Araştırma Makalesi
BibTex RIS Kaynak Göster

Akıllı ulaşım sistemleri test ortamı üzerinde kendi kendilerini organize eden araç ağı kullanarak dağıtım ve geri taşıma sorunlarının analizi

Yıl 2025, Cilt: 14 Sayı: 4

Öz

Bu çalışma, akıllı ulaşım sistemleri (ITS–Intelligent Transportation Systems) test ortamında, kendi kendini organize eden araçlara dayalı araçlar arası ağların (VANETs –Vehicular Ad-Hoc Networks) dağıtım ve geri taşıma sorunlarını analiz etmeyi amaçlamaktadır. Middlesex Üniversitesi Hendon Kampüsü ve A41 otoyolu çevresinde kurulan test platformu, 5.9 GHz frekansında çalışan yol kenarı üniteleri ve araç içi üniteler kullanılarak gerçek dünya koşullarında sinyal yayılımını incelemektedir. Çalışmada, Serbest Uzay Yol Kaybı, İki Işınlı Zemin Yansıma, Log-Mesafe Yol Kaybı ve Hızlı Solma ile Serbest Uzay Yolu Kaybı modellerini karşılaştırılarak kentsel ve otoyol ortamlarında en uygun yayılım modeli belirlenmiştir. Bulgular, otoyol senaryolarında Serbest Uzay Yol Kaybı ve de Hızlı Solma ile Serbest Uzay Yol Kaybı modelinin, kentsel alanlarda ise Log-Mesafe Yol Kaybı modelinin daha tutarlı sonuçlar verdiğini göstermektedir. Ayrıca, kablolu geri taşıma sisteminin düşük gecikme süreleriyle üstün performans sergilediği, LTE tabanlı geri taşımanın ise yüksek gecikmeler nedeniyle ITS uygulamaları için sınırlamalar taşıdığı ortaya konmuştur. Bu sonuçlar, VANET tabanlı ITS altyapısının etkin dağıtımı ve optimizasyonu için önemli ipuçları sunmaktadır.

Teşekkür

Yazarlar, Middlesex Üniversitesi VANET ekibine ve Dr. Glenford Mapp'a rehberlikleri, önerileri ve yardımları için teşekkür etmektedir. Dr. Glenford Mapp, Ulaştırma Bakanlığı'ndan (DfT) fon almış olup, Middlesex Üniversitesi VANET araştırma ekibinin başıdır. Dr. Yönal Kırsal, MDX VANET araştırma ekibinin misafir üyesidir.

