BibTex RIS Kaynak Göster

Approximate solutions of boundary value problems of fractional order by using sinc-Galerkin method

Yıl 2014, Cilt: 2 Sayı: 1, 1 - 11, 01.04.2014

Öz

The aim of the present study is to obtain approximate solutions of fractional order linear two-point boundary valueproblem which are generalizations of classical boundary value problems by using sinc-Galerkin method. The fractional derivatives aredefined in the Caputo sense using frequently in fractional calculus. The method is tested on some problems with homogeneous andnonhomogeneous boundary conditions and comparisons are made with the exact solutions and numerical solutions obtained by HaarWavelet method. Numerical and graphical results show that the sinc-Galerkin method is a very effective and powerful tool in solvingsuch problems

Kaynakça

  • Rehman, M.U. ve Khan, R.A. ”A numerical method for solving boundary value problems for fractional differential equations”, Appl. Math. Modell., 36: (2012)894-907.
  • V. Daftardar-Gejji, H. Jafari, Solving a multi-order fractional differential equation using adomian decomposition, Appl. Math. Comput. 189 (2007) 541–548.
  • Vazqueze, L., Tanga, Y., Nie, N., Jimenez, S. ve Li, M. ”Solving two-point boundary value problems of fractional differential equations by spline collocation methods”, (2009), 1-10.
  • Fix, G. J. and Roop, J. P. ,”Least squares finite element solution of a fractional order two-point boundary value problem”, Comput. Math. Appl, 48: (2004), 1017-1033.
  • G. Wu, E.W.M. Lee, Fractional variational iteration method and its application, Phys. Lett. A 374 (2010) 2506–2509.
  • Z. Odibat, S. Momani, V. Suat Erturk, Generalized differential transform method: application to differential equations of fractional order, Appl. Math.Comput. 197 (2008) 467–477.
  • K. Diethelm, G. Walz, Numerical solution of fractional order differential equations by extrapolation, Numer. Algor. 16 (1997) 2312
  • Li, Yuanlu. ”Solving a nonlinear fractional differential equation using Chebyshev wavelets.” Communications in Nonlinear Science and Numerical Simulation 15.9 (2010): 2284-2292.
  • Ali Khan, Rahmat. ”The Legendre wavelet method for solving fractional differential equations.” Communications in Nonlinear Science and Numerical Simulation 16.11 (2011): 4163-4173.
  • R. Almeida and D. F. M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun Nonlinear Sci Numer Simulat, 16, (2011) 1490-1500.
  • M. El-Gamel, A. Zayed, Sinc–Galerkin method for solving nonlinear boundary-value problems, Comput. Math. Appl. 48 (2004) 1285–1298.
  • A. Mohsen, M. El-Gamel, On the Galerkin and collocation methods for two-point boundary value problems using sinc bases, Comput. Math. Appl., 56 (2008) 930–941.
  • W. K. Zahra, S. M. Elkholy, Cubic Spline Solution Of Fractional Bagley-Torvik Equation, Electronic Journal of Mathematical Analysis and Applications, Vol. 1(2), (2013), pp. 230-241.
  • J. Lund, K. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, PA, 1992.
  • M. Zarebnia, M. Sajjadian, The sinc–Galerkin method for solving Troesch’s problem, Mathematical and Computer Modelling 56 (2012) 218–228
  • Secer A, Alkan S, Akinlar MA and Bayram M, Sinc-Galerkin method for approximate solutions of fractional order boundary value problems, Boundary Value Problems 2013, (2013):281, doi:10.1186/1687-2770-2013-281
  • Ur Rehman, Mujeeb, and Rahmat Ali Khan. ”A numerical method for solving boundary value problems for fractional differential equations.” Applied Mathematical Modelling 36, no. 3 (2012): 894-907.
Yıl 2014, Cilt: 2 Sayı: 1, 1 - 11, 01.04.2014

