BibTex RIS Kaynak Göster

Socle-Regular QTAG-Modules

Yıl 2014, Cilt: 2 Sayı: 2, 129 - 133, 01.08.2014

Öz

A right module over an associative ring with unity is a -module if every finitely generated submodule of any homomorphic image of is a direct sum of uniserial modules. In this paper we focus our attention to the socles of fully invariant submodules and introduce a new class of modules, which we term socle-regular -modules. This class is shown to be large and strictly contains the class of fully transitive modules. Also, here we investigated some basic properties of such modules

Kaynakça

  • Fuchs L., Infinite Abelian Groups, Vol. I, Academic Press, New York, (1970).
  • Fuchs L., Infinite Abelian Groups, Vol. II, Academic Press, New York, (1973).
  • Hefzi M. A. and Singh S., On σ-pure submodules of QTAG-modules, Arch. Math., 46(1986), 501 − 510.
  • Kaplansky I., Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954 and 1969.
  • Khan, M.Z., Modules behaving like torsion abelian groups II, Math. Japonica, 23(5)(1979), 509 − 516.
  • Mehdi A., Abbasi M. Y. and Mehdi F., Nice decomposition series and rich modules, South East Asian J. Math. & Math. Sci., 4(1), 1- 6, (2005).
  • Mehdi A., Abbasi M. Y. and Mehdi F., On (ω + n)-projective modules, Ganita Sandesh, 20(1), 27-32, (2006).
  • Mehdi A., Naji S.A.R.K and Hasan A., Small homomorphisms and large submodules of QTAG-modules, Scientia Series A., Math. Sci., 23(2012), 19-24.
  • Singh S., Some decomposition theorems in abelian groups and their generalizations, Ring Theory, Proc. of Ohio Univ. Conf. Marcel Dekker N.Y. 25, 183-189, (1976).

Socle-regular -modules

Yıl 2014, Cilt: 2 Sayı: 2, 129 - 133, 01.08.2014

Öz

Kaynakça

  • Fuchs L., Infinite Abelian Groups, Vol. I, Academic Press, New York, (1970).
  • Fuchs L., Infinite Abelian Groups, Vol. II, Academic Press, New York, (1973).
  • Hefzi M. A. and Singh S., On σ-pure submodules of QTAG-modules, Arch. Math., 46(1986), 501 − 510.
  • Kaplansky I., Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954 and 1969.
  • Khan, M.Z., Modules behaving like torsion abelian groups II, Math. Japonica, 23(5)(1979), 509 − 516.
  • Mehdi A., Abbasi M. Y. and Mehdi F., Nice decomposition series and rich modules, South East Asian J. Math. & Math. Sci., 4(1), 1- 6, (2005).
  • Mehdi A., Abbasi M. Y. and Mehdi F., On (ω + n)-projective modules, Ganita Sandesh, 20(1), 27-32, (2006).
  • Mehdi A., Naji S.A.R.K and Hasan A., Small homomorphisms and large submodules of QTAG-modules, Scientia Series A., Math. Sci., 23(2012), 19-24.
  • Singh S., Some decomposition theorems in abelian groups and their generalizations, Ring Theory, Proc. of Ohio Univ. Conf. Marcel Dekker N.Y. 25, 183-189, (1976).
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Bölüm Articles
Yazarlar

Fahad Sikander Bu kişi benim

Ayazul Hasan Bu kişi benim

Alveera Mehdi Bu kişi benim

Yayımlanma Tarihi 1 Ağustos 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 2 Sayı: 2

Kaynak Göster

APA Sikander, F., Hasan, A., & Mehdi, A. (2014). Socle-regular -modules. New Trends in Mathematical Sciences, 2(2), 129-133.
AMA Sikander F, Hasan A, Mehdi A. Socle-regular -modules. New Trends in Mathematical Sciences. Ağustos 2014;2(2):129-133.
Chicago Sikander, Fahad, Ayazul Hasan, ve Alveera Mehdi. “Socle-Regular -Modules”. New Trends in Mathematical Sciences 2, sy. 2 (Ağustos 2014): 129-33.
EndNote Sikander F, Hasan A, Mehdi A (01 Ağustos 2014) Socle-regular -modules. New Trends in Mathematical Sciences 2 2 129–133.
IEEE F. Sikander, A. Hasan, ve A. Mehdi, “Socle-regular -modules”, New Trends in Mathematical Sciences, c. 2, sy. 2, ss. 129–133, 2014.
ISNAD Sikander, Fahad vd. “Socle-Regular -Modules”. New Trends in Mathematical Sciences 2/2 (Ağustos 2014), 129-133.
JAMA Sikander F, Hasan A, Mehdi A. Socle-regular -modules. New Trends in Mathematical Sciences. 2014;2:129–133.
MLA Sikander, Fahad vd. “Socle-Regular -Modules”. New Trends in Mathematical Sciences, c. 2, sy. 2, 2014, ss. 129-33.
Vancouver Sikander F, Hasan A, Mehdi A. Socle-regular -modules. New Trends in Mathematical Sciences. 2014;2(2):129-33.