Araştırma Makalesi
BibTex RIS Kaynak Göster

Development of magnetic levitation and magnetic hardness performance of Sn-Ba-Cu-O ceramics due to ZnO doping

Yıl 2025, Cilt: 14 Sayı: 3, 1126 - 1134, 15.07.2025
https://doi.org/10.28948/ngumuh.1711432

Öz

The structural properties of Sn2Ba(Cu2-xZnx)2Oy ceramics synthesized by solid-state reaction method with different Cu/Zn doping ratios were investigated in our previous study. In this study, magnetic levitation force (MLF) measurements were performed using a permanent magnet with a surface magnetic field strength of 470 mT. In the force measurement between the magnet and the ceramic material, significant hysteresis behavior was observed statically as a function of the distance in the vertical axis. We focused on the effect of doping on force measurements and magnetic stiffness calculations under zero field cooling (ZFC) and field cooling (FC) conditions. The decrease of force with increasing doping in ZFC is explained by weak bonds at grain boundaries, cracks and grain size reduction. Magnetic stiffness calculations were made from the force curves in ZFC. The levitation force, which should be effective with the increase in doping in FC, was replaced by an attractive force with the emerge of flux trapping centers. In addition, from the 3-cycle force curves in FC, the range in which the samples are sensitive was determined as 0-35 mm. The doping caused a decrease in magnetic stiffness values. In FC, when the force curves were evaluated holistically, it was seen that the doping increased the maximum repulsive and attractive force and the repulsive force reached a maximum of 0.7 mN and the attractive force reached a maximum of 3.25 mN.

