Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrodiyalitik asit-baz geri kazanımı için yapısal olarak çeşitli MXenlerle modifiye edilmiş polisülfon bazlı bipolar membranların performansı

Yıl 2026, Cilt: 15 Sayı: 1, 1 - 1

Öz

Bu çalışma, sentetik tuzlu çözeltilerden asit ve baz geri kazanımı için bipolar membran elektrodiyalizinde (BMED) kullanılan polisülfon bazlı bipolar membranların (BPM'ler) performansı ve yapısı üzerinde çeşitli MXene tiplerinin etkisini araştırmaktadır. BPM'ler, polisülfonun sülfonasyonu ve klorometilasyonu ile anyonik ve katyonik tabakalar oluşturarak üretilmiş ve MXene'ler 0,1 g ve 0,3 g yüklemelerde arayüz değiştirici olarak eklenmiştir. Beş MXene çeşidi -Ti₃C₂Tₓ (HF ve LiF+HCl aşındırma), Ti₃CNTₓ (her iki aşındırma yöntemi) ve Ti₄N₃Tₓ (erimiş tuz sentezi)- incelenmiştir. XRD karakteristik MXene yapılarını doğrularken, FTIR modifiye edilmiş polimerlerdeki fonksiyonel grupları doğrulamıştır. Performans testleri, HF ile aşındırılmış Ti₃C₂Tₓ MXene içeren BPM'lerin üstün asit ve baz üretimi sergilediğini ortaya koymuştur. Baz tankındaki Na⁺ konsantrasyonları, 0,1 g MXene'de 275 ppm'ye ve 0,3 g MXene'de 325 ppm'ye ulaşırken, MXene'siz 75 ppm'ye ulaşmıştır. Ti₃C₂Tₓ, daha yüksek yüzey işlevselliği ve iyon taşınımını artıran karbon bazlı kafes yapısı sayesinde azot içeren MXene'lerden daha iyi performans göstermiştir. Bulgular, sürdürülebilir su arıtımında BPM verimliliğini ve ekonomik uygulanabilirliğini etkileyen temel faktörler olarak MXene tipini ve yüklemeyi vurgulamaktadır.