Kaynakça

  • M. N. Tahir, K. Mäenpää, T. Sukuvaara and P. Leviäkangas, Deployment and Analysis of Cooperative Intelligent Transport System Pilot Service Alerts in Real Environment, IEEE Open Journal of Intelligent Transportation Systems, 2, 40-148, 2021, https://doi: 10.1109/OJITS.2021.3085569.
  • K. Ali et al., Review and Implementation of Resilient Public Safety Networks: 5G, IoT, and Emerging Technologies, IEEE Network, 35, 2, 18-25, https://doi: 10.1109/MNET.011.2000418.
  • D. Dias, M. Luís, P. Rito and S. Sargento, A Software Defined Vehicular Network Using Cooperative Intelligent Transport System Messages, IEEE Access, 12, 93152-93170, 2024, https://doi: 10.1109/ACCESS. 2024.3421338.
  • R. Ranjbar Motlagh, O. Ameri Sianaki, H. Shee, A Survey on Cooperative Intelligent Transportation Systems (C-ITS): Opportunities and Challenges, Complex, Intelligent and Software Intensive Systems. CISIS 2024. Lecture Notes on Data Engineering and Communications Technologies, 87, 2024 Springer, Cham. https://doi.org/10.1007/978-3-031-70011-8_23
  • S. Hira, and S. Hira, Smart energy management using vehicle-to-vehicle and vehicle-to-everything. In Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems, 253-290, 2024, https://doi.org/10.1016/B978-0-443-23814-7.00010-9
  • V. Paranthaman, Exploiting user contention to optimize proactive resource allocation in future networks. Ph.D. Thesis, Middlesex University, London, UK, 2019.
  • D. Serghiou, M. Khalily, T. W. C. Brown and R. Tafazolli, Terahertz Channel Propagation Phenomena, Measurement Techniques and Modeling for 6G Wireless Communication Applications: A Survey, Open Challenges and Future Research Directions,IEEE Communications Surveys & Tutorials, 24, 4, 957-1996, 2022, https://doi:10.1109/COMST.2022.3205505.
  • M. A. Naeem, S. Chaudhary, and Y, Meng, Road to Efficiency: V2V Enabled Intelligent Transportation System. Electronics, 13, 13, 2673, 2024. https://doi.org/10.3390/electronics13132673
  • K. Ali et al., Review and Implementation of Resilient Public Safety Networks: 5G, IoT, and Emerging Technologies, IEEE Network, 35, 2, 8-25, 2021, https://doi: 10.1109/MNET.011.2000418.
  • A. Al-Mohtaseb, et al. A Comprehensive Review of VANET Attacks: Predictive Models, Vulnerability Management, and Defense Selection. 25th International Arab Conference on Information Technology (ACIT), pp. 1-9. Zarqa, Jordan, 2024.
  • H. F. Atlam, A. Alenezi, A. Alharthi, R. J. Walters and G. B. Wills, Integration of Cloud Computing with Internet of Things: Challenges and Open Issues, International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 670-675, Exeter, UK, 2017,
  • V. V. Paranthaman, Y. Kirsal, G. Mapp, P. Shah and H. X. Nguyen, Exploiting Resource Contention in Highly Mobile Environments and Its Application to Vehicular Ad-Hoc Networks, IEEE Transactions on Vehicular Technology, 68 (4), 3805-3819, 2019, https://doi: 10.1109/TVT.2019.2902245.
  • N. H. Hussein, C. T. Yaw, S. P. Koh, S. K. Tiong and K. H. Chong, A Comprehensive Survey on Vehicular Networking: Communications, Applications, Challenges, and Upcoming Research Directions, IEEE Access, 10, 86127-86180, 2022, https://doi: 10.1109/ACCESS.2022.3198656.
  • M. Ayyub, A. Oracevic, R. Hussain, A. A. Khan, and Z. Zhang. A comprehensive survey on clustering in vehicular networks: Current solutions and future challenges. Ad Hoc Networks, 124, 102729, 2024, https://doi.org/10.1016/j.adhoc.2021.102729
  • D. Chen, Y. Liang, L. Li and Y. Liu, Physically Secure and Privacy-Preserving Authentication Scheme for VANET, 2024 International Conference on Artificial Intelligence of Things and Systems (AIoTSys), Hangzhou, China, 1-6, 2024.
