Derleme
BibTex RIS Kaynak Göster

COVID-19 ile Mücadelede Tıbbi Tedaviye ek olarak İmmün Sistemin Güçlendirilmesi: Mikrobesinlerin Önemi

Yıl 2020, , 541 - 550, 20.12.2020
https://doi.org/10.37696/nkmj.739985

Öz

Koronavirüs 2019’lu hastalarda immün cevapların düzenlenmesi bozulmaktadır. Azalmış T hücreleri, doğal öldürücü hücreler, monositler/makrofajlar ve artmış proinflamatuvar sitokinler gözlenmektedir. Vücudun bağışıklık durumu beslenmeden büyük ölçüde etkilenir. Mikrobesinler, makrobesinlerin optimum performansı için gereklidir. Vitamin ve eser element eksiklikleri sırasında genel olarak immün cevaplar değişir. Bu da enfeksiyonlara eğilimin artmasına yol açar. Mikrobesin desteği genellikle bir çok bozulmuş immün cevabın geriye çevrilmesini sağlar. Bu çalışmada, immün işleyişin düzenlenmesi ile bazı vitamin, eser element ve fitokimyasallar arasındaki yakın beraberliklere dikkat çekilmiştir. Uygun bir diyetin yanısıra tıbbı tedaviye ek olarak A, B6, B9, B12, C, D, E vitaminleri ile çinko, bakır, selenyum destekleri bu yeni sıradışı koronavirüs hastalığını da içine alan viral enfeksiyonların önlenmesi ve tedavisi için yararlı olabilir. Fitokimyasallar ile ilgili çalışmalar da sürdürülmektedir. Güçlü bir immün sistemi olan hastalarda iyileşme, ya semptomsuz ya da hafif bir klinik tablo beraberliğinde gerçekleşmektedir. Bu nedenle, uygulanmakta olan tıbbi tedaviye ek olarak ya da koruyucu önlem olarak, vitaminleri, mineralleri ve fitokimyasalları da içine alan doğal bütünleyici yaklaşımların uygulanması kabul edilebilir. Bu yaklaşım immün sistemin iyileştirilmesine yardımcı olacaktır. Bu tip bir bütünleyici tedavi, bu virüs ile kontamine olmuş hastalarda morbidite ve mortalite oranlarını önemli ölçüde azaltır. Mikrobesinler, immün sistem kapsamında, bu hastalığın önlenmesi ve/veya tedavisi için bazı çözümler bulunması konusunda önlem olarak düşünülebilir.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • 1. Donma MM, Donma O, Michalke B, Halbach S, Nischwitz V: Vitamins, Minerals, and Metabolic Pathways in Health and Diseases with a Special Chapter on Speciation. Istanbul: Istanbul University Publishing House, 2012. pp. 7-12.
  • 2. Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune system-Working in harmony to reduce the risk of infection. Nutrients. 2020;12(1), pii: E236.
  • 3. Maggini S, Pierre A, Calder PC. Immune function and micronutrient requirements change over the life course. Nutrients. 2018;10(10), pii: E1531.
  • 4. Castellani ML, Shaik-Dasthagirisaheb YB, Tripodi D, et al. Interrelationship between vitamins and cytokines in immunity. J Biol Regul Homeost Agents. 2010; 24:385-90.
  • 5. Chandra RK. Nutrition and immune system: an introduction. Am J Clin Nutr. 1997; 66: 460S-3S.
  • 6. Santos-Rosa M, Bienvenu J, Whicher J. Cytokines Ch.21. In TIETZ Textbook of Clinical Chemistry. 3rd Edn, (Eds. CA Burtis, ER Ashwood), W. B. Saunders Comp, USA, 1999. pp. 541-616.
  • 7. Berger A. Science commentary: Th1 and Th2 responses: what are they ? BMJ. 2000; 321: 424.
  • 8. Chandra RK. Effect of vitamin and trace-element supplementation on immune responses and infection in elderly subjects. Lancet. 1992;340:1124–7.
  • 9. Muscogiuri G, Barrea L, Savastano S et al. Nutritional recommendations for CoVID-19 quarantine. Eur J Clin Nutr. 2020.
  • 10. Maret W. Cellular zinc and redox states converge in the metallothionein/thionein pair. J Nutr. 2003;133:1460S–2S.
  • 11. Mocchegiani E, Malavolta M. Role of zinc and selenium in oxidative stress and immunosenescence: Implications for healthy aging and longevity. Handbook of immunosenescence: Basic understanding and clinical implications. 2019; 2539–73.