Kaynakça

  • I. A. Parinov, Microstructure and properties of high-temperature superconductors, Springer Berlin Heidelberg, Second Edition (2013).
  •    H. K. Onnes, The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden, 12, 1. 1911
  •    W. Meissner, and R. Ochensenfield, Ein neuer Effeckt bei Eintritt der Supraleitfaehigkeit Naturwissenschaften 21, 787, 1933.
  •    J. G. Bednorz and K. A. Muller, Possible high Tc superconductivity in the La-Ba-Cu-O system. Zeitschrift für Physik B-Condensed Matter, 64, 189-193, 1986. http://dx.doi.org/10.1007/BF01303701.
  •    J. Unsworth, J. Du, B. J. Crosby, J. C. Macfarlane, Magnetic levitation force measurement on high Tc superconducting ceramic/polymer composites, IEEE Transactions on Magnetics 29, 108-112, 1993. https://doi.org/10.1109/20.195554
  •    W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang, M. Z. Wu, W. Gawalek, and P. Gornert, The effect of excess Y2O3 addition on the levitation force of melt processed YBCO Bulk Superconductors. Physica C: Superconductivity, 305, 269-274, 1998. https://doi.org/10.1016/S0921-4534(98)00339-6
  •    G. Z. Li, W. M. Yang, X. F. Cheng, X. D. Guo, J. Fan, A modified TSIG technique for simplifying the fabrication process of single-domain GdBCO bulks with a new kind of liquid source. Journal of Materials Science, 44, 6423-6426 2009. https://doi.org/10.1007/s10853-009-3887-8
  •    I. G. Chen, J. C. Hsu, G. Janm, C. C. Kuo, H. J. Liu, M. K. Wu, Magnetic levitation force of single grained YBCO materials. Chinese Journal of Physics. 36(2), 420-4278, 1998. https://doi.org/10.1002/chin.199843296
  •    B. Zheng, J. Zheng, D. He, Y. Ren, Z. Deng, Magnetic characteristics of permanent magnet guideways at low temperature and its effect on the levitation force of bulk YBaCuO superconductors. JALCOM. 656, 77-81, 2016. https://doi.org/10.1016/j.jallcom.2015.09.116
  • Z. M. Zhao, J. M. Xu, X. Y. Yuan, C. P. Zhang, Levitation force of melt-textured YBCO superconductors under non-quasi-static situation. Physica C. 549, 154-159, 2018. https://doi.org/10.1016/j.physc.2018.03.011
  • C. P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250-253, 1962. https://doi.org/10.1103/PhysRevLett.8.250
  • T. H. Johansen, Z. J. Yang, H. Bratsberg, G. Helgesen, A. T. Skjeltorp, Lateral force on a magnet placed above a planar YBa2Cu3Ox superconductor. Appl. Phys.Lett. 58, 179-181, 1991. https://doi.org/10.1063/1.104965
  • J. C. Wei and T. J. Yang, Theoretical calculation of magnetic force for Type-II superconductor in a levitated magnetic field. Chin. J. Phys, 34, 1344-1351, 1996.
  • X-Y Zhang, Y-H Zhou, J. Zhou, Three-dimensional measurements of forces between magnet and superconductor in a levitation system. Physica C: Superconductivity. 467, 125-129, 2007. https://doi.org/10.1016/j.physc.2007.09.010
  • S. L. Chen, W. M. Yang, J. W. Li, X. C. Yuan, J. Ma, M. Wang, A new 3D levitation force measuring device for REBCO bulk superconductors. Physica C: Superconductivity. 496, 39-43, 2014. https://doi.org/10.1016/j.physc.2013.07.004
  • R. Parthasarathy, V. Seshubai, Significant correlations between levitation-suspension forces and critical current densities in bulk YBCO/Ag composite superconductors fabricated by infiltration and growth processing technique. J Supercond Nov Magn 29, 1439-1447, 2016. https://doi.org/10.1007/s10948-016-3431-4
  • B. Savaskan, E. Taylan Koparan, S. Celik, K. Ozturk, E. Yanmaz, Investigation on the levitation force behaviour of malic acid added bulk MgB2 superconductors. Physica C: Superconductivity. 502, 63-69, 2014. https://doi.org/10.1016/j.physc.2014.04.032
  • R. J. Adler, W. W. Anderson, Force between a superconductor and a permanent magnet due to trapped flux. J. Appl. Phys 68, 695-700, 1990. https://doi.org/10.1063/1.346800
  • A. Cansız, Force, Stiffness and hysteresis losses in high temperature superconducting bearings. PhD Thesis, Illinois Instıtute of Technology, Chicago, 3. (1999) https://books.google.com.tr/books?id=c-eBNwAACAAJ
  • P. Z. Chang, F. vC. Moon, J. R. Hull, T. M. Mulcahy, Levitation force and magnetic stiffness in bulk high‐ temperature superconductors. J. Appl. Phys. 67, 4358-4360, 1990. https://doi.org/10.1063/1.344927
  • J. S. Choi, S. D. Park, B. H. Jun, Y. H. Han, N. H. Jeong, B. G. Kim, J. M. Sohn, C. J. Kim, Levitation force and trapped magnetic field of multi-grain YBCO bulk superconductors. Physica C. 468, 1473–1476, 2008. https://doi.org/10.1016/j.physc.2008.05.200