  • T. Pal, R., Saha, and S., Biswas, Design and Implementation of a Routing Protocol for VANET to Improve the QoS of the Network. Journal of Network and Systems Management, 32 (3), 45, 2024. https://doi.org/10.1007/s10922-024-09821-z
  • N. Pramuanyat, K. N. Nakorn, and K. Rojviboonchai, Preliminary study of reliable broadcast protocol on 802.11p public transport testbed, 12th International Conference in Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–6, 2015.
  • N. Baloch and L. Reggiani, Study on communication reliability in VANETs, International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT), Karachi, Pakistan, pp. 1-5, 2017.
  • M. I. Sanchez, M. Gramaglia, C. J. Bernardos, A. De la Oliva, and M. Calderon, On the implementation, deployment and evaluation of a networking protocol for VANETs: The Varon case, Ad-Hoc Networks, 19, 9-27,2014,https://doi.org/10.1016/j.adhoc.2014.02.001
  • M. C. Paula, J. J. Rodrigues, J. A. Dias, J. N. Isento, and A. Vinel, Performance evaluation of a real vehicular delay tolerant network testbed, International Journal of Distributed Sensor Networks, 11 (3), p. 219641, 2015, https://doi.org/10.1155/2015/219641
  • C. Ameixieira et al., Harbornet: a real-world testbed for vehicular networks, IEEE Communications Magazine, 52 (9), pp. 108-114, https://doi.org/10.1109/MCOM. 2014.6894460
  • K. N., Nakorn, and K. Rojviboonchai, DECA-bewa: Density-aware reliable broadcasting protocol in VANETs. IEICE transactions on communications, 96 (5), 1112-1121, 2013.
  • E. Belyaev, S. Moreschini, and A. Vinel, Uncoordinated multi-user video streaming in vanets using skype, IEEE 22nd International Workshop on Computer aided modeling and design of Communication Links and Networks (CAMAD), pp. 1–3, 2017.
  • A. Paier et. al., Average downstream performance of measured IEEE 802.11p infrastructure-to-vehicle links, International Conference on Communications Workshops, pp. 1-5, 2010.
  • Y. Zhao, H. Zhang, W. Sun, Z. Bai, and C. Pan, Performance evaluation of ieee 802.11p vehicle to infrastructure communication using off the shelf ieee 802.11 a hardware, IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), pp. 3004–3009, 2014.
  • A. Ghosh, V. V. Paranthaman, G. Mapp, O. Gemikonakli and J. Loo, Enabling seamless V2I communications: toward developing cooperative automotive applications in VANET systems, IEEE Communications Magazine, 53 (12), 80-86, Dec. 2015, https://doi: 10.1109/MCOM.2015.7355570.
  • Building an Intelligent Transport Information Platform for Smart Cities, Report, http://www.vanet.mdx.ac.uk/, 2024. Accessed: 2024-09-29
  • Building a Connected Vehicle Testbed to study the development and deployment of C-ITS in the UK, http://www.its-ukreview.org/building-a-connected-veh icle-testbed-to-study-the-development-and deploymen t-of-c-its-in-the-uk/,2016, Accessed: 2023-09-30.
  • Y. Kırsal, “Exploring Analytical Model to Performance Optimization for Mobile Application Using End-to-End Network Slicing in Cloud-Based Vehicular Networks”, SAUJS, 23 (1), pp. 22–34, 2019.
  • J. Gozalvez, M. Sepulcre, and R. Bauza, IEEE 802.11p vehicle to infrastructure communications in urban environments, IEEE Communications Magazine, 50 (5), 176-183, 2012, https://doi.org/10.1109/MCOM.20 12.6194400
  • (2024, Feb) Arada systems. [Online]. Available: http://www.aradasystems.com
  • T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, A survey of various propagation models for mobile communication, IEEE Antennas and Propagation Magazine, 45 (3), 51–82, 2003, https://doi.org/10.1109/MAP.2003.1232163
  • T. S. Rappaport et al., Wireless communications: principles and practice. Prentice hall PTR New Jersey, 1996, vol. 2
  • Allen C. Newell, Near Field Antenna Measurement Theory, Planar, Cylindrical and Spherical, Nearfield Systems Inc.