Proje Numarası

122Y006

Kaynakça

  • S. Koter and A. Warszawski Electromembrane processes in environment protection. Polish Journal of Environmental Studies, 9 (1), 45-56, 2000.
  • J. P. Chen, L. K. Wang, L. Yang and Y. M. Zheng Desalination of seawater by thermal distillation and electrodialysis technologies. In Membrane and desalination technologies, 525-558, Totowa, NJ: Humana Press, 2010. https://doi.org/10.1007/978-1-59 745-278-6_12.
  • C. Huang and T. Xu Electrodialysis with bipolar membranes for sustainable development. Environmental Science & Technology, 40 (17), 5233-5243, 2006. https://doi.org/10.1021/es060039p
  • X. Tongwen Electrodialysis processes with bipolar membranes (EDBM) in environmental protection—a review. Resources, Conservation and Recycling, 37 (1), 1-22, 2002. https://doi.org/10.1016/s0921-3449(02)00 032-0.
  • Y. W. Berkessa, Q. Lang, B. Yan, S. Kuang, D. Mao, L. Shu and Y. Zhang Anion exchange membrane organic fouling and mitigation in salt valorization process from high salinity textile wastewater by bipolar membrane electrodialysis. Desalination, 465, 94-103, 2019. https://doi.org/10.1016/j.desal.2019.04.027.
  • H. R. Yang, B. Li, C. Q. Zhang, J. C. Yang, Y. M. Zheng, M. Younas, Y. Jiang and Z. H. Yuan Bipolar membrane electrodialysis for sustainable utilization of inorganic salts from the reverse osmosis concentration of real landfill leachate. Separation and Purification Technology, 308, 122898, 2023. https://doi.org/10.101 6/j.seppur.2022.122898.
  • Y. Sun, Y. Wang, Z. Peng and Y. Liu Treatment of high salinity sulfanilic acid wastewater by bipolar membrane electrodialysis. Separation and Purification Technology, 281, 119842, 2022. https://doi.org/10.10 16/j.seppur.2021.119842.
  • Y. Qiu, S. Wu, L. Xia, L. F. Ren, J. Shao, J. Shen, Z. Yang, C. Y. Tang, C. Wu, B. V. Bruggen and Y. Zhao Ionic resource recovery for carbon neutral papermaking wastewater reclamation by a chemical self-sufficiency zero liquid discharge system. Water Research, 229, 119451, 2023. https://doi.org/10.1016/j.watres.2022.1 19451 .
  • C. M. Liang, C. C. Wang, Y. T. Hung, H. W. Cheng and C. F. Yang Optimization of operating parameters for 2,5-furandicarboxylic acid recovery using electrodialysis with bipolar membrane and traditional electrodialysis systems. Heliyon, 10 (14), 2024. https:// doi.org/10.1016/j.heliyon.2024.e34706.
  • A. Çelik, Y. Aksoy, Ö. Hanay, U. Halisdemir and H. Hasar The evaluation of potential usage of Ti4N3Tx MXene as interface layer catalyst of bipolar membrane. Journal of Inorganic and Organometallic Polymers and Materials, 1-13, 2025. https://doi.org/10.1007/s10904-025-03669-9
  • H. Strathmann Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264, 268-288, 2010. https://doi.org/10.1016/j.desal.201 0.04.069.
  • G. M. Geise, H. Lee, D. J. Miller, B. D. Freeman and J. E. McGrath Water purification by membranes: the role of polymer science. Journal of Polymer Science Part B: Polymer Physics, 48, 1685-1718, 2010. https://doi.org/ 10.1002/polb.22037.
  • A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi and A. Sınıtskii Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Science Advances, 4, eaat0491, 2018. https:// doi.org/10.1126/sciadv.aat0491.
  • P. Lv, Y. L. Li and J. F. Wang Monolayer Ti2C MXene: manipulating magnetic properties and electronic structures by an electric field. Physical Chemistry Chemical Physics, 22, 11266-11272, 2020. https://doi. org/10.1039/d0cp00507j.
  • O. Udoh, A. Briles, B. Gautam and D. E. Autrey Effect of etching method on the morphology and stability of Ti2CTx MXene. Microscopy and Microanalysis, 28, 2800-2801, 2022. https://doi.org/10.1017/S143192762 201056X.
  • D. D. Kruger, H. García and A. Primo Molten salt derived MXenes: synthesis and applications. Advanced Science, 11, 2307106, 2024. https://doi.org/10.1002/ad vs.202307106.
  • M. J. G. Martínez-Morlanes, A. M. Martos, A. Varez and B. Levenfeld Synthesis and characterization of novel hybrid polysulfone/silica membranes doped with phosphomolybdic acid for fuel cell applications. Journal of Membrane Science, 492, 371-379, 2015. https://doi.org/10.1016/j.memsci.2015.05.031.
  • Ö. Hanay, A. Çelik, Y. Aksoy, U. Halisdemir and H. Hasar The effect of etching solution on adsorption properties of Ti3CNTx for chlortetracycline removal. New Journal of Chemistry, 49, 5822-5832, 2025. https://doi.org/10.1039/d4nj05127k.
  • A. Çelik, Y. Aksoy, Ö. Hanay M. Yegin, Y. Köse, K. Demirelli and H. Hasar Fabrication and characterization of Ti3C2Tx MXene-based bipolar membrane. Journal of Applied Electrochemistry, 55, 1281-1294, 2025. https://doi.org/10.1007/s10800-024-02231-8 .
  • A. H. C. Khavar, M. A. Rashidi, M. Alvandi and E. Aghayani Bimetallic CuBi nanoparticles modified Ti3C2 MXene as an efficient cocatalyst for enhancing photocatalytic degradation of acetaminophen. SSRN, Article ID 5155420. https://doi.org/10.2139/ssrn.5155 420.
  • H. Q. Pham and T. T. Huynh Applications of doped-MXene-based materials for electrochemical energy storage. Coordination Chemistry Reviews, 517, 216039, 2024. https://doi.org/10.1016/j.ccr.2024.2160 39.
  • Y. Wang, Y. Yuan, H. Geng, W. Yang and X. Chen Boosting ion diffusion kinetics of MXene inks with water-in-salt electrolyte for screen-printed micro-supercapacitors. Advanced Functional Materials, 34, 2400887, 2024. https://doi.org/10.1002/adfm.2024008 87.
  • M. Oroujzadeh and S. Mehdipour-Ataei Highly fluorinated poly arylene ethers containing sulfonated naphthol pendants with improved proton conductivity as a polymer electrolyte for proton exchange membrane fuel cells. Renewable Energy, 240, 122298, 2025. https://doi.org/10.1016/j.renene.2024.122298.
  • A. Celik and H. Hasar Effect of same chloromethylation and sulfonation process on the ion exchange membranes in terms of polymer types and ionic properties. Ionics, 1-12, 2021. https://doi.org/10. 1007/s11581-020-03858-1.
  • H. Mousavi and R. Moradian Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sciences, 13 (8), 1459-1464, 2011. https://doi.org/10.1016/j.solidstate sciences.2011.03.008
  • M. Mamlouk and K. Scott Effect of anion functional groups on the conductivity and performance of anion exchange polymer membrane fuel cells. Journal of Power Sources, 211, 140-146, 2012. https://doi.org/10 .1016/j.jpowsour.2012.03.100.