  • P. Benzi, E. Bottizzo, N. Rizzi, Oxygen determination from cell dimensions in YBCO superconductors. J. Cryst. Growth 269, 625-629, 2004. https://doi.org/10.1016/j.jcrysgro.2004.05.082
  • I. B. Bobylev, E. G. Gerasimov, N. A. Zyuzeva, Improvement of critical parameters of YBa2Cu3O6.9 by low temperature treatment in the presence of water vapors. Cryogenics. 72, 36–43, 2015. https://doi.org/10.1016/j.cryogenics.2015.08.003
  • I-G Chen, J-C Hsu, G. Janm, C-C Kuo, H-J Liu, M.K. Wu, Magnetic levitation force of single grained YBCO materials. Chinese Journal of Physics. 36, 420-427, 1998.
  • K. Brodt, H. Fuess, E.F. Paulus, W. Assmus, J. Kowalewski, Untwinned single crystals of the high-temperature superconductor YBa2Cu3O7-δ. Acta Crystallogr C. 46, 354-358, 1990. https://doi.org/10.1107/S0108270189006803
  • V. Calzona, M. R. Cimberle, C. Ferdeghini, M. Putti, A. S. Siri, AC susceptibility and magnetization of high-tc superconductors: critical state model for the intergranular region. Physica C. 157, 425-430, 1989. https://doi.org/10.1016/0921-4534(89)90266-9
  • F. P. Dahl, Kamerlingh Onnes and the Discovery of Superconductivity: The Leyden Years. 1911–1919, University of California Press. Historical Studies in the Physical Sciences. 15, 1–37, 1984. https://doi.org/10.2307/27757541
  • B. Savaskan, M. Abdioglu, K. Ozturk, Determination of magnetic levitation force properties of bulk MgB2 for different permanent magnetic guideways in different cooling heights. Journal of Alloys and Compounds. 834, 155167, 2020. https://doi.org/10.1016/j.jallcom.2020.155167
  • F. C. Moon, K. C. Weng, P. Z. Chang, Dynamic magnetic forces in superconducting ceramics. J. Appl. Phys. 66, 5643, 1989. https://doi.org/10.1063/1.343677
  • Y. Yeshurun, A. P. Malozemoff, A. Shaulov, Magnetic relaxation in high-temperature superconductors. Rev. Mod. Phys. 68, 911-949, 1996. https://doi.org/10.1103/RevModPhys.68.911
  • S. Büyükakkaş, Ş. Ünlüer, Effects on structural properties of doping zinc into Sn2Ba(Cu22xZnx)2Oy ceramics, Indian Journal of Physics, 2025. https://doi.org/10.1007/s12648-025-03551-x
  • İ. Karaca, N. Şimşek, S. Özen, M. T. Güler, Infiltration effects on (RE) 123 superconductors. Chinese Journal of Physics. 59, 556-566, 2019. https://doi.org/10.1016/j.cjph.2019.03.016
  • M. T. Güler, Nano bor katkısının yüksek sıcaklık süperiletken seramiklere etkilerinin incelenmesi, Doktora Tezi, Niğde, Niğde Ömer Halisdemir Üniversitesi Fen Bilimleri Enstitüsü, 2021.
  • K. M. Kim, S. D. Park, S. H. Jun, T. K. Ko, C. J. Kim Simple die pressing for making artificial holes in single-grain Gd1.5Ba2Cu3O7−y superconductors. Supercond Sci Technol., 25:105016, 2012. https://doi.org/10.1088/0953-2048/25/10/1-5016
  • W. M. Yang, X. X. Chao, X. B. Bian, P. Liu, Y. Feng, P. X. Zhang, L. Zhou, The effect of magnet size on the levitation forces and attractive force of single-domain YBCO bulk superconductor. Supercond Sci Technol 16:789 (2003) http://dx.doi.org/10.1088/0953-2048/16/7/308
  • M. Murakami, T. Oyama, H. Fujimoto, T. Taguchi, S. Gotoh, Y. Shiohara, N. Koshizuka, S. Tanaka, Large levitation force due to flux pinning in YBaCuO superconductors fabricated by melt-powder-melt-growth process. Jpn J. Appl Phys 29(11):L1991, 1990.
  • F. C. Moon, Superconducting Levitation, 2nd edition, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
  • W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang, J. R. Wang, C. P. Zhang, Z. M. Yu, X. D. Tang, W. Wei, The effect of magnet configurations on the levitation force of melt processed YBCO bulk superconductors, Physica C 354, 5-12, 2001.
  • S. B. Guner, S. Celik, M. Tomakin, The investigation of magnetic levitation performances of single grain YBCO at different temperatures, Journal of Alloys and Compounds 0925-8388, 30572-8, 2017.
  • Y-N Wang, W-M Yang, P-T Yang, C-Y Zhang, J-L Chen, L-J Zhang, L.Chen, Influence of trapped field on the levitation force of SmBCO bulk superconductor, Physica C: Sup. and its App. 542, 28–33, 2017.
  • İ. Karaca, Characterization of a cylindrical superconductor disk prepared by the wet technique with microstructure analysis and levitation force measurements using a permanent magnet, Chınese Journal Of Physıcs 47, 5, (2008)
  • Kim, C-J., Superconductor Levitation Concepts and Experiments, Springer, Singapore, 2019.
  • M. Murakami, Melt Processed High-Temperature Superconductors. World Scientific, Singapore, 1992. 9789814335898_fmatter (worldscientific.com).
  • O. Ozogul, Calculation of Levitation Force Using a Critical-State Model. J. Supercond. Nov. Magn., 25, 221-225, 2012. https://doi.org/10.1007/s10948-011- 1281-7.

