BibTex RIS Kaynak Göster

The best approximation of $P-$ metric space of $\chi^{2}-$ defined by Musielak

Yıl 2014, Cilt: 2 Sayı: 1, 23 - 34, 01.04.2014

Öz

In this paper, we introduce the idea of constructing sequence space Musielak and also construct some general topological properties of approximation of of best approximation in metric defined by

Kaynakça

  • B.Altay and F.Başar, Some new spaces of double sequences, F.Başar and Y.Sever, The space M.Basarir and O.Solancan, On some double sequence spaces, J.Indian Acad. Math., 21(2) (1999), 193-200.
  • T.J.I’ A.Bromwich, An introduction to the theory of infinite series Macmillan and Co.Ltd., New York,(1965).
  • J.Cannor, On strong matrix summability with respect to amodul us and statistical convergence, Canad. Math. Bull., 32(2), (1989),194-198
  • A.Gökhan and R.Çolak, The double sequence spaces ( ) and A.Gökhan and R.Çolak, Double sequence spaces G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc.,19(1917),8695.
  • H.J.Hamilton, Transformations of multiple sequences, DukeMath.J.,2,(1936),29-60.
  • J.Math. Anal. Appl., 309(1), (2005), 70-90. of double sequences ,Math. J. Okayama Univ, 51, (2009), 149157.
  • ( ) , Appl. Math.Comput., 157(2),(2004),491-501. , 160(1),(2005),147-153. ------, A Generalization of multiple sequences transformation, DukeMath.J.,4,(1938),343358. ------, Preservation of partial Limits in Multiple sequence transformations, DukeMath.J., 4,(1939),293-297
  • P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes,Pure and Applied Mathematics, 65 Marcel Dekker,Inc.,NewYork,1981.
  • F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math.Proc.Camb.Phil.Soc.,104,(1988),283-294.
  • A.Wilansky, Summability through Functiona lAnalysis, North-Holland Mathematical Studies, North-Holland Publishing, Amsterdam,Vol.85(1984).
  • M.Zeltser, Investigation of Double Sequence Spaces by Softand Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ.ofTartu, Faculty of Mathematics and Computer Science,Tartu,2001

The best approximation of metric space of defined by

Yıl 2014, Cilt: 2 Sayı: 1, 23 - 34, 01.04.2014

Öz

Kaynakça

  • B.Altay and F.Başar, Some new spaces of double sequences, F.Başar and Y.Sever, The space M.Basarir and O.Solancan, On some double sequence spaces, J.Indian Acad. Math., 21(2) (1999), 193-200.
  • T.J.I’ A.Bromwich, An introduction to the theory of infinite series Macmillan and Co.Ltd., New York,(1965).
  • J.Cannor, On strong matrix summability with respect to amodul us and statistical convergence, Canad. Math. Bull., 32(2), (1989),194-198
  • A.Gökhan and R.Çolak, The double sequence spaces ( ) and A.Gökhan and R.Çolak, Double sequence spaces G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc.,19(1917),8695.
  • H.J.Hamilton, Transformations of multiple sequences, DukeMath.J.,2,(1936),29-60.
  • J.Math. Anal. Appl., 309(1), (2005), 70-90. of double sequences ,Math. J. Okayama Univ, 51, (2009), 149157.
  • ( ) , Appl. Math.Comput., 157(2),(2004),491-501. , 160(1),(2005),147-153. ------, A Generalization of multiple sequences transformation, DukeMath.J.,4,(1938),343358. ------, Preservation of partial Limits in Multiple sequence transformations, DukeMath.J., 4,(1939),293-297
  • P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes,Pure and Applied Mathematics, 65 Marcel Dekker,Inc.,NewYork,1981.
  • F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math.Proc.Camb.Phil.Soc.,104,(1988),283-294.
  • A.Wilansky, Summability through Functiona lAnalysis, North-Holland Mathematical Studies, North-Holland Publishing, Amsterdam,Vol.85(1984).
  • M.Zeltser, Investigation of Double Sequence Spaces by Softand Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ.ofTartu, Faculty of Mathematics and Computer Science,Tartu,2001
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Bölüm Articles
Yazarlar

N. Subramanian Bu kişi benim

N. Saivaraju Bu kişi benim

S. Velmurugan Bu kişi benim

Yayımlanma Tarihi 1 Nisan 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 2 Sayı: 1

Kaynak Göster

APA Subramanian, N., Saivaraju, N., & Velmurugan, S. (2014). The best approximation of metric space of defined by. New Trends in Mathematical Sciences, 2(1), 23-34.
AMA Subramanian N, Saivaraju N, Velmurugan S. The best approximation of metric space of defined by. New Trends in Mathematical Sciences. Nisan 2014;2(1):23-34.
Chicago Subramanian, N., N. Saivaraju, ve S. Velmurugan. “The Best Approximation of Metric Space of Defined by”. New Trends in Mathematical Sciences 2, sy. 1 (Nisan 2014): 23-34.
EndNote Subramanian N, Saivaraju N, Velmurugan S (01 Nisan 2014) The best approximation of metric space of defined by. New Trends in Mathematical Sciences 2 1 23–34.
IEEE N. Subramanian, N. Saivaraju, ve S. Velmurugan, “The best approximation of metric space of defined by”, New Trends in Mathematical Sciences, c. 2, sy. 1, ss. 23–34, 2014.
ISNAD Subramanian, N. vd. “The Best Approximation of Metric Space of Defined by”. New Trends in Mathematical Sciences 2/1 (Nisan 2014), 23-34.
JAMA Subramanian N, Saivaraju N, Velmurugan S. The best approximation of metric space of defined by. New Trends in Mathematical Sciences. 2014;2:23–34.
MLA Subramanian, N. vd. “The Best Approximation of Metric Space of Defined by”. New Trends in Mathematical Sciences, c. 2, sy. 1, 2014, ss. 23-34.
Vancouver Subramanian N, Saivaraju N, Velmurugan S. The best approximation of metric space of defined by. New Trends in Mathematical Sciences. 2014;2(1):23-34.