Performance of polysulfone-based bipolar membranes modified with structurally diverse MXenes for electrodialytic acid–base recovery

Yıl 2026, Cilt: 15 Sayı: 1, 1 - 1

Öz

This study explores the influence of various MXene types on the performance and structure of polysulfone-based bipolar membranes (BPMs) used in bipolar membrane electrodialysis (BMED) for acid and base recovery from synthetic saline solutions. BPMs were fabricated by sulfonation and chloromethylation of polysulfone, forming anionic and cationic layers, with MXenes incorporated as interfacial modifiers at 0.1 g and 0.3 g loadings. Five MXene variants—Ti₃C₂Tₓ (HF and LiF+HCl etching), Ti₃CNTₓ (both etching methods), and Ti₄N₃Tₓ (molten salt synthesis)—were studied. XRD confirmed characteristic MXene structures, while FTIR verified functional groups on modified polymers. Performance tests revealed HF-etched Ti₃C₂Tₓ MXene-containing BPMs exhibited superior acid and base production, with Na⁺ concentrations in the base tank reaching 275 ppm at 0.1 g MXene and 325 ppm at 0.3 g, compared to 75 ppm without MXene. Ti₃C₂Tₓ outperformed nitrogen-containing MXenes due to higher surface functionality and carbon-based lattice structure enhancing ion transport. Findings highlight MXene type and loading as key factors affecting BPM efficiency and economic feasibility in sustainable water treatment.

Etik Beyan

The author asserts that, to the best of his knowledge, he possesses no conflict of interest or shared interest with any institution, organization, or individual that could affect the article's review process.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

122Y006

Teşekkür

The authors would like to thank the referees and editorial boards of the Niğde Ömer Halisdemir University Journal of Engineering Sciences. This study was conducted within the scope of project number 122Y006 completed by TÜBİTAK. We thank TÜBİTAK.

