Araştırma Makalesi
BibTex RIS Kaynak Göster

The Productivity Paradox in Turkish Agriculture: Can AI-Supported Thematic Analysis Provide a Solution?/ Türk Tarımında Verimlilik Paradoksu: Yapay Zekâ Destekli Tematik Analiz Bir Çözüm Sağlayabilir mi?

Yıl 2025, Cilt: 7 Sayı: 2, 152 - 174, 27.12.2025
https://doi.org/10.47105/nsb.1825526

Öz

Bu çalışma, nitel araştırma yöntemleri arasında tematik analizin en önemli sınırlamalarından biri olan zaman maliyeti sorununu ele almakta ve bu sorunu çözmek için AI destekli bir hibrit model önermektedir. Araştırmanın odak noktası, Türk tarım sektöründeki “verimlilik paradoksu”dur (bol kaynaklara rağmen düşük verimlilik). Çalışmada, Braun ve Clarke'ın (2006) geleneksel altı adımlı tematik analiz protokolü ve Keshav'ın (2007) üç aşamalı sistematik okuma modeli, metodolojik bir çerçeve geliştirmek için yapay zeka ile entegre edilmiştir. Web of Science (WoS) veritabanından “Türkiye” ve ‘tarım’ anahtar kelimeleri kullanılarak toplanan toplam 985 akademik makale, iki farklı büyük dil modeli (LLM) kullanılarak analiz edilmiştir: ChatGPT ve DeepSeek. İlk aşamada, her iki model tarafından “yüksek alaka düzeyi” olarak işaretlenen 268 makale kesişim kümesi olarak belirlenmiş ve bu veri kümesi üzerinde derinlemesine analiz yapılmıştır. İkinci ve üçüncü aşamalarda, kod önerisi, tematik kümeleme ve tutarlılık analizi gibi yapay zeka yetenekleri kullanıldı; ancak nihai yorumlama, sentez ve anlamlandırma süreçleri insan araştırmacılar tarafından gerçekleştirildi. Bulgular, Türk tarımındaki verimlilik paradoksunun, doğal kaynak yönetimi, teknolojik adaptasyon, iklim değişikliği, politika yönetişimi, sosyoekonomik dinamikler ve su yönetimi gibi birbiriyle bağlantılı çok boyutlu temalardan kaynaklandığını ortaya koydu. Önerilen hibrit modelin, insan yorumunun derinliğini koruyarak metodolojik bütünlüğü muhafaza ederken analiz sürecini hızlandırdığı ve ölçeklendirdiği gözlemlenmiştir. Bu çalışma, yapay zeka destekli tematik analizin sosyal bilimlerde nitel araştırma için yenilikçi ve verimli bir metodolojik çerçeve sunma potansiyelini göstermektedir.

Etik Beyan

Bu çalışmada, Web of Science gibi halka açık veritabanlarından elde edilen ikincil veriler kullanıldığı için herhangi bir etik kurul onayı gerekmemektedir.

Destekleyen Kurum

Bu araştırma, herhangi bir kamu, özel veya kar amacı gütmeyen kuruluştan finansal destek almamıştır.

Teşekkür

Makalenin hazırlanma sürecinde katkıda bulunan herhangi bir kişi veya kurum bulunmamaktadır.

