Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2016, Cilt: 4 Sayı: 3, 277 - 289, 30.09.2016

Öz

Kaynakça

  • W. M. Boothby and H. C. Wang, On concact manifolds, Ann. of Math.(2). vol.68 , pp. 721-734, (1958).
  • W. M. Boothby, Homogeneous complex contact manifolds, Proc. Symp. Pure. Math.III, Amer. Math. Soc., pp.144-154, (1961).
  • W. M. Boothby, A note on homogeneous complex contact manifolds, Proc.Amer. Math. Soc., 13, 276-280, (1962).
  • D. E. Blair, Riemannian Geometry of contactand symplectic Manifold. Brikhauser, (2002).
  • Y. Hatakeyama, Y. Ogawa, S. Tanno, Some properties of manifolds with contact metric structures, Tohoku Math. J. , 15, 42-48.
  • S. Ishihara and M. Konishi, Real contact 3-structure and complex contact structure, Southeast Asian Bulletin of Math, 3, 151-161, (1979).
  • S. Ishihara and M. Konishi, Complex almost contact manifolds, Kodai Math. J., 3, 385-396, (1980).
  • B. Korkmaz,Curvature and normality of complex contact manifolds, PhD Thesis, Michigan State University East Lansing, MI, USA © (1997).
  • B. Korkmaz, A curvature property of complex contact metric structure, Kyungpook Math. J. 38, 473-488, (1998).
  • B. Korkmaz, Normality of complex contact manifolds, Rocky Mountain J. Math., 30, 1343-1380, (2000).
  • Kobayashi, S., Principal fibre bundles with the1-dimensional toroidal group, Tohoku Math. J. 8, 29-45, (1956).
  • S. Kobayashi, Remarks on complex contact manifolds, Proc. Amer. Math. Soc.,10, 164-167, (1963).
  • S. Kobayashi, Topology of positively pinched Kaehler manifolds, Tohoku Math. J. 15, 121-139, (1963).
  • J.W. Gray, Some global properties of contact structures Ann. of. Math. Soc. vol.42, pp.257, (1967).
  • S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tohoku Math. J.(2) vol.12, pp 459-476, (1960).
  • J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J.Math. and Mech., 14, 1033-1047, (1965).

On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds

Yıl 2016, Cilt: 4 Sayı: 3, 277 - 289, 30.09.2016

Öz



In this article we studied anti-invariant submanifolds
of almost complex contact metric manifolds. We found a relation between
Nijenhuis tensor fields of anti-invariant submanifolds and almost complex
contact manifolds. We investigated relations between curvature tensors of these
manifolds. Moreover, we studied anti-invariant submanifolds of almost complex
contact metric manifolds.Some necessary conditions on which a submanifolds of
an almost complex contact metric manifolds is
- anti-invariant were given. Also we
found some characterizations for totally geodesic or umbilical
- anti-invariant submanifolds of
almost complex contact metric manifolds.




Kaynakça

  • W. M. Boothby and H. C. Wang, On concact manifolds, Ann. of Math.(2). vol.68 , pp. 721-734, (1958).
  • W. M. Boothby, Homogeneous complex contact manifolds, Proc. Symp. Pure. Math.III, Amer. Math. Soc., pp.144-154, (1961).
  • W. M. Boothby, A note on homogeneous complex contact manifolds, Proc.Amer. Math. Soc., 13, 276-280, (1962).
  • D. E. Blair, Riemannian Geometry of contactand symplectic Manifold. Brikhauser, (2002).
  • Y. Hatakeyama, Y. Ogawa, S. Tanno, Some properties of manifolds with contact metric structures, Tohoku Math. J. , 15, 42-48.
  • S. Ishihara and M. Konishi, Real contact 3-structure and complex contact structure, Southeast Asian Bulletin of Math, 3, 151-161, (1979).
  • S. Ishihara and M. Konishi, Complex almost contact manifolds, Kodai Math. J., 3, 385-396, (1980).
  • B. Korkmaz,Curvature and normality of complex contact manifolds, PhD Thesis, Michigan State University East Lansing, MI, USA © (1997).
  • B. Korkmaz, A curvature property of complex contact metric structure, Kyungpook Math. J. 38, 473-488, (1998).
  • B. Korkmaz, Normality of complex contact manifolds, Rocky Mountain J. Math., 30, 1343-1380, (2000).
  • Kobayashi, S., Principal fibre bundles with the1-dimensional toroidal group, Tohoku Math. J. 8, 29-45, (1956).
  • S. Kobayashi, Remarks on complex contact manifolds, Proc. Amer. Math. Soc.,10, 164-167, (1963).
  • S. Kobayashi, Topology of positively pinched Kaehler manifolds, Tohoku Math. J. 15, 121-139, (1963).
  • J.W. Gray, Some global properties of contact structures Ann. of. Math. Soc. vol.42, pp.257, (1967).
  • S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tohoku Math. J.(2) vol.12, pp 459-476, (1960).
  • J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J.Math. and Mech., 14, 1033-1047, (1965).
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Cumali Yildirim Bu kişi benim

Feyza Esra Erdogan

Yayımlanma Tarihi 30 Eylül 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 3

Kaynak Göster

APA Yildirim, C., & Erdogan, F. E. (2016). On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds. New Trends in Mathematical Sciences, 4(3), 277-289.
AMA Yildirim C, Erdogan FE. On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds. New Trends in Mathematical Sciences. Eylül 2016;4(3):277-289.
Chicago Yildirim, Cumali, ve Feyza Esra Erdogan. “On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds”. New Trends in Mathematical Sciences 4, sy. 3 (Eylül 2016): 277-89.
EndNote Yildirim C, Erdogan FE (01 Eylül 2016) On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds. New Trends in Mathematical Sciences 4 3 277–289.
IEEE C. Yildirim ve F. E. Erdogan, “On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds”, New Trends in Mathematical Sciences, c. 4, sy. 3, ss. 277–289, 2016.
ISNAD Yildirim, Cumali - Erdogan, Feyza Esra. “On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds”. New Trends in Mathematical Sciences 4/3 (Eylül2016), 277-289.
JAMA Yildirim C, Erdogan FE. On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds. New Trends in Mathematical Sciences. 2016;4:277–289.
MLA Yildirim, Cumali ve Feyza Esra Erdogan. “On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds”. New Trends in Mathematical Sciences, c. 4, sy. 3, 2016, ss. 277-89.
Vancouver Yildirim C, Erdogan FE. On G ̅-J anti-invariant submanifolds of almost complex contact metric manifolds. New Trends in Mathematical Sciences. 2016;4(3):277-89.