  • 12. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020; ciaa248.
  • 13. Wang F, Nie J, Wang H, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis. 2020; JIAA150.
  • 14. Chen G, Wu D, Guo W, et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest. 2020; 137244.
  • 15. Zhou X, Kong N, Wang J, et al. Cutting edge: All-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. J Immunol. 2010; 185: 2675-9.
  • 16. Russell RM. Vitamin A spectrum: from deficiency to toxicity. Am J Clin Nutr. 2000; 71: 878-84.
  • 17. Iwata M. The roles of retinoic acid in lymphocyte differentiation. Sem Immunol. 2009; 21:1.
  • 18. Hoag KA, Nashold FE, Goverman J et al. Retinoic acid enhances the T helper 2 cell development that is essential for robust antibody responses through its action on antigen-presenting cells. J Nutr. 2002; 132: 3736-9.
  • 19. Duriancik DM, Lackey DE, Hoag KA. Vitamin A as a regulator of antigen presenting cells. J Nutr. 2010; 140: 1395-9.
  • 20. Dawson HD, Collins G, Pyle R et al. The retinoic acid receptor-alpha mediates human T-cell activation and Th2 cytokine and chemokine production. BMC Immunol. 2008; 9:16.
  • 21. Cantorna MT, Nashold FE, Chun TY et al. Vitamin A down-regulation of IFN-gamma synthesis in cloned mouse Th1 lymphocytes depends on the CD28 costimulatory pathway. J Immunol. 1996; 156:2674-9.
  • 22. Gasmi A, Noor S, Tippairote T et al. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin Immunol. 2020;215:108409.
  • 23. Jee J, Hoet AE, Azevedo MP et al. Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine, Am J Vet Res. 2013; 74:1353-62.
  • 24. Kańtoch M, Litwińska B, Szkoda M et al. Importance of vitamin A deficiency in pathology and immunology of viral infections. Roczniki Panstwowego Zakladu Higieny. 2002;53:385-92.
  • 25. Calder P. Conference on ‘Transforming the nutrition landscape in Africa’. Plenary Session 1: Feeding the immune system. Proc Nutr Soc. 2013; 72: 299–309.
  • 26. Villamor E, Fawzi WW. Effects of vitamin a supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev. 2005; 18: 446–64.
  • 27. Micronutrient Information Center. Immunity in Depth. Linus Pauling Institute. 2016. Available online: http://lpi.oregonstate.edu/mic/health-disease/immunity (accessed on 10 May 2019).
  • 28. Maggini S, Beveridge S, Sorbara JP et al. Feeding the immune system: The role of micronutrients in restoring resistance to infections. CAB Rev. 2008; 3: 1–21.
  • 29. Wishart K. Increased micronutrient requirements during physiologically demanding situations: Review of the current evidence. Vitamin Miner. 2017; 6: 1–16.
  • 30. Trottier C, Colombo M, Mann Kket al. Retinoids inhibit measles virus through a type I IFNγ dependent bystander effect. FASEB J. 2009;23:3203-12.
  • 31. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020;92:479–90.
  • 32. Wu D, Lewis ED, Pae M et al. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Front Immunol. 2019; 9: 3160.
  • 33. Saeed F, Nadeem M, Ahmed R et al. Studying the impact of nutritional immunology underlying the modulation of immune responses by nutritional compounds—A review. Food Agric Immunol. 2016; 27: 205–29.
  • 34. Sakakeeny L, Roubeno R, Obin M et al. Plasma pyridoxal-5-phosphate is inversely associated with systemic markers of inflammation in a population of U.S. adults. J Nutr. 2012;142: 1280–5.
  • 35. Ueland PM, McCann A, Midttun O. et al. Inflammation, vitamin B6 and related pathways. Mol Asp Med. 2017; 53: 10–27.
  • 36. Haryanto B, Suksmasari T, Wintergerst E et al. Multivitamin supplementation supports immune function and ameliorates conditions triggered by reduced air quality. Vitam Miner. 2015;4:1-15.
  • 37. Calder P, Prescott S, Caplan M. Scientific Review: The Role of Nutrients in Immune Function of Infants and Young Children Emerging Evidence for Long-Chain Polyunsaturated Fatty Acids; Mead Johnson & Company: Glenview, IL, USA, 2007.
  • 38. Troen AM, Mitchell B, Sorensen B et al. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women. J Nutr. 2006; 136: 189–94.
  • 39. Yoshii K, Hosomi K, Sawane K et al. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr. 2019; 6: 48.