Kaynakça

  • Altameemi, Y., & Altamimi, M. (2023). Thematic analysis: A corpus-based method for understanding themes/topics of a corpus through a classification process using long short-term memory (LSTM). Applied Sciences, 13(5), 3308. https://doi.org/10.3390/app13053308
  • Aydın, F. F., Eştürk, Ö., & Levent, C. (2024). Tarımsal verimliliğin ekonomik büyüme ve kentleşme üzerindeki etkisi: BRICS-T ülkeleri örneği. Tarım Ekonomisi Araştırmaları Dergisi, 10(1), 1–12. https://doi.org/10.61513/tead.1373430
  • Bazeley, P., & Jackson, K. (2021). Qualitative data analysis with NVivo (A. Bakla & S. B. Demir, Trans.; 3rd ed.). Anı Yayıncılık. (Original work published 2013)
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
  • Braun, V., & Clarke, V. (2016). (Mis)conceptualising themes, thematic analysis, and other problems with Fugard and Potts’ (2015) sample-size tool for thematic analysis. International Journal of Social Research Methodology, 19(6), 739–743. https://doi.org/10.1080/13645579.2016.1195588
  • Braun, V., & Clarke, V. (2021). One size fits all? What counts as quality practice in (reflexive) thematic analysis? Qualitative Research in Psychology, 18(3), 328–352. https://doi.org/10.1080/14780887.2020.1769238
  • Braun, V., & Clarke, V. (2022). Conceptual and design thinking for thematic analysis. Qualitative Psychology, 9(1), 3–26. https://doi.org/10.1037/qup0000196
  • Braun, V., & Clarke, V. (2023). Toward good practice in thematic analysis: Avoiding common problems and be(com)ing a knowing researcher. International Journal of Transgender Health, 24(1), 1–6. https://doi.org/10.1080/26895269.2022.2129597
  • Calo, A. (2018). How knowledge deficit interventions fail to resolve beginning farmer challenges. Agriculture and Human Values, 35(2), 367–381. https://doi.org/10.1007/s10460-017-9832-6
  • Cambridge University Press & Assessment. (2025). Publishing futures: Working together to deliver radical change in academic publishing. Cambridge University Press.
  • Chiles, R. M., Broad, G., Gagnon, M., Negowetti, N., Glenna, L., Griffin, M. A. M., & Tami-Barrera, L. (2021). Democratizing ownership and participation in the 4th industrial revolution: Challenges and opportunities in cellular agriculture. Agriculture and Human Values, 38(4), 943–961. https://doi.org/10.1007/s10460-021-10237-7
  • Duncan, E., Glaros, A., Ross, D. Z., & Nost, E. (2021). New but for whom? Discourses of innovation in precision agriculture. Agriculture and Human Values, 38(4), 1181–1199. https://doi.org/10.1007/s10460-021-10244-8
  • Ekers, M., Levkoe, C. Z., Walker, S., & Dale, B. (2016). Will work for food: Agricultural interns, apprentices, volunteers, and the agrarian question. Agriculture and Human Values, 33(3), 705–720. https://doi.org/10.1007/s10460-015-9660-5
  • Ekiz, D. (2020). Bilimsel araştırma yöntemleri: Yaklaşım, yöntem ve teknikler (6. baskı). Anı Yayıncılık.
  • Farstad, M., Vinge, H., & Stræte, E. P. (2021). Locked-in or ready for climate change mitigation? Agri-food networks as structures for dairy-beef farming. Agriculture and Human Values, 38(1), 29–41. https://doi.org/10.1007/s10460-020-10134-5
  • Finlay, L. (2021). Thematic analysis: The ‘good’, the ‘bad’ and the ‘ugly’. European Journal for Qualitative Research in Psychotherapy, 11, 103–116. https://doi.org/10.24377/EJQRP.article3062
  • Gartaula, H., Patel, K., Johnson, D., Devkota, R., Khadka, K., & Chaudhary, P. (2017). From food security to food wellbeing: Examining food security through the lens of food wellbeing in Nepal’s rapidly changing agrarian landscape. Agriculture and Human Values, 34(3), 573–589. https://doi.org/10.1007/s10460-016-9740-1
  • Gillies, M., Murthy, D., Brenton, H., & Olaniyan, R. (2022). Theme and topic: How qualitative research and topic modeling can be brought together. arXiv. https://doi.org/10.48550/arXiv.2210.00707
  • Hunt, L. (2010). Interpreting orchardists’ talk about their orchards: The good orchardists. Agriculture and Human Values, 27(4), 415–426. https://doi.org/10.1007/s10460-009-9240-7
  • Katz, A., Fleming, G. C., & Main, J. (2024). Thematic analysis with open-source generative AI and machine learning: A new method for inductive qualitative codebook development. arXiv. https://doi.org/10.48550/arXiv.2410.03721
  • Keshav, S. (2007). How to read a paper. ACM SIGCOMM Computer Communication Review, 37(3), 83–84. Kutluay Tutar, F., Abukalloub, A., & Çat, M. (2025). Geleneksel tarımdan akıllı tarım uygulamalarına dönüşüm süreci: Türkiye örneği. MTÜ Sosyal ve Beşeri Bilimler Dergisi, 5(1), 46–62.
  • Madsen, S. (2022). Farm-level pathways to food security: Beyond missing markets and irrational peasants. Agriculture and Human Values, 39(1), 135–150. https://doi.org/10.1007/s10460-021-10234-w
  • Magnan, A., Davidson, M., & Desmarais, A. A. (2023). ‘They call it progress, but we don’t see it as progress’: Farm consolidation and land concentration in Saskatchewan, Canada. Agriculture and Human Values, 40(1), 277–290. https://doi.org/10.1007/s10460-022-10353-y
  • Misiko, M., Tittonell, P., Giller, K. E., & Richards, P. (2011). Strengthening understanding and perceptions of mineral fertilizer use among smallholder farmers: Evidence from collective trials in western Kenya. Agriculture and Human Values, 28(1), 27–38. https://doi.org/10.1007/s10460-010-9264-z
  • Mitter, H., Obermeier, K., & Schmid, E. (2024). Exploring smallholder farmers’ climate change adaptation intentions in Tiruchirappalli District, South India. Agriculture and Human Values, 41(3), 1019–1035. https://doi.org/10.1007/s10460-023-10528-1
  • Naeem, M., Smith, T., & Thomas, L. (2025). Thematic analysis and artificial intelligence: A step-by-step process for using ChatGPT in thematic analysis. International Journal of Qualitative Methods, 24, 16094069251333886. https://doi.org/10.1177/16094069251333886
  • OECD. (2025). OECD economic surveys: Türkiye 2025 (No. 2025/8). OECD Publishing.
  • Qanti, S. R., Peralta, A., & Zeng, D. (2022). Social norms and perceptions drive women’s participation in agricultural decisions in West Java, Indonesia. Agriculture and Human Values, 39(2), 645–662. https://doi.org/10.1007/s10460-021-10277-z
  • Sullivan, S. (2023). Ag-tech, agroecology, and the politics of alternative farming futures: The challenges of bringing together diverse agricultural epistemologies. Agriculture and Human Values, 40(3), 913–928. https://doi.org/10.1007/s10460-023-10454-2
  • Tennhardt, L. M., Home, R., Yen, N. T. B., Van Hoi, P., Ferrand, P., & Grovermann, C. (2025). Mixed method evaluation of factors influencing the adoption of organic participatory guarantee system certification among Vietnamese vegetable farmers. Agriculture and Human Values, 42(2), 885–904. https://doi.org/10.1007/s10460-024-10643-7
  • Tracy, S. J. (2010). Qualitative quality: Eight ‘big-tent’ criteria for excellent qualitative research. Qualitative Inquiry, 16(10), 837–851. https://doi.org/10.1177/1077800410383121
  • Trainor, L. R., & Bundon, A. (2021). Developing the craft: Reflexive accounts of doing reflexive thematic analysis. Qualitative Research in Sport, Exercise and Health, 13(5), 705–726. https://doi.org/10.1080/2159676X.2020.1840423
  • Wilke, A. K., & Morton, L. W. (2015). Climatologists’ patterns of conveying climate science to the agricultural community. Agriculture and Human Values, 32(1), 99–110. https://doi.org/10.1007/s10460-014-9531-5