Sn-Ba-Cu-O seramiklerin manyetik kaldırma ve manyetik sertlik performansının ZnO katkılamasına bağlı gelişimi

Yıl 2025, Cilt: 14 Sayı: 3, 1126 - 1134, 15.07.2025
https://doi.org/10.28948/ngumuh.1711432

Öz

Farklı oranlarda Cu/Zn katkılanarak katı-hal tepkime yöntemiyle sentezlenen Sn2Ba(Cu2-xZnx)2Oy seramiklerin yapısal özellikleri önceki çalışmamızda incelendi. Bu çalışmada, 470 mT yüzey manyetik alan şiddetine sahip kalıcı mıknatıs kullanılarak manyetik kaldırma kuvveti (MLF) ölçümleri gerçekleştirildi. Mıknatıs ile seramik malzeme arasındaki kuvvet ölçümünde, statik olarak düşey eksendeki mesafenin fonksiyonu olarak önemli histerezis davranış gözlendi. Sıfır alan soğutması (ZFC) ve alan soğutması (FC) şartlarında, katkılamanın kuvvet ölçümleri ve manyetik sertlik hesaplamalarına etkisine odaklanıldı. ZFC′de katkı artışıyla kuvvetin azalması, tane sınırlarındaki zayıf bağlar, çatlaklar ve tane boyutu küçülmesi ile açıklandı. ZFC′de kuvvet eğrilerinden, manyetik sertlik hesaplamaları yapıldı. FC′de katkının artması ile etkili olması gereken kaldırma kuvveti, akı yakalama merkezlerinin ortaya çıkması ile yerini çekici kuvvete bıraktı. Ayrıca, FC′de 3 döngülü kuvvet eğrilerinden, numunelerin duyarlı olduğu aralık 0-35 mm olarak belirlendi. Katkılama manyetik sertlik değerlerinde azalmaya neden oldu. FC′de, kuvvet eğrileri bütünsel değerlendirildiğinde, katkının maksimum itici ve çekici kuvveti artırdığı ve itici kuvvetin maksimum 0.7 mN′a, çekici kuvvetin ise maksimum 3.25 mN′a ulaştığı görüldü.