An analysis of deployment and backhaul issues a cooperative-intelligent transport systems testbed using vehicular ad-hoc network

Yıl 2025, Cilt: 14 Sayı: 4

Öz

This study aims to analyze deployment and backhaul issues in an Intelligent Transport Systems (ITS) testbed using Vehicular Ad-hoc Networks (VANETs) based on self-organising vehicles. The test platform is conducted at Middlesex University’s Hendon Campus and the A41 highway. It is operated at 5.9 GHz to evaluate signal propagation under real-world conditions. The research compares Free Space Path Loss, Two-Ray Ground Reflection, Log-Distance Path Loss, and Free Space Path Loss Fast-Fading models to identify the most suitable propagation model for urban and highway environments. Findings indicate that the Free Space Path Loss and Free Space Path Loss Fast-Fading models perform consistently in highway scenarios, while the Log-Distance Path Loss model better aligns with urban settings. Additionally, wired backhaul systems demonstrate superior performance with low latency, whereas LTE-based backhaul exhibits high delays, posing limitations for ITS applications. These results provide valuable insights for effectively deploying and optimising VANET-based ITS infrastructure, highlighting the importance of tailored propagation models and reliable backhaul strategies to enhance network performance.

Kaynakça

  • M. N. Tahir, K. Mäenpää, T. Sukuvaara and P. Leviäkangas, Deployment and Analysis of Cooperative Intelligent Transport System Pilot Service Alerts in Real Environment, IEEE Open Journal of Intelligent Transportation Systems, 2, 40-148, 2021, https://doi: 10.1109/OJITS.2021.3085569.
  • K. Ali et al., Review and Implementation of Resilient Public Safety Networks: 5G, IoT, and Emerging Technologies, IEEE Network, 35, 2, 18-25, https://doi: 10.1109/MNET.011.2000418.
  • D. Dias, M. Luís, P. Rito and S. Sargento, A Software Defined Vehicular Network Using Cooperative Intelligent Transport System Messages, IEEE Access, 12, 93152-93170, 2024, https://doi: 10.1109/ACCESS. 2024.3421338.
  • R. Ranjbar Motlagh, O. Ameri Sianaki, H. Shee, A Survey on Cooperative Intelligent Transportation Systems (C-ITS): Opportunities and Challenges, Complex, Intelligent and Software Intensive Systems. CISIS 2024. Lecture Notes on Data Engineering and Communications Technologies, 87, 2024 Springer, Cham. https://doi.org/10.1007/978-3-031-70011-8_23
  • S. Hira, and S. Hira, Smart energy management using vehicle-to-vehicle and vehicle-to-everything. In Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems, 253-290, 2024, https://doi.org/10.1016/B978-0-443-23814-7.00010-9
  • V. Paranthaman, Exploiting user contention to optimize proactive resource allocation in future networks. Ph.D. Thesis, Middlesex University, London, UK, 2019.
  • D. Serghiou, M. Khalily, T. W. C. Brown and R. Tafazolli, Terahertz Channel Propagation Phenomena, Measurement Techniques and Modeling for 6G Wireless Communication Applications: A Survey, Open Challenges and Future Research Directions,IEEE Communications Surveys & Tutorials, 24, 4, 957-1996, 2022, https://doi:10.1109/COMST.2022.3205505.
  • M. A. Naeem, S. Chaudhary, and Y, Meng, Road to Efficiency: V2V Enabled Intelligent Transportation System. Electronics, 13, 13, 2673, 2024. https://doi.org/10.3390/electronics13132673
  • K. Ali et al., Review and Implementation of Resilient Public Safety Networks: 5G, IoT, and Emerging Technologies, IEEE Network, 35, 2, 8-25, 2021, https://doi: 10.1109/MNET.011.2000418.
  • A. Al-Mohtaseb, et al. A Comprehensive Review of VANET Attacks: Predictive Models, Vulnerability Management, and Defense Selection. 25th International Arab Conference on Information Technology (ACIT), pp. 1-9. Zarqa, Jordan, 2024.
  • H. F. Atlam, A. Alenezi, A. Alharthi, R. J. Walters and G. B. Wills, Integration of Cloud Computing with Internet of Things: Challenges and Open Issues, International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 670-675, Exeter, UK, 2017,
  • V. V. Paranthaman, Y. Kirsal, G. Mapp, P. Shah and H. X. Nguyen, Exploiting Resource Contention in Highly Mobile Environments and Its Application to Vehicular Ad-Hoc Networks, IEEE Transactions on Vehicular Technology, 68 (4), 3805-3819, 2019, https://doi: 10.1109/TVT.2019.2902245.
  • N. H. Hussein, C. T. Yaw, S. P. Koh, S. K. Tiong and K. H. Chong, A Comprehensive Survey on Vehicular Networking: Communications, Applications, Challenges, and Upcoming Research Directions, IEEE Access, 10, 86127-86180, 2022, https://doi: 10.1109/ACCESS.2022.3198656.