Öz

Kaynakça

  • Rehman, M.U. ve Khan, R.A. ”A numerical method for solving boundary value problems for fractional differential equations”, Appl. Math. Modell., 36: (2012)894-907.
  • V. Daftardar-Gejji, H. Jafari, Solving a multi-order fractional differential equation using adomian decomposition, Appl. Math. Comput. 189 (2007) 541–548.
  • Vazqueze, L., Tanga, Y., Nie, N., Jimenez, S. ve Li, M. ”Solving two-point boundary value problems of fractional differential equations by spline collocation methods”, (2009), 1-10.
  • Fix, G. J. and Roop, J. P. ,”Least squares finite element solution of a fractional order two-point boundary value problem”, Comput. Math. Appl, 48: (2004), 1017-1033.
  • G. Wu, E.W.M. Lee, Fractional variational iteration method and its application, Phys. Lett. A 374 (2010) 2506–2509.
  • Z. Odibat, S. Momani, V. Suat Erturk, Generalized differential transform method: application to differential equations of fractional order, Appl. Math.Comput. 197 (2008) 467–477.
  • K. Diethelm, G. Walz, Numerical solution of fractional order differential equations by extrapolation, Numer. Algor. 16 (1997) 2312
  • Li, Yuanlu. ”Solving a nonlinear fractional differential equation using Chebyshev wavelets.” Communications in Nonlinear Science and Numerical Simulation 15.9 (2010): 2284-2292.
  • Ali Khan, Rahmat. ”The Legendre wavelet method for solving fractional differential equations.” Communications in Nonlinear Science and Numerical Simulation 16.11 (2011): 4163-4173.
  • R. Almeida and D. F. M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun Nonlinear Sci Numer Simulat, 16, (2011) 1490-1500.
  • M. El-Gamel, A. Zayed, Sinc–Galerkin method for solving nonlinear boundary-value problems, Comput. Math. Appl. 48 (2004) 1285–1298.
  • A. Mohsen, M. El-Gamel, On the Galerkin and collocation methods for two-point boundary value problems using sinc bases, Comput. Math. Appl., 56 (2008) 930–941.
  • W. K. Zahra, S. M. Elkholy, Cubic Spline Solution Of Fractional Bagley-Torvik Equation, Electronic Journal of Mathematical Analysis and Applications, Vol. 1(2), (2013), pp. 230-241.
  • J. Lund, K. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, PA, 1992.
  • M. Zarebnia, M. Sajjadian, The sinc–Galerkin method for solving Troesch’s problem, Mathematical and Computer Modelling 56 (2012) 218–228
  • Secer A, Alkan S, Akinlar MA and Bayram M, Sinc-Galerkin method for approximate solutions of fractional order boundary value problems, Boundary Value Problems 2013, (2013):281, doi:10.1186/1687-2770-2013-281
  • Ur Rehman, Mujeeb, and Rahmat Ali Khan. ”A numerical method for solving boundary value problems for fractional differential equations.” Applied Mathematical Modelling 36, no. 3 (2012): 894-907.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Bölüm Articles
Yazarlar

Sertan Alkan Bu kişi benim

Yayımlanma Tarihi 1 Nisan 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 2 Sayı: 1

Kaynak Göster

APA Alkan, S. (2014). Approximate solutions of boundary value problems of fractional order by using sinc-Galerkin method. New Trends in Mathematical Sciences, 2(1), 1-11.
AMA Alkan S. Approximate solutions of boundary value problems of fractional order by using sinc-Galerkin method. New Trends in Mathematical Sciences. Nisan 2014;2(1):1-11.
Chicago Alkan, Sertan. “Approximate Solutions of Boundary Value Problems of Fractional Order by Using Sinc-Galerkin Method”. New Trends in Mathematical Sciences 2, sy. 1 (Nisan 2014): 1-11.
EndNote Alkan S (01 Nisan 2014) Approximate solutions of boundary value problems of fractional order by using sinc-Galerkin method. New Trends in Mathematical Sciences 2 1 1–11.
IEEE S. Alkan, “Approximate solutions of boundary value problems of fractional order by using sinc-Galerkin method”, New Trends in Mathematical Sciences, c. 2, sy. 1, ss. 1–11, 2014.
ISNAD Alkan, Sertan. “Approximate Solutions of Boundary Value Problems of Fractional Order by Using Sinc-Galerkin Method”. New Trends in Mathematical Sciences 2/1 (Nisan 2014), 1-11.
JAMA Alkan S. Approximate solutions of boundary value problems of fractional order by using sinc-Galerkin method. New Trends in Mathematical Sciences. 2014;2:1–11.
MLA Alkan, Sertan. “Approximate Solutions of Boundary Value Problems of Fractional Order by Using Sinc-Galerkin Method”. New Trends in Mathematical Sciences, c. 2, sy. 1, 2014, ss. 1-11.
Vancouver Alkan S. Approximate solutions of boundary value problems of fractional order by using sinc-Galerkin method. New Trends in Mathematical Sciences. 2014;2(1):1-11.