The Productivity Paradox in Turkish Agriculture: Can AI-Supported Thematic Analysis Provide a Solution?/ Türk Tarımında Verimlilik Paradoksu: Yapay Zekâ Destekli Tematik Analiz Bir Çözüm Sağlayabilir mi?

Yıl 2025, Cilt: 7 Sayı: 2, 152 - 174, 27.12.2025
https://doi.org/10.47105/nsb.1825526

Öz

This study addresses the time cost problem, one of the most significant limitations of thematic analysis among qualitative research methods, and proposes an AI-supported hybrid model to address this issue. The focus of the research is the “productivity paradox” (low productivity despite abundant resources) in the Turkish agricultural sector. In the study, Braun and Clarke’s (2006) traditional six-step thematic analysis protocol and Keshav’s (2007) three-pass systematic reading model were integrated with AI to develop a methodological framework. A total of 985 academic articles collected from the Web of Science (WoS) database using the keywords “Turkey” and “agriculture” were analyzed using two different large language models (LLMs): ChatGPT and DeepSeek. In the first stage, the 268 articles flagged by both models as “high relevance” were identified as the intersection set, and in-depth analysis was conducted on this dataset. In the second and third stages, AI capabilities such as code suggestion, thematic clustering, and consistency analysis were utilized; however, the final interpretation, synthesis, and meaning processes were carried out by human researchers. The findings revealed that the productivity paradox in Turkish agriculture stems from interconnected multidimensional themes such as natural resource management, technological adaptation, climate change, policy governance, socio-economic dynamics, and water management. It was observed that the proposed hybrid model accelerated and scaled the analysis process while maintaining methodological integrity by preserving the depth of human interpretation. This study demonstrates the potential of AI-supported thematic analysis to offer an innovative and efficient methodological framework for qualitative research in the social sciences.

Etik Beyan

Ethics committee approval was not required for this study. / Bu çalışma için etik kurul onayına gerek bulunmamaktadır.

