically optimized pixel monopole patch antennas for miniaturization and wideband applications. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 3 965–973.
IEEE Ç. Aydın, “Investigation of genetically optimized pixel monopole patch antennas for miniaturization and wideband applications”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 3, ss. 965–973, 2025, doi: 10.28948/ngumuh.1679692.
ISNAD Aydın, Çağatay. “Investigation of genetically optimized pixel monopole patch antennas for miniaturization and wideband applications”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/3 (Temmuz2025), 965-973. https://doi.org/10.28948/ngumuh.1679692.
JAMA Aydın Ç. Investigation of genetically optimized pixel monopole patch antennas for miniaturization and wideband applications. NÖHÜ Müh. Bilim. Derg. 2025;14:965–973.
MLA Aydın, Çağatay. “Investigation of genetically optimized pixel monopole patch antennas for miniaturization and wideband applications”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 3, 2025, ss. 965-73, doi:10.28948/ngumuh.1679692.
Vancouver Aydın Ç. Investigation of genetically optimized pixel monopole patch antennas for miniaturization and wideband applications. NÖHÜ Müh. Bilim. Derg. 2025;14(3):965-73.

download