Kaynakça

  • I. A. Parinov, Microstructure and properties of high-temperature superconductors, Springer Berlin Heidelberg, Second Edition (2013).
  •    H. K. Onnes, The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden, 12, 1. 1911
  •    W. Meissner, and R. Ochensenfield, Ein neuer Effeckt bei Eintritt der Supraleitfaehigkeit Naturwissenschaften 21, 787, 1933.
  •    J. G. Bednorz and K. A. Muller, Possible high Tc superconductivity in the La-Ba-Cu-O system. Zeitschrift für Physik B-Condensed Matter, 64, 189-193, 1986. http://dx.doi.org/10.1007/BF01303701.
  •    J. Unsworth, J. Du, B. J. Crosby, J. C. Macfarlane, Magnetic levitation force measurement on high Tc superconducting ceramic/polymer composites, IEEE Transactions on Magnetics 29, 108-112, 1993. https://doi.org/10.1109/20.195554
  •    W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang, M. Z. Wu, W. Gawalek, and P. Gornert, The effect of excess Y2O3 addition on the levitation force of melt processed YBCO Bulk Superconductors. Physica C: Superconductivity, 305, 269-274, 1998. https://doi.org/10.1016/S0921-4534(98)00339-6
  •    G. Z. Li, W. M. Yang, X. F. Cheng, X. D. Guo, J. Fan, A modified TSIG technique for simplifying the fabrication process of single-domain GdBCO bulks with a new kind of liquid source. Journal of Materials Science, 44, 6423-6426 2009. https://doi.org/10.1007/s10853-009-3887-8
  •    I. G. Chen, J. C. Hsu, G. Janm, C. C. Kuo, H. J. Liu, M. K. Wu, Magnetic levitation force of single grained YBCO materials. Chinese Journal of Physics. 36(2), 420-4278, 1998. https://doi.org/10.1002/chin.199843296
  •    B. Zheng, J. Zheng, D. He, Y. Ren, Z. Deng, Magnetic characteristics of permanent magnet guideways at low temperature and its effect on the levitation force of bulk YBaCuO superconductors. JALCOM. 656, 77-81, 2016. https://doi.org/10.1016/j.jallcom.2015.09.116
  • Z. M. Zhao, J. M. Xu, X. Y. Yuan, C. P. Zhang, Levitation force of melt-textured YBCO superconductors under non-quasi-static situation. Physica C. 549, 154-159, 2018. https://doi.org/10.1016/j.physc.2018.03.011
  • C. P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250-253, 1962. https://doi.org/10.1103/PhysRevLett.8.250
  • T. H. Johansen, Z. J. Yang, H. Bratsberg, G. Helgesen, A. T. Skjeltorp, Lateral force on a magnet placed above a planar YBa2Cu3Ox superconductor. Appl. Phys.Lett. 58, 179-181, 1991. https://doi.org/10.1063/1.104965
  • J. C. Wei and T. J. Yang, Theoretical calculation of magnetic force for Type-II superconductor in a levitated magnetic field. Chin. J. Phys, 34, 1344-1351, 1996.
  • X-Y Zhang, Y-H Zhou, J. Zhou, Three-dimensional measurements of forces between magnet and superconductor in a levitation system. Physica C: Superconductivity. 467, 125-129, 2007. https://doi.org/10.1016/j.physc.2007.09.010
  • S. L. Chen, W. M. Yang, J. W. Li, X. C. Yuan, J. Ma, M. Wang, A new 3D levitation force measuring device for REBCO bulk superconductors. Physica C: Superconductivity. 496, 39-43, 2014. https://doi.org/10.1016/j.physc.2013.07.004
  • R. Parthasarathy, V. Seshubai, Significant correlations between levitation-suspension forces and critical current densities in bulk YBCO/Ag composite superconductors fabricated by infiltration and growth processing technique. J Supercond Nov Magn 29, 1439-1447, 2016. https://doi.org/10.1007/s10948-016-3431-4
  • B. Savaskan, E. Taylan Koparan, S. Celik, K. Ozturk, E. Yanmaz, Investigation on the levitation force behaviour of malic acid added bulk MgB2 superconductors. Physica C: Superconductivity. 502, 63-69, 2014. https://doi.org/10.1016/j.physc.2014.04.032
  • R. J. Adler, W. W. Anderson, Force between a superconductor and a permanent magnet due to trapped flux. J. Appl. Phys 68, 695-700, 1990. https://doi.org/10.1063/1.346800
  • A. Cansız, Force, Stiffness and hysteresis losses in high temperature superconducting bearings. PhD Thesis, Illinois Instıtute of Technology, Chicago, 3. (1999) https://books.google.com.tr/books?id=c-eBNwAACAAJ
  • P. Z. Chang, F. vC. Moon, J. R. Hull, T. M. Mulcahy, Levitation force and magnetic stiffness in bulk high‐ temperature superconductors. J. Appl. Phys. 67, 4358-4360, 1990. https://doi.org/10.1063/1.344927
  • J. S. Choi, S. D. Park, B. H. Jun, Y. H. Han, N. H. Jeong, B. G. Kim, J. M. Sohn, C. J. Kim, Levitation force and trapped magnetic field of multi-grain YBCO bulk superconductors. Physica C. 468, 1473–1476, 2008. https://doi.org/10.1016/j.physc.2008.05.200
  • P. Benzi, E. Bottizzo, N. Rizzi, Oxygen determination from cell dimensions in YBCO superconductors. J. Cryst. Growth 269, 625-629, 2004. https://doi.org/10.1016/j.jcrysgro.2004.05.082