  • M. Ayyub, A. Oracevic, R. Hussain, A. A. Khan, and Z. Zhang. A comprehensive survey on clustering in vehicular networks: Current solutions and future challenges. Ad Hoc Networks, 124, 102729, 2024, https://doi.org/10.1016/j.adhoc.2021.102729
  • D. Chen, Y. Liang, L. Li and Y. Liu, Physically Secure and Privacy-Preserving Authentication Scheme for VANET, 2024 International Conference on Artificial Intelligence of Things and Systems (AIoTSys), Hangzhou, China, 1-6, 2024.
  • T. Pal, R., Saha, and S., Biswas, Design and Implementation of a Routing Protocol for VANET to Improve the QoS of the Network. Journal of Network and Systems Management, 32 (3), 45, 2024. https://doi.org/10.1007/s10922-024-09821-z
  • N. Pramuanyat, K. N. Nakorn, and K. Rojviboonchai, Preliminary study of reliable broadcast protocol on 802.11p public transport testbed, 12th International Conference in Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–6, 2015.
  • N. Baloch and L. Reggiani, Study on communication reliability in VANETs, International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT), Karachi, Pakistan, pp. 1-5, 2017.
  • M. I. Sanchez, M. Gramaglia, C. J. Bernardos, A. De la Oliva, and M. Calderon, On the implementation, deployment and evaluation of a networking protocol for VANETs: The Varon case, Ad-Hoc Networks, 19, 9-27,2014,https://doi.org/10.1016/j.adhoc.2014.02.001
  • M. C. Paula, J. J. Rodrigues, J. A. Dias, J. N. Isento, and A. Vinel, Performance evaluation of a real vehicular delay tolerant network testbed, International Journal of Distributed Sensor Networks, 11 (3), p. 219641, 2015, https://doi.org/10.1155/2015/219641
  • C. Ameixieira et al., Harbornet: a real-world testbed for vehicular networks, IEEE Communications Magazine, 52 (9), pp. 108-114, https://doi.org/10.1109/MCOM. 2014.6894460
  • K. N., Nakorn, and K. Rojviboonchai, DECA-bewa: Density-aware reliable broadcasting protocol in VANETs. IEICE transactions on communications, 96 (5), 1112-1121, 2013.
  • E. Belyaev, S. Moreschini, and A. Vinel, Uncoordinated multi-user video streaming in vanets using skype, IEEE 22nd International Workshop on Computer aided modeling and design of Communication Links and Networks (CAMAD), pp. 1–3, 2017.
  • A. Paier et. al., Average downstream performance of measured IEEE 802.11p infrastructure-to-vehicle links, International Conference on Communications Workshops, pp. 1-5, 2010.
  • Y. Zhao, H. Zhang, W. Sun, Z. Bai, and C. Pan, Performance evaluation of ieee 802.11p vehicle to infrastructure communication using off the shelf ieee 802.11 a hardware, IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), pp. 3004–3009, 2014.
  • A. Ghosh, V. V. Paranthaman, G. Mapp, O. Gemikonakli and J. Loo, Enabling seamless V2I communications: toward developing cooperative automotive applications in VANET systems, IEEE Communications Magazine, 53 (12), 80-86, Dec. 2015, https://doi: 10.1109/MCOM.2015.7355570.
  • Building an Intelligent Transport Information Platform for Smart Cities, Report, http://www.vanet.mdx.ac.uk/, 2024. Accessed: 2024-09-29
  • Building a Connected Vehicle Testbed to study the development and deployment of C-ITS in the UK, http://www.its-ukreview.org/building-a-connected-veh icle-testbed-to-study-the-development-and deploymen t-of-c-its-in-the-uk/,2016, Accessed: 2023-09-30.
  • Y. Kırsal, “Exploring Analytical Model to Performance Optimization for Mobile Application Using End-to-End Network Slicing in Cloud-Based Vehicular Networks”, SAUJS, 23 (1), pp. 22–34, 2019.
  • J. Gozalvez, M. Sepulcre, and R. Bauza, IEEE 802.11p vehicle to infrastructure communications in urban environments, IEEE Communications Magazine, 50 (5), 176-183, 2012, https://doi.org/10.1109/MCOM.20 12.6194400
  • (2024, Feb) Arada systems. [Online]. Available: http://www.aradasystems.com
  • T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, A survey of various propagation models for mobile communication, IEEE Antennas and Propagation Magazine, 45 (3), 51–82, 2003, https://doi.org/10.1109/MAP.2003.1232163
  • T. S. Rappaport et al., Wireless communications: principles and practice. Prentice hall PTR New Jersey, 1996, vol. 2
  • Allen C. Newell, Near Field Antenna Measurement Theory, Planar, Cylindrical and Spherical, Nearfield Systems Inc.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ağ Oluşturma ve İletişim
Bölüm Makaleler
Yazarlar