Destekleyen Kurum

Araştırma kapsamında herhangi bir destekten yararlanılmamıştır. / This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors

Kaynakça

  • Altameemi, Y., & Altamimi, M. (2023). Thematic analysis: A corpus-based method for understanding themes/topics of a corpus through a classification process using long short-term memory (LSTM). Applied Sciences, 13(5), 3308. https://doi.org/10.3390/app13053308
  • Aydın, F. F., Eştürk, Ö., & Levent, C. (2024). Tarımsal verimliliğin ekonomik büyüme ve kentleşme üzerindeki etkisi: BRICS-T ülkeleri örneği. Tarım Ekonomisi Araştırmaları Dergisi, 10(1), 1–12. https://doi.org/10.61513/tead.1373430
  • Bazeley, P., & Jackson, K. (2021). Qualitative data analysis with NVivo (A. Bakla & S. B. Demir, Trans.; 3rd ed.). Anı Yayıncılık. (Original work published 2013)
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
  • Braun, V., & Clarke, V. (2016). (Mis)conceptualising themes, thematic analysis, and other problems with Fugard and Potts’ (2015) sample-size tool for thematic analysis. International Journal of Social Research Methodology, 19(6), 739–743. https://doi.org/10.1080/13645579.2016.1195588
  • Braun, V., & Clarke, V. (2021). One size fits all? What counts as quality practice in (reflexive) thematic analysis? Qualitative Research in Psychology, 18(3), 328–352. https://doi.org/10.1080/14780887.2020.1769238
  • Braun, V., & Clarke, V. (2022). Conceptual and design thinking for thematic analysis. Qualitative Psychology, 9(1), 3–26. https://doi.org/10.1037/qup0000196
  • Braun, V., & Clarke, V. (2023). Toward good practice in thematic analysis: Avoiding common problems and be(com)ing a knowing researcher. International Journal of Transgender Health, 24(1), 1–6. https://doi.org/10.1080/26895269.2022.2129597
  • Calo, A. (2018). How knowledge deficit interventions fail to resolve beginning farmer challenges. Agriculture and Human Values, 35(2), 367–381. https://doi.org/10.1007/s10460-017-9832-6
  • Cambridge University Press & Assessment. (2025). Publishing futures: Working together to deliver radical change in academic publishing. Cambridge University Press.
  • Chiles, R. M., Broad, G., Gagnon, M., Negowetti, N., Glenna, L., Griffin, M. A. M., & Tami-Barrera, L. (2021). Democratizing ownership and participation in the 4th industrial revolution: Challenges and opportunities in cellular agriculture. Agriculture and Human Values, 38(4), 943–961. https://doi.org/10.1007/s10460-021-10237-7
  • Duncan, E., Glaros, A., Ross, D. Z., & Nost, E. (2021). New but for whom? Discourses of innovation in precision agriculture. Agriculture and Human Values, 38(4), 1181–1199. https://doi.org/10.1007/s10460-021-10244-8
  • Ekers, M., Levkoe, C. Z., Walker, S., & Dale, B. (2016). Will work for food: Agricultural interns, apprentices, volunteers, and the agrarian question. Agriculture and Human Values, 33(3), 705–720. https://doi.org/10.1007/s10460-015-9660-5
  • Ekiz, D. (2020). Bilimsel araştırma yöntemleri: Yaklaşım, yöntem ve teknikler (6. baskı). Anı Yayıncılık.
  • Farstad, M., Vinge, H., & Stræte, E. P. (2021). Locked-in or ready for climate change mitigation? Agri-food networks as structures for dairy-beef farming. Agriculture and Human Values, 38(1), 29–41. https://doi.org/10.1007/s10460-020-10134-5
  • Finlay, L. (2021). Thematic analysis: The ‘good’, the ‘bad’ and the ‘ugly’. European Journal for Qualitative Research in Psychotherapy, 11, 103–116. https://doi.org/10.24377/EJQRP.article3062
  • Gartaula, H., Patel, K., Johnson, D., Devkota, R., Khadka, K., & Chaudhary, P. (2017). From food security to food wellbeing: Examining food security through the lens of food wellbeing in Nepal’s rapidly changing agrarian landscape. Agriculture and Human Values, 34(3), 573–589. https://doi.org/10.1007/s10460-016-9740-1
  • Gillies, M., Murthy, D., Brenton, H., & Olaniyan, R. (2022). Theme and topic: How qualitative research and topic modeling can be brought together. arXiv. https://doi.org/10.48550/arXiv.2210.00707