  • 40. Selhub J. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J Nutr Health Aging. 2002; 6: 39–42.
  • 41. Tamura J, Kubota K, Murakami H et al. Immunomodulation by vitamin B12: Augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin Exp Immunol. 1999; 116: 28–32.
  • 42. Maggini S, Wintergerst E, Beveridge S et al. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr. 2007; 98: S29–S35.
  • 43. Wintergerst ES, Maggini S Hornig DH. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab. 2006;50: 85-94.
  • 44. Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain, Behavior, and Immunity, in press.
  • 45. Hemila H. Vitamin C intake and susceptibility to pneumonia. Pediatr Infect Dis J. 1997;16:836-7.
  • 46. Bikle DD. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009; 94:26-34.
  • 47. Bruce D, Yu S, Ooi JH et al. Converging pathways lead to overproduction of IL-17 in the absence of vitamin D signaling. Int Immunol. 2011; 23: 519-28.
  • 48. Guillot X, Semerano L, Saidenberg-Kermanach N et al. Vitamin D and inflammation. Joint Bone Spine 2010; 77: 552-7.
  • 49. Hewison M. Vitamin D and the immune system. New perspectives on an old theme. Endocrinol Metab Clin North Am. 2010; 39: 365-79.
  • 50. Smolders J, Thewissen M, Peelen E et al. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One. 2009; 4: e6635.
  • 51. Thurnham DI. Plasma 25-hydroxy-cholecalciferol (vitamin D) is depressed by inflammation: Implications and parallels with other micronutrients. Sight & Life. 2011; 25:38-47.
  • 52. Vanoirbeek E, Krishnan A, Eelen G, et al. The anti-cancer and anti-inflammatory actions of 1,25(OH)2 D3. Best Pract Res Clin Endocrinol Metab. 2011; 25:593-604.
  • 53. Duchateau J, Servais G, Vreyens R et al. Modulation of immune response in aged humans through different administration modes of thymopentin. Surv Immunol Res. 1985;4(suppl 1):94-101.
  • 54. Gupta S, Read SA, Shackel NA et al. The role of micronutrients in the infection and subsequent response to Hepatitis C virus.Cells. 2019;8(6). pii: E603.
  • 55. Grant WB, Lahore H, McDonnell SL et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020;12: E988.
  • 56. Meghil MM, Hutchens L, Raed A et al. The influence of vitamin D supplementation on local and systemic inflammatory markers in periodontitis patients: A pilot study. Oral Dis. 2019; 25: 1403–13.
  • 57. Cannell J, Vieth R, Umhau J et al. Epidemic influenza and vitamin D. Epidemiol Infect. 2006; 134:1129–40.
  • 58. Wu D, Lewis ED, Pae M et al. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Front Immunol. 2019; 9:3160.
  • 59. Meydani SN, Han SN, Wu D. Vitamin E and immune response in the aged: Molecular mechanisms and clinical implications. Immunol Rev. 2005; 205: 269-84.
  • 60. Wu D, Meydani SN. Age-associated changes in immune and inflammatory responses: impact of vitamin E intervention. J Leukoc Biol. 2008; 84:900–14.
  • 61. Adolfsson O, Huber BT, Meydani SN. Vitamin E-enhanced IL-2 production in old mice: naive but not memory T cells show increased cell division cycling and IL-2-producing capacity. J Immunol. 2001;167:3809–17.
  • 62. Skrajnowska D, Bobrowska-Korczak B. Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients. 2019; 11: 2273.
  • 63. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998; 68 (suppl.): 447S-63S.
  • 64. Fraker PJ, King LE, Laakko T et al. The dynamic link between the integrity of the immune system and zinc status. J Nutr. 2000; 130: 1399S–406S.
  • 65. Sangthawan D, Phungrassami T, Sinkitjarurnchai W. Effects of zinc sulfate supplementation on cell-mediated immune response in head and neck cancer patients treated with radiation therapy. Nutr Cancer. 2015; 67: 449–56.
  • 66. Tergaonkar V. NF-κB pathway: A good signaling paradigm and therapeutic target. Int J Biochem Cell Biol. 2006; 38: 1647–53.
  • 67. Rosenkranz E, Maywald M, Hilgers RD et al. Induction of regulatory T cells in Th1-/Th17-driven experimental autoimmune encephalomyelitis by zinc administration. J Nutr Biochem. 2016; 29:116–23.
