In this paper, using N-structure, the notion of an N-ideal in a BE-algebra is introduced. To obtain a more general form ofan N-ideal, a point N-structure which is (k-conditionally) employed in an N-structure is proposed. Using these notions, the conceptof an ([e], [e]∨ [ck])-ideal is introduced and related properties are investigated. The notion ([e], [e]∨ [ck])-ideal is a generalization of([e], [e]∨ [c])-ideal. We derive some characterizations of ([e],[e] ∨ [ck])-ideals of BE-algebras
Ahn, S.S., Kim, Y.H., Ko, J.M, Filters in commutative BE-algebras. Commun. Korean Math. Soc., 27, (2012)(2), 233–242.
Y. H. Yon, S. M. Lee and K. H. Kim, On congruences and BE-relations in BE-Algebras, Int. Math. Forum, 5, 2010, 46, 2263-2270.
Kim, H.S., and Y.H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, 66, 2007, 1, 113-117.
H. S. Kim and K. J. Lee, Extended upper sets in BE-algebras, Bull. Malays. Math. Sci. Soc. (2) 34(3) (2011), 511–520.
Rezaei, A., and A. Borumand Saeid, Some results in BE-algebras, Analele Universitatii Oradea Fasc. Matematica, Tom XIX, 1 2012, 33-44.
K. S. So, and S. S. Ahn, On ideals and upper sets in BE-algebras, Sci. Math. Japo., Online 2008 351-357.
K. Iseki, and Y. Imai, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19–22.
K. Iseki, An algebra related with a propositional calculus, Proc. Japan Academy 42 (1966), 26–29.
M.S. Kang, and Y.B. Jun, Ideal theory of BE-algebras based on N-structures Hacettepe Journal of Mathematics and Statistics volume 41(4) (2012), 435-447.
A. B.Saeid, A. R. Rajab and A. Borzooei, Some types of filters in BE-algebras, Math.Comput.Sci., 7, (2013), 341-352.
Walendziak, A., On commutative BE-algebras, Scientiae Mathematicae Japonicae, 69, 2008, 2, 585-588,
K. J. Lee, S. Z. Song, and Y. B. Jun, N-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417–437.
Generalization of ([e], [e] ∨ [c])-Ideals of BE-algebras A. F. Ali1, S. Abdullah2and M. S. Kamran3and M. Aslam4 1Department of Basic Sciences, Riphah Internaional University, Islamabad, Pakistan. 2Department of Mathematics, Quaid-e-Aazam University, Islamabad, Pakistan. 3Department of Basic Sciences, Riphah Internaional University, Islamabad Pakistan 4Department of Mathematics, King Khlid University Saudi Arabia
Ahn, S.S., Kim, Y.H., Ko, J.M, Filters in commutative BE-algebras. Commun. Korean Math. Soc., 27, (2012)(2), 233–242.
Y. H. Yon, S. M. Lee and K. H. Kim, On congruences and BE-relations in BE-Algebras, Int. Math. Forum, 5, 2010, 46, 2263-2270.
Kim, H.S., and Y.H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, 66, 2007, 1, 113-117.
H. S. Kim and K. J. Lee, Extended upper sets in BE-algebras, Bull. Malays. Math. Sci. Soc. (2) 34(3) (2011), 511–520.
Rezaei, A., and A. Borumand Saeid, Some results in BE-algebras, Analele Universitatii Oradea Fasc. Matematica, Tom XIX, 1 2012, 33-44.
K. S. So, and S. S. Ahn, On ideals and upper sets in BE-algebras, Sci. Math. Japo., Online 2008 351-357.
K. Iseki, and Y. Imai, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19–22.
K. Iseki, An algebra related with a propositional calculus, Proc. Japan Academy 42 (1966), 26–29.
M.S. Kang, and Y.B. Jun, Ideal theory of BE-algebras based on N-structures Hacettepe Journal of Mathematics and Statistics volume 41(4) (2012), 435-447.
A. B.Saeid, A. R. Rajab and A. Borzooei, Some types of filters in BE-algebras, Math.Comput.Sci., 7, (2013), 341-352.
Walendziak, A., On commutative BE-algebras, Scientiae Mathematicae Japonicae, 69, 2008, 2, 585-588,
K. J. Lee, S. Z. Song, and Y. B. Jun, N-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417–437.
Abdullah, S., Ali, A. F., Kamran, M. S., Aslam, M. (2015). Generalization of ([e],[e]∨[c])-Ideals of BE-algebras. New Trends in Mathematical Sciences, 3(3), 1-11.
AMA
Abdullah S, Ali AF, Kamran MS, Aslam M. Generalization of ([e],[e]∨[c])-Ideals of BE-algebras. New Trends in Mathematical Sciences. Haziran 2015;3(3):1-11.
Chicago
Abdullah, Saleem, Ahmed Fawad Ali, Muhammad S. Kamran, ve Muhammad Aslam. “Generalization of ([e],[e]∨[c])-Ideals of BE-Algebras”. New Trends in Mathematical Sciences 3, sy. 3 (Haziran 2015): 1-11.
EndNote
Abdullah S, Ali AF, Kamran MS, Aslam M (01 Haziran 2015) Generalization of ([e],[e]∨[c])-Ideals of BE-algebras. New Trends in Mathematical Sciences 3 3 1–11.
IEEE
S. Abdullah, A. F. Ali, M. S. Kamran, ve M. Aslam, “Generalization of ([e],[e]∨[c])-Ideals of BE-algebras”, New Trends in Mathematical Sciences, c. 3, sy. 3, ss. 1–11, 2015.
ISNAD
Abdullah, Saleem vd. “Generalization of ([e],[e]∨[c])-Ideals of BE-Algebras”. New Trends in Mathematical Sciences 3/3 (Haziran 2015), 1-11.
JAMA
Abdullah S, Ali AF, Kamran MS, Aslam M. Generalization of ([e],[e]∨[c])-Ideals of BE-algebras. New Trends in Mathematical Sciences. 2015;3:1–11.
MLA
Abdullah, Saleem vd. “Generalization of ([e],[e]∨[c])-Ideals of BE-Algebras”. New Trends in Mathematical Sciences, c. 3, sy. 3, 2015, ss. 1-11.
Vancouver
Abdullah S, Ali AF, Kamran MS, Aslam M. Generalization of ([e],[e]∨[c])-Ideals of BE-algebras. New Trends in Mathematical Sciences. 2015;3(3):1-11.