  • I. B. Bobylev, E. G. Gerasimov, N. A. Zyuzeva, Improvement of critical parameters of YBa2Cu3O6.9 by low temperature treatment in the presence of water vapors. Cryogenics. 72, 36–43, 2015. https://doi.org/10.1016/j.cryogenics.2015.08.003
  • I-G Chen, J-C Hsu, G. Janm, C-C Kuo, H-J Liu, M.K. Wu, Magnetic levitation force of single grained YBCO materials. Chinese Journal of Physics. 36, 420-427, 1998.
  • K. Brodt, H. Fuess, E.F. Paulus, W. Assmus, J. Kowalewski, Untwinned single crystals of the high-temperature superconductor YBa2Cu3O7-δ. Acta Crystallogr C. 46, 354-358, 1990. https://doi.org/10.1107/S0108270189006803
  • V. Calzona, M. R. Cimberle, C. Ferdeghini, M. Putti, A. S. Siri, AC susceptibility and magnetization of high-tc superconductors: critical state model for the intergranular region. Physica C. 157, 425-430, 1989. https://doi.org/10.1016/0921-4534(89)90266-9
  • F. P. Dahl, Kamerlingh Onnes and the Discovery of Superconductivity: The Leyden Years. 1911–1919, University of California Press. Historical Studies in the Physical Sciences. 15, 1–37, 1984. https://doi.org/10.2307/27757541
  • B. Savaskan, M. Abdioglu, K. Ozturk, Determination of magnetic levitation force properties of bulk MgB2 for different permanent magnetic guideways in different cooling heights. Journal of Alloys and Compounds. 834, 155167, 2020. https://doi.org/10.1016/j.jallcom.2020.155167
  • F. C. Moon, K. C. Weng, P. Z. Chang, Dynamic magnetic forces in superconducting ceramics. J. Appl. Phys. 66, 5643, 1989. https://doi.org/10.1063/1.343677
  • Y. Yeshurun, A. P. Malozemoff, A. Shaulov, Magnetic relaxation in high-temperature superconductors. Rev. Mod. Phys. 68, 911-949, 1996. https://doi.org/10.1103/RevModPhys.68.911
  • S. Büyükakkaş, Ş. Ünlüer, Effects on structural properties of doping zinc into Sn2Ba(Cu22xZnx)2Oy ceramics, Indian Journal of Physics, 2025. https://doi.org/10.1007/s12648-025-03551-x
  • İ. Karaca, N. Şimşek, S. Özen, M. T. Güler, Infiltration effects on (RE) 123 superconductors. Chinese Journal of Physics. 59, 556-566, 2019. https://doi.org/10.1016/j.cjph.2019.03.016
  • M. T. Güler, Nano bor katkısının yüksek sıcaklık süperiletken seramiklere etkilerinin incelenmesi, Doktora Tezi, Niğde, Niğde Ömer Halisdemir Üniversitesi Fen Bilimleri Enstitüsü, 2021.
  • K. M. Kim, S. D. Park, S. H. Jun, T. K. Ko, C. J. Kim Simple die pressing for making artificial holes in single-grain Gd1.5Ba2Cu3O7−y superconductors. Supercond Sci Technol., 25:105016, 2012. https://doi.org/10.1088/0953-2048/25/10/1-5016
  • W. M. Yang, X. X. Chao, X. B. Bian, P. Liu, Y. Feng, P. X. Zhang, L. Zhou, The effect of magnet size on the levitation forces and attractive force of single-domain YBCO bulk superconductor. Supercond Sci Technol 16:789 (2003) http://dx.doi.org/10.1088/0953-2048/16/7/308
  • M. Murakami, T. Oyama, H. Fujimoto, T. Taguchi, S. Gotoh, Y. Shiohara, N. Koshizuka, S. Tanaka, Large levitation force due to flux pinning in YBaCuO superconductors fabricated by melt-powder-melt-growth process. Jpn J. Appl Phys 29(11):L1991, 1990.
  • F. C. Moon, Superconducting Levitation, 2nd edition, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
  • W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang, J. R. Wang, C. P. Zhang, Z. M. Yu, X. D. Tang, W. Wei, The effect of magnet configurations on the levitation force of melt processed YBCO bulk superconductors, Physica C 354, 5-12, 2001.
  • S. B. Guner, S. Celik, M. Tomakin, The investigation of magnetic levitation performances of single grain YBCO at different temperatures, Journal of Alloys and Compounds 0925-8388, 30572-8, 2017.
  • Y-N Wang, W-M Yang, P-T Yang, C-Y Zhang, J-L Chen, L-J Zhang, L.Chen, Influence of trapped field on the levitation force of SmBCO bulk superconductor, Physica C: Sup. and its App. 542, 28–33, 2017.
  • İ. Karaca, Characterization of a cylindrical superconductor disk prepared by the wet technique with microstructure analysis and levitation force measurements using a permanent magnet, Chınese Journal Of Physıcs 47, 5, (2008)
  • Kim, C-J., Superconductor Levitation Concepts and Experiments, Springer, Singapore, 2019.
  • M. Murakami, Melt Processed High-Temperature Superconductors. World Scientific, Singapore, 1992. 9789814335898_fmatter (worldscientific.com).
  • O. Ozogul, Calculation of Levitation Force Using a Critical-State Model. J. Supercond. Nov. Magn., 25, 221-225, 2012. https://doi.org/10.1007/s10948-011- 1281-7.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Karekterizasyonu, Malzeme Mühendisliğinde Seramik
Bölüm Araştırma Makaleleri
Yazarlar