  • Hunt, L. (2010). Interpreting orchardists’ talk about their orchards: The good orchardists. Agriculture and Human Values, 27(4), 415–426. https://doi.org/10.1007/s10460-009-9240-7
  • Katz, A., Fleming, G. C., & Main, J. (2024). Thematic analysis with open-source generative AI and machine learning: A new method for inductive qualitative codebook development. arXiv. https://doi.org/10.48550/arXiv.2410.03721
  • Keshav, S. (2007). How to read a paper. ACM SIGCOMM Computer Communication Review, 37(3), 83–84. Kutluay Tutar, F., Abukalloub, A., & Çat, M. (2025). Geleneksel tarımdan akıllı tarım uygulamalarına dönüşüm süreci: Türkiye örneği. MTÜ Sosyal ve Beşeri Bilimler Dergisi, 5(1), 46–62.
  • Madsen, S. (2022). Farm-level pathways to food security: Beyond missing markets and irrational peasants. Agriculture and Human Values, 39(1), 135–150. https://doi.org/10.1007/s10460-021-10234-w
  • Magnan, A., Davidson, M., & Desmarais, A. A. (2023). ‘They call it progress, but we don’t see it as progress’: Farm consolidation and land concentration in Saskatchewan, Canada. Agriculture and Human Values, 40(1), 277–290. https://doi.org/10.1007/s10460-022-10353-y
  • Misiko, M., Tittonell, P., Giller, K. E., & Richards, P. (2011). Strengthening understanding and perceptions of mineral fertilizer use among smallholder farmers: Evidence from collective trials in western Kenya. Agriculture and Human Values, 28(1), 27–38. https://doi.org/10.1007/s10460-010-9264-z
  • Mitter, H., Obermeier, K., & Schmid, E. (2024). Exploring smallholder farmers’ climate change adaptation intentions in Tiruchirappalli District, South India. Agriculture and Human Values, 41(3), 1019–1035. https://doi.org/10.1007/s10460-023-10528-1
  • Naeem, M., Smith, T., & Thomas, L. (2025). Thematic analysis and artificial intelligence: A step-by-step process for using ChatGPT in thematic analysis. International Journal of Qualitative Methods, 24, 16094069251333886. https://doi.org/10.1177/16094069251333886
  • OECD. (2025). OECD economic surveys: Türkiye 2025 (No. 2025/8). OECD Publishing.
  • Qanti, S. R., Peralta, A., & Zeng, D. (2022). Social norms and perceptions drive women’s participation in agricultural decisions in West Java, Indonesia. Agriculture and Human Values, 39(2), 645–662. https://doi.org/10.1007/s10460-021-10277-z
  • Sullivan, S. (2023). Ag-tech, agroecology, and the politics of alternative farming futures: The challenges of bringing together diverse agricultural epistemologies. Agriculture and Human Values, 40(3), 913–928. https://doi.org/10.1007/s10460-023-10454-2
  • Tennhardt, L. M., Home, R., Yen, N. T. B., Van Hoi, P., Ferrand, P., & Grovermann, C. (2025). Mixed method evaluation of factors influencing the adoption of organic participatory guarantee system certification among Vietnamese vegetable farmers. Agriculture and Human Values, 42(2), 885–904. https://doi.org/10.1007/s10460-024-10643-7
  • Tracy, S. J. (2010). Qualitative quality: Eight ‘big-tent’ criteria for excellent qualitative research. Qualitative Inquiry, 16(10), 837–851. https://doi.org/10.1177/1077800410383121
  • Trainor, L. R., & Bundon, A. (2021). Developing the craft: Reflexive accounts of doing reflexive thematic analysis. Qualitative Research in Sport, Exercise and Health, 13(5), 705–726. https://doi.org/10.1080/2159676X.2020.1840423
  • Wilke, A. K., & Morton, L. W. (2015). Climatologists’ patterns of conveying climate science to the agricultural community. Agriculture and Human Values, 32(1), 99–110. https://doi.org/10.1007/s10460-014-9531-5
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sosyolojide Niteliksel Yöntemler
Bölüm Araştırma Makalesi
Yazarlar

Alper Tunga Alkan 0000-0002-8309-7463

Hakan Acer 0000-0002-4713-7974

Gönderilme Tarihi 17 Kasım 2025
Kabul Tarihi 18 Aralık 2025
Yayımlanma Tarihi 27 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Alkan, A. T., & Acer, H. (2025). The Productivity Paradox in Turkish Agriculture: Can AI-Supported Thematic Analysis Provide a Solution?/ Türk Tarımında Verimlilik Paradoksu: Yapay Zekâ Destekli Tematik Analiz Bir Çözüm Sağlayabilir mi? Nitel Sosyal Bilimler, 7(2), 152-174. https://doi.org/10.47105/nsb.1825526