  • 68. Rosenkranz E, Metz CH, Maywald M et al. Zinc supplementation induces regulatory T cells by inhibition of Sirt-1 deacetylase in mixed lymphocyte cultures. Mol Nutr Food Res. 2016; 60:661–71.
  • 69. Kitabayashi C, Fukada T, Kanamoto M et al. Zinc suppresses Th17 development via inhibition of STAT3 activation. Int Immunol. 2010; 22:375–86.
  • 70. Maywald M, Wang F, Rink L. Zinc supplementation plays a crucial role in T helper 9 differentiation in allogeneic immune reactions and non-activated T cells. J Trace Elem Med Biol. 2018; 50:482–8.
  • 71. Wessels I, Maywald M, Rink L. Zinc as a gatekeeper of immune function. Nutrients. 2017; 9: 1286.
  • 72. te Velthuis AJW, van den Worm SHE, Sims AC et al. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLOS Pathog. 2010;6:e1001176.
  • 73. Baltaci AK, Mogulkoc R. Leptin and zinc relation: In regulation of food intake and immunity. Indian J Endocrinol Metab. 2012;16(Suppl 3):S611‐S6.
  • 74. Keyhan SO, Fallahi HR, Cheshmi B. Dysosmia and dysgeusia due to the 2019 novel coronavirus; a hypothesis that needs further investigation. Maxillofac Plast Reconstr Surg. 2020;42: 9.
  • 75. Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020;10.1007/s00405-020-05965-1.
  • 76. Yagi T, Asakawa A, Ueda H et al. The role of zinc in the treatment of taste disorders. Recent Pat Food Nutr Agric. 2013; 5: 44–51.
  • 77. Moore JB, Blanchard RK, McCormack WT et al. cDNA array analysis identifies thymic LCK as upregulated in moderate murine zinc deficiency before T-lymphocyte population changes. J Nutr. 2001; 131: 3189–96.
  • 78. Maywald M, Wessels I, Rink L. Zinc signals and immunity. Int J Mol Sci. 2017; 18: 2222.
  • 79. Sandström B, Cederblad A, Lindblad BS et al. Acrodermatitis enteropathica, zinc metabolism, copper status, and immune function. Arch Pediatr Adolesc Med. 1994; 148: 980–5.
  • 80. Bonaventura P, Benedetti G, Albarede F et al. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015; 14: 277–85.
  • 81. Jayawardena R, Sooriyaarachchi P, Chourdakis M et al. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr. 2020; 14: 367-82.
  • 82. Li C, Li Y, Ding C. The role of copper homeostasis at the host-pathogen axis: From bacteria to fungi. Int J Mol Sci. 2019; 20(1): 175.
  • 83. Miyamoto, D., Kusagaya Y, Endo N et al. Thujaplicin-copper chelates inhibit replication of human influenza viruses. Antiviral Res. 1998;39:89-100.
  • 84. Sagripanti JL, Routson LB, Lytle CD. Virus inactivation by copper or iron ions alone and in the presence of peroxide. Appl Environ Microbiol. 1993; 59: 4374-6.
  • 85. Raha S, Mallick R, Basak S et al. Is copper beneficial for COVID-19 patients? Med Hypotheses. 2020; 142: 109814.
  • 86. Percival SS. Copper and immunity. Am J Clin Nutr. 1998; 67: 1064s–8s.
  • 87. Guillin OM, Vindry C, Ohlmann T et al. Selenium, selenoproteins and viral infection. Nutrients. 2019;11: 2101.
  • 88. Xue H, Wang W, Li Y, et al. Selenium upregulates CD4(+)CD25(+) regulatory T cells in iodine-induced autoimmune thyroiditis model of NOD.H-2(h4) mice. Endocr J. 2010; 57:595–601.
  • 89. Prentice S. They are what you eat: Can nutritional factors during gestation and early infancy modulate the neonatal immune response? Front Immunol. 2017; 8: 1641.
  • 90. Harthill M. Review: micronutrient selenium deficiency influences evolution of some viral infectious diseases. Biol Trace Elem Res. 2011; 143:1325-36.
  • 91. Coppola M, Mondola R. Phytotherapeutics and SARS-CoV-2 infection: Potential role of bioflavonoids. Med Hypotheses. 2020; 140:109766.
  • 92. Pae M, Wu D. Immunomodulating effects of epigallocatechin-3-gallate from green tea: mechanisms and applications. Food Funct. 2013; 4:1287–303.
  • 93. Arreola R, Quintero-Fabián S, López-Roa RI, et al. Immunomodulation and anti-inflammatory effects of garlic compounds. J Immunol Res. 2015; 2015: 401630.