Kaynakça

  • S. Koter and A. Warszawski Electromembrane processes in environment protection. Polish Journal of Environmental Studies, 9 (1), 45-56, 2000.
  • J. P. Chen, L. K. Wang, L. Yang and Y. M. Zheng Desalination of seawater by thermal distillation and electrodialysis technologies. In Membrane and desalination technologies, 525-558, Totowa, NJ: Humana Press, 2010. https://doi.org/10.1007/978-1-59 745-278-6_12.
  • C. Huang and T. Xu Electrodialysis with bipolar membranes for sustainable development. Environmental Science & Technology, 40 (17), 5233-5243, 2006. https://doi.org/10.1021/es060039p
  • X. Tongwen Electrodialysis processes with bipolar membranes (EDBM) in environmental protection—a review. Resources, Conservation and Recycling, 37 (1), 1-22, 2002. https://doi.org/10.1016/s0921-3449(02)00 032-0.
  • Y. W. Berkessa, Q. Lang, B. Yan, S. Kuang, D. Mao, L. Shu and Y. Zhang Anion exchange membrane organic fouling and mitigation in salt valorization process from high salinity textile wastewater by bipolar membrane electrodialysis. Desalination, 465, 94-103, 2019. https://doi.org/10.1016/j.desal.2019.04.027.
  • H. R. Yang, B. Li, C. Q. Zhang, J. C. Yang, Y. M. Zheng, M. Younas, Y. Jiang and Z. H. Yuan Bipolar membrane electrodialysis for sustainable utilization of inorganic salts from the reverse osmosis concentration of real landfill leachate. Separation and Purification Technology, 308, 122898, 2023. https://doi.org/10.101 6/j.seppur.2022.122898.
  • Y. Sun, Y. Wang, Z. Peng and Y. Liu Treatment of high salinity sulfanilic acid wastewater by bipolar membrane electrodialysis. Separation and Purification Technology, 281, 119842, 2022. https://doi.org/10.10 16/j.seppur.2021.119842.
  • Y. Qiu, S. Wu, L. Xia, L. F. Ren, J. Shao, J. Shen, Z. Yang, C. Y. Tang, C. Wu, B. V. Bruggen and Y. Zhao Ionic resource recovery for carbon neutral papermaking wastewater reclamation by a chemical self-sufficiency zero liquid discharge system. Water Research, 229, 119451, 2023. https://doi.org/10.1016/j.watres.2022.1 19451 .
  • C. M. Liang, C. C. Wang, Y. T. Hung, H. W. Cheng and C. F. Yang Optimization of operating parameters for 2,5-furandicarboxylic acid recovery using electrodialysis with bipolar membrane and traditional electrodialysis systems. Heliyon, 10 (14), 2024. https:// doi.org/10.1016/j.heliyon.2024.e34706.
  • A. Çelik, Y. Aksoy, Ö. Hanay, U. Halisdemir and H. Hasar The evaluation of potential usage of Ti4N3Tx MXene as interface layer catalyst of bipolar membrane. Journal of Inorganic and Organometallic Polymers and Materials, 1-13, 2025. https://doi.org/10.1007/s10904-025-03669-9
  • H. Strathmann Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264, 268-288, 2010. https://doi.org/10.1016/j.desal.201 0.04.069.
  • G. M. Geise, H. Lee, D. J. Miller, B. D. Freeman and J. E. McGrath Water purification by membranes: the role of polymer science. Journal of Polymer Science Part B: Polymer Physics, 48, 1685-1718, 2010. https://doi.org/ 10.1002/polb.22037.
  • A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi and A. Sınıtskii Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Science Advances, 4, eaat0491, 2018. https:// doi.org/10.1126/sciadv.aat0491.
  • P. Lv, Y. L. Li and J. F. Wang Monolayer Ti2C MXene: manipulating magnetic properties and electronic structures by an electric field. Physical Chemistry Chemical Physics, 22, 11266-11272, 2020. https://doi. org/10.1039/d0cp00507j.
  • O. Udoh, A. Briles, B. Gautam and D. E. Autrey Effect of etching method on the morphology and stability of Ti2CTx MXene. Microscopy and Microanalysis, 28, 2800-2801, 2022. https://doi.org/10.1017/S143192762 201056X.
  • D. D. Kruger, H. García and A. Primo Molten salt derived MXenes: synthesis and applications. Advanced Science, 11, 2307106, 2024. https://doi.org/10.1002/ad vs.202307106.
  • M. J. G. Martínez-Morlanes, A. M. Martos, A. Varez and B. Levenfeld Synthesis and characterization of novel hybrid polysulfone/silica membranes doped with phosphomolybdic acid for fuel cell applications. Journal of Membrane Science, 492, 371-379, 2015. https://doi.org/10.1016/j.memsci.2015.05.031.
  • Ö. Hanay, A. Çelik, Y. Aksoy, U. Halisdemir and H. Hasar The effect of etching solution on adsorption properties of Ti3CNTx for chlortetracycline removal. New Journal of Chemistry, 49, 5822-5832, 2025. https://doi.org/10.1039/d4nj05127k.
  • A. Çelik, Y. Aksoy, Ö. Hanay M. Yegin, Y. Köse, K. Demirelli and H. Hasar Fabrication and characterization of Ti3C2Tx MXene-based bipolar membrane. Journal of Applied Electrochemistry, 55, 1281-1294, 2025. https://doi.org/10.1007/s10800-024-02231-8 .
  • A. H. C. Khavar, M. A. Rashidi, M. Alvandi and E. Aghayani Bimetallic CuBi nanoparticles modified Ti3C2 MXene as an efficient cocatalyst for enhancing photocatalytic degradation of acetaminophen. SSRN, Article ID 5155420. https://doi.org/10.2139/ssrn.5155 420.
  • H. Q. Pham and T. T. Huynh Applications of doped-MXene-based materials for electrochemical energy storage. Coordination Chemistry Reviews, 517, 216039, 2024. https://doi.org/10.1016/j.ccr.2024.2160 39.
  • Y. Wang, Y. Yuan, H. Geng, W. Yang and X. Chen Boosting ion diffusion kinetics of MXene inks with water-in-salt electrolyte for screen-printed micro-supercapacitors. Advanced Functional Materials, 34, 2400887, 2024. https://doi.org/10.1002/adfm.2024008 87.
  • M. Oroujzadeh and S. Mehdipour-Ataei Highly fluorinated poly arylene ethers containing sulfonated naphthol pendants with improved proton conductivity as a polymer electrolyte for proton exchange membrane fuel cells. Renewable Energy, 240, 122298, 2025. https://doi.org/10.1016/j.renene.2024.122298.
  • A. Celik and H. Hasar Effect of same chloromethylation and sulfonation process on the ion exchange membranes in terms of polymer types and ionic properties. Ionics, 1-12, 2021. https://doi.org/10. 1007/s11581-020-03858-1.
  • H. Mousavi and R. Moradian Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sciences, 13 (8), 1459-1464, 2011. https://doi.org/10.1016/j.solidstate sciences.2011.03.008
  • M. Mamlouk and K. Scott Effect of anion functional groups on the conductivity and performance of anion exchange polymer membrane fuel cells. Journal of Power Sources, 211, 140-146, 2012. https://doi.org/10 .1016/j.jpowsour.2012.03.100.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Aytekin Çelik 0000-0003-1985-7701