Yonal Kırsal 0000-0001-7031-1339

Vishnu V. Paranthaman 0000-0001-9252-7333

Erken Görünüm Tarihi 30 Eylül 2025
Yayımlanma Tarihi 8 Ekim 2025
Gönderilme Tarihi 19 Mart 2025
Kabul Tarihi 29 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 4

Kaynak Göster

APA Kırsal, Y., & V. Paranthaman, V. (2025). Akıllı ulaşım sistemleri test ortamı üzerinde kendi kendilerini organize eden araç ağı kullanarak dağıtım ve geri taşıma sorunlarının analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4).
AMA Kırsal Y, V. Paranthaman V. Akıllı ulaşım sistemleri test ortamı üzerinde kendi kendilerini organize eden araç ağı kullanarak dağıtım ve geri taşıma sorunlarının analizi. NÖHÜ Müh. Bilim. Derg. Eylül 2025;14(4).
Chicago Kırsal, Yonal, ve Vishnu V. Paranthaman. “Akıllı ulaşım sistemleri test ortamı üzerinde kendi kendilerini organize eden araç ağı kullanarak dağıtım ve geri taşıma sorunlarının analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 4 (Eylül 2025).
EndNote Kırsal Y, V. Paranthaman V (01 Eylül 2025) Akıllı ulaşım sistemleri test ortamı üzerinde kendi kendilerini organize eden araç ağı kullanarak dağıtım ve geri taşıma sorunlarının analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4
IEEE Y. Kırsal ve V. V. Paranthaman, “Akıllı ulaşım sistemleri test ortamı üzerinde kendi kendilerini organize eden araç ağı kullanarak dağıtım ve geri taşıma sorunlarının analizi”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 4, 2025.
ISNAD Kırsal, Yonal - V. Paranthaman, Vishnu. “Akıllı ulaşım sistemleri test ortamı üzerinde kendi kendilerini organize eden araç ağı kullanarak dağıtım ve geri taşıma sorunlarının analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (Eylül2025).
JAMA Kırsal Y, V. Paranthaman V. Akıllı ulaşım sistemleri test ortamı üzerinde kendi kendilerini organize eden araç ağı kullanarak dağıtım ve geri taşıma sorunlarının analizi. NÖHÜ Müh. Bilim. Derg. 2025;14.
MLA Kırsal, Yonal ve Vishnu V. Paranthaman. “Akıllı ulaşım sistemleri test ortamı üzerinde kendi kendilerini organize eden araç ağı kullanarak dağıtım ve geri taşıma sorunlarının analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 4, 2025.
Vancouver Kırsal Y, V. Paranthaman V. Akıllı ulaşım sistemleri test ortamı üzerinde kendi kendilerini organize eden araç ağı kullanarak dağıtım ve geri taşıma sorunlarının analizi. NÖHÜ Müh. Bilim. Derg. 2025;14(4).

download