  • 94. Beni MA, Omidi M. Effect of short-term garlic supplementation on CD4 and CD8 factors in young karate athletes after intense exercise session. CMJA 2018; 7: 2041-51.
  • 95. Sánchez-Sánchez MA, Zepeda-Morales ASM, Carrera-Quintanar L, et al. Alliin, an Allium sativum nutraceutical, reduces metaflammation markers in DIO mice. Nutrients. 2020; 12: E624.
  • 96. Amor S, González-Hedström D, Martín-Carro B, et al. Beneficial effects of an aged black garlic extract in the metabolic and vascular alterations induced by a high fat/sucrose diet in male rats. Nutrients. 2019; 11: 153.
  • 97. Ogra Y, Ogihara Y, Anan Y. Comparison of the metabolism of inorganic and organic selenium species between two selenium accumulator plants, garlic and Indian mustard. Metallomics. 2017;9(1):61-8.
  • 98. Donma M, Karasu E, Ozdilek B et al. CD4(+), CD25(+), FOXP3 (+) T regulatory cell levels in obese, asthmatic, asthmatic obese and healthy children. Inflammation. 2015; 38(4): 1473-8.
  • 99. Donma MM, Donma O. Trace elements and physical activity in children and adolescents with depression. Turkish J Med Sci. 2010; 40: 323-33.
Toplam 99 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Derleme
Yazarlar

Metin Donma 0000-0002-4060-0583

Orkide Donma Bu kişi benim 0000-0001-5992-9488

Proje Numarası -
Yayımlanma Tarihi 20 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Donma, M., & Donma, O. (2020). COVID-19 ile Mücadelede Tıbbi Tedaviye ek olarak İmmün Sistemin Güçlendirilmesi: Mikrobesinlerin Önemi. Namık Kemal Tıp Dergisi, 8(3), 541-550. https://doi.org/10.37696/nkmj.739985
AMA Donma M, Donma O. COVID-19 ile Mücadelede Tıbbi Tedaviye ek olarak İmmün Sistemin Güçlendirilmesi: Mikrobesinlerin Önemi. NKMJ. Aralık 2020;8(3):541-550. doi:10.37696/nkmj.739985
Chicago Donma, Metin, ve Orkide Donma. “COVID-19 Ile Mücadelede Tıbbi Tedaviye Ek Olarak İmmün Sistemin Güçlendirilmesi: Mikrobesinlerin Önemi”. Namık Kemal Tıp Dergisi 8, sy. 3 (Aralık 2020): 541-50. https://doi.org/10.37696/nkmj.739985.
EndNote Donma M, Donma O (01 Aralık 2020) COVID-19 ile Mücadelede Tıbbi Tedaviye ek olarak İmmün Sistemin Güçlendirilmesi: Mikrobesinlerin Önemi. Namık Kemal Tıp Dergisi 8 3 541–550.
IEEE M. Donma ve O. Donma, “COVID-19 ile Mücadelede Tıbbi Tedaviye ek olarak İmmün Sistemin Güçlendirilmesi: Mikrobesinlerin Önemi”, NKMJ, c. 8, sy. 3, ss. 541–550, 2020, doi: 10.37696/nkmj.739985.
ISNAD Donma, Metin - Donma, Orkide. “COVID-19 Ile Mücadelede Tıbbi Tedaviye Ek Olarak İmmün Sistemin Güçlendirilmesi: Mikrobesinlerin Önemi”. Namık Kemal Tıp Dergisi 8/3 (Aralık 2020), 541-550. https://doi.org/10.37696/nkmj.739985.
JAMA Donma M, Donma O. COVID-19 ile Mücadelede Tıbbi Tedaviye ek olarak İmmün Sistemin Güçlendirilmesi: Mikrobesinlerin Önemi. NKMJ. 2020;8:541–550.
MLA Donma, Metin ve Orkide Donma. “COVID-19 Ile Mücadelede Tıbbi Tedaviye Ek Olarak İmmün Sistemin Güçlendirilmesi: Mikrobesinlerin Önemi”. Namık Kemal Tıp Dergisi, c. 8, sy. 3, 2020, ss. 541-50, doi:10.37696/nkmj.739985.
Vancouver Donma M, Donma O. COVID-19 ile Mücadelede Tıbbi Tedaviye ek olarak İmmün Sistemin Güçlendirilmesi: Mikrobesinlerin Önemi. NKMJ. 2020;8(3):541-50.