Yunus Aksoy 0000-0002-6047-2101

Mustafa Yegin 0009-0000-0378-6051

Umay Halisdemir 0000-0002-0673-6233

Proje Numarası 122Y006
Erken Görünüm Tarihi 2 Aralık 2025
Yayımlanma Tarihi 4 Aralık 2025
Gönderilme Tarihi 31 Temmuz 2025
Kabul Tarihi 21 Ekim 2025
Yayımlandığı Sayı Yıl 2026 Cilt: 15 Sayı: 1

Kaynak Göster

APA Çelik, A., Aksoy, Y., Yegin, M., Halisdemir, U. (2025). Performance of polysulfone-based bipolar membranes modified with structurally diverse MXenes for electrodialytic acid–base recovery. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 15(1), 1-1. https://doi.org/10.28948/ngumuh.1754921
AMA Çelik A, Aksoy Y, Yegin M, Halisdemir U. Performance of polysulfone-based bipolar membranes modified with structurally diverse MXenes for electrodialytic acid–base recovery. NÖHÜ Müh. Bilim. Derg. Aralık 2025;15(1):1-1. doi:10.28948/ngumuh.1754921
Chicago Çelik, Aytekin, Yunus Aksoy, Mustafa Yegin, ve Umay Halisdemir. “Performance of polysulfone-based bipolar membranes modified with structurally diverse MXenes for electrodialytic acid–base recovery”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15, sy. 1 (Aralık 2025): 1-1. https://doi.org/10.28948/ngumuh.1754921.
EndNote Çelik A, Aksoy Y, Yegin M, Halisdemir U (01 Aralık 2025) Performance of polysulfone-based bipolar membranes modified with structurally diverse MXenes for electrodialytic acid–base recovery. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15 1 1–1.
IEEE A. Çelik, Y. Aksoy, M. Yegin, ve U. Halisdemir, “Performance of polysulfone-based bipolar membranes modified with structurally diverse MXenes for electrodialytic acid–base recovery”, NÖHÜ Müh. Bilim. Derg., c. 15, sy. 1, ss. 1–1, 2025, doi: 10.28948/ngumuh.1754921.
ISNAD Çelik, Aytekin vd. “Performance of polysulfone-based bipolar membranes modified with structurally diverse MXenes for electrodialytic acid–base recovery”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 15/1 (Aralık2025), 1-1. https://doi.org/10.28948/ngumuh.1754921.
JAMA Çelik A, Aksoy Y, Yegin M, Halisdemir U. Performance of polysulfone-based bipolar membranes modified with structurally diverse MXenes for electrodialytic acid–base recovery. NÖHÜ Müh. Bilim. Derg. 2025;15:1–1.
MLA Çelik, Aytekin vd. “Performance of polysulfone-based bipolar membranes modified with structurally diverse MXenes for electrodialytic acid–base recovery”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 15, sy. 1, 2025, ss. 1-1, doi:10.28948/ngumuh.1754921.
Vancouver Çelik A, Aksoy Y, Yegin M, Halisdemir U. Performance of polysulfone-based bipolar membranes modified with structurally diverse MXenes for electrodialytic acid–base recovery. NÖHÜ Müh. Bilim. Derg. 2025;15(1):1-.

download