Selva Büyükakkaş 0000-0003-2967-1521

Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 15 Temmuz 2025
Gönderilme Tarihi 1 Haziran 2025
Kabul Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 3

Kaynak Göster

APA Büyükakkaş, S. (2025). Sn-Ba-Cu-O seramiklerin manyetik kaldırma ve manyetik sertlik performansının ZnO katkılamasına bağlı gelişimi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 1126-1134. https://doi.org/10.28948/ngumuh.1711432
AMA Büyükakkaş S. Sn-Ba-Cu-O seramiklerin manyetik kaldırma ve manyetik sertlik performansının ZnO katkılamasına bağlı gelişimi. NÖHÜ Müh. Bilim. Derg. Temmuz 2025;14(3):1126-1134. doi:10.28948/ngumuh.1711432
Chicago Büyükakkaş, Selva. “Sn-Ba-Cu-O seramiklerin manyetik kaldırma ve manyetik sertlik performansının ZnO katkılamasına bağlı gelişimi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 3 (Temmuz 2025): 1126-34. https://doi.org/10.28948/ngumuh.1711432.
EndNote Büyükakkaş S (01 Temmuz 2025) Sn-Ba-Cu-O seramiklerin manyetik kaldırma ve manyetik sertlik performansının ZnO katkılamasına bağlı gelişimi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 3 1126–1134.
IEEE S. Büyükakkaş, “Sn-Ba-Cu-O seramiklerin manyetik kaldırma ve manyetik sertlik performansının ZnO katkılamasına bağlı gelişimi”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 3, ss. 1126–1134, 2025, doi: 10.28948/ngumuh.1711432.
ISNAD Büyükakkaş, Selva. “Sn-Ba-Cu-O seramiklerin manyetik kaldırma ve manyetik sertlik performansının ZnO katkılamasına bağlı gelişimi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/3 (Temmuz2025), 1126-1134. https://doi.org/10.28948/ngumuh.1711432.
JAMA Büyükakkaş S. Sn-Ba-Cu-O seramiklerin manyetik kaldırma ve manyetik sertlik performansının ZnO katkılamasına bağlı gelişimi. NÖHÜ Müh. Bilim. Derg. 2025;14:1126–1134.
MLA Büyükakkaş, Selva. “Sn-Ba-Cu-O seramiklerin manyetik kaldırma ve manyetik sertlik performansının ZnO katkılamasına bağlı gelişimi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 3, 2025, ss. 1126-34, doi:10.28948/ngumuh.1711432.
Vancouver Büyükakkaş S. Sn-Ba-Cu-O seramiklerin manyetik kaldırma ve manyetik sertlik performansının ZnO katkılamasına bağlı gelişimi. NÖHÜ Müh. Bilim. Derg. 2025;14(